人教版高一数学对数函数教案

人教版高一数学对数函数教案
人教版高一数学对数函数教案

有关高一数学对数函数的概念以及一些常见的解题方法和延伸,基本的知识点及简单的例题,希望对高中生们有帮助。

1对数的概念

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b.

特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.

2对数式与指数式的互化

式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)

3对数的运算性质

如果a>0,a≠1,M>0,N>0,那么

(1)loga(MN)=logaM+logaN.

(2)logaM/N=logaM-logaN.

(3)logaM^n=nlogaM (n∈R).

问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?

②logaan=? (n∈R)

③对数式与指数式的比较.(学生填表)

式子ab=NlogaN=b名称a—幂的底数

b—

N—a—对数的底数

b—

N—运

质am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈R)logaMN=logaM+logaN

logaMN=

logaMn=(n∈R)

(a>0,a≠1,M>0,N>0)

难点疑点突破

对数定义中,为什么要规定a>0,,且a≠1?

理由如下:

①若a<0,则N的某些值不存在,例如log-28

②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数

③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数

为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数

解题方法技巧

1

(1)将下列指数式写成对数式:

①54=625;②2-6=164;③3x=27;④13m=5 73.

(2)将下列对数式写成指数式:

①log1216=-4;②log2128=7;

③log327=x;④lg0.01=-2;

⑤ln10=2.303;⑥lgπ=k.

解析由对数定义:ab=N log aN=b.

解答(1)①log5625=4.②log2164=-6.

③log327=x.④log135.73=m.

解题方法

指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b.(2)①12-4=16.

②27=128.③3x=27.

④10-2=0.01.⑤e2.303=10.⑥10k=π.

2

根据下列条件分别求x的值:

(1)log8x=-23;(2)log2(log5x)=0;

(3)logx27=31+log32;(4)logx(2+3)=-1.

解析(1)对数式化指数式,得:x=8-23=?

(2)log5x=20=1. x=?

(3)31+log32=3×3log32=?27=x?

(4)2+3=x-1=1x. x=?

解答(1)x=8-23=(23)-23=2-2=14.

(2)log5x=20=1,x=51=5.

(3)logx27=3×3log32=3×2=6,

∴x6=27=33=(3)6,故x=3.

(4)2+3=x-1=1x,∴x=12+3=2-3.

解题技巧

①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.

②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3

已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.

解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

思路二,对指数式的两边取同底的对数,再利用对数式的运算求值

解答解法一∵logax=4,logay=5,

∴x=a4,y=a5,

∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.

解法二对所求指数式两边取以a为底的对数得

logaA=loga(x512y-13)

=512logax-13logay=512×4-13×5=0,

∴A=1.

解题技巧

有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4

设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.

解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?

解答∵x>0,y>0,x·y1+lgx=1,

两边取对数得:lgx+(1+lgx)lgy=0.

即lgy=-lgx1+lgx(x≠110,lgx≠-1).

令lgx=t, 则lgy=-t1+t(t≠-1).

∴lg(xy)=lgx+lgy=t-t1+t=t21+t.

解题规律

对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.

∴Δ=S2+4S≥0,解得S≤-4或S≥0,

故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).

5

求值:

(1)lg25+lg2·lg50+(lg2)2;

(2)2log32-log3329+log38-52log53;

(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;

(4)求7lg20·12lg0.7的值.

解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.

(2)转化为log32的关系式.

(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?

(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,

设x=7lg20·12lg0.7能否先求出lgx,再求x?

解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2

=2lg5+lg2·(1+lg5)+(lg2)2

=lg5·(2+lg2)+lg2+(lg2)2

=lg102·(2+lg2)+lg2+(lg2)2

=(1-lg2)(2+lg2)+lg2+(lg2)2

=2-lg2-(lg2)2+lg2+(lg2)2=2.

(2)原式=2log32-(log325-log332)+log323-5log59

=2log32-5log32+2+3log32-9

=-7.

(3)由已知lgab=lg(a-2b)2 (a-2b>0),

∴ab=(a-2b)2, 即a2-5ab+4b2=0.

∴ab=1或ab=4,这里a>0,b>0.

若ab=1,则a-2b<0, ∴ab=1(舍去).

∴ab=4,

∴log2a-log2b=log2ab=log24=2.

(4)设x=7lg20·12lg0.7,则

lgx=lg20×lg7+lg0.7×lg12

=(1+lg2)·lg7+(lg7-1)·(-lg2)

=lg7+lg2=14,

∴x=14, 故原式=14.

解题规律

①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).

②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6

证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0);

(2)logab·logbc=logac;

(3)logab=1logba(b>0,b≠1);

(4)loganbm=mnlogab.

解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.

(2)中logbc能否也换成以a为底的对数.

(3)应用(1)将logab换成以b为底的对数.

(4)应用(1)将loganbm换成以a为底的对数.

解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN,

∴b=logcNlogca.∴logaN=logcNlogca.

(2)由(1)logbc=logaclogab.

所以logab·logbc=logab·logaclogab=logac.

(3)由(1)logab=logbblogba=1logba.

解题规律

(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用. 对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.

7

已知log67=a,3b=4,求log127.

解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?

解答已知log67=a,log34=b,

∴log127=log67log612=a1+log62.

又log62=log32log36=log321+log32,

由log34=b,得2log32=b.

∴log32=b2,∴log62=b21+b2=b2+b.

∴log127=a1+b2+b=a(2+b)2+2b.

解题技巧

利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧 8

已知x,y,z∈R+,且3x=4y=6z.

(1)求满足2x=py的p值;

(2)求与p最接近的整数值;

(3)求证:12y=1z-1x.

解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?

解答(1)解法一3x=4y log33x=log34y x=ylog34 2x=2ylog34=ylog316,

∴p=log316.

解法二设3x=4y=m,取对数得:

x·lg3=lgm,ylg4=lgm,

∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.

由2y=py, 得2lgmlg3=plgmlg4,

∴p=2lg4lg3=lg42lg3=log316.

(2)∵2=log39

∴2

又3-p=log327-log316=log32716,

p-2=log316-log39=log3169,

而2716<169,

∴log327163-p.

∴与p最接近的整数是3.

解题思想

①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?

②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+,

∴k>1,则x=lgmlg3,y=lgmlg4,z=lgmlg6,

所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,

故12y=1z-1x.

解法二3x=4y=6z=m,

则有3=m1x①,4=m1y②,6=m1z③,

③÷①,得m1z-1x=63=2=m12y.

∴1z-1x=12y.

9

已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1).

解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?

解答logma+b3=logm(a+b3)212=

解题技巧

①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.

②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.

∵a2+b2=7ab,

∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb),

即logma+b3=12(logma+logmb).

思维拓展发散

1

数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中

N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N的常用对数,就能揭示其中的奥秘.

解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系?

解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10,

∴lga∈〔0,1).

我们把整数n叫做N的常用对数的首数,把lga叫做N的常用对数的尾数,它是正的纯小数或0.

小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1;

②有效数字相同的不同正数它们的常用对数的尾数相同,只是首数不同;

③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同.

师生互动

什么叫做科学记数法?

N>0,lgN的首数和尾数与a×10n有什么联系?

有效数字相同的不同正数其常用对数的什么相同?什么不同?

2

若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0 380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.

解析①lg0.203 4=1 308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.

解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).

又lg1x=-lgx=-(n+lga),

∴(n-9)+(lga+0 380 4)=-n-lga,其中n-9是首数,lga+0 380 4是尾数,

-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:

n-9=-(n+1)

lga+0.380 4=1-lga n=4,

lga=0.308 3.

∴lgx=4+0.308 3=4.308 3,

∵lg0.203 4=1.308 3,∴x=2.034×104.

∴lg1x=-(4+0.308 3)=5.691 7.

解题规律

把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3 计算:

(1)log2-3(2+3)+log6(2+3+2-3);

(2)2lg(lga100)2+lg(lga).

解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?

(2)中分母已无法化简,分子能化简吗?

解题方法

认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2

=-1+12log6(4+22+3·2-3)

=-1+12log66

=-12.

(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.

4

已知log2x=log3y=log5z<0,比较x,3y,5z的大小.

解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式.

解答设log2x=log3y=log5z=m<0.则

x=2m,y=3m,z=5m.

x=(2)m,3y=(33)m,5z=(55)m.

下面只需比较2与33,55的大小:

(2)6=23=8,(33)6=32=9,所以2<33.

又(2)10=25=32,(55)10=52=25,

∴2>55.

∴55<2<33. 又m<0,

图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1

解题规律

①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.

②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较

①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y

潜能挑战测试

1(1)将下列指数式化为对数式:

①73=343;②14-2=16;③e-5=m.

(2)将下列对数式化为指数式:

①log128=-3;②lg10000=4;③ln3.5=p.

2计算:

(1)24+log23;(2)2723-log32;(3)2513log527+2log52.

3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45;

(2)若lg3.127=a,求lg0.031 27.

4已知a≠0,则下列各式中与log2a2总相等的是()

A若logx+1(x+1)=1 ,则x的取值范围是()

A已知ab=M(a>0,b>0,M≠1),且logMb=x,则logMa的值为()

A若log63=0.673 1,log6x=-0.326 9, 则x为()

A若log5〔log3(log2x)〕=0,则x=.

98log87·log76·log65=.

10如果方程lg2x+(lg2+lg3)lgx+lg2·lg3=0的两根为x1、x2,那么x1·x2的值为.

11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.H1→H2→H3→H4→H5→H6这条生物链中(Hn表示第n个营养级,n=1,2,3,4,5,6).已知对H1输入了106千焦的能量,问第几个营养级能获得100千焦的能量?

12已知x,y,z∈R+且3x=4y=6z,比较3x,4y,6z的大小.

13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2.

14已知2a·5b=2c·5d=10,证明(a-1)(d-1)=(b-1)(c-1).

15设集合M={x|lg〔ax2-2(a+1)x-1〕>0},若M≠ ,M {x|x<0},求实数a的取值范围.

16在张江高科技园区的上海超级计算中心内,被称为“神威Ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为N=,若已知lg3.840=0.584 3,则lgN=.

17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48)

18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x倍,则函数y=f(x)的解析式f(x)=.

名师助你成长

1.(1)①log7343=3.②log1416=-

2.③lnm=-5.

(2)①12-3=8.②104=10 000.③ep=3.5.

2.(1)48点拨:先应用积的乘方,再用对数恒等式.

(2)98点拨:应用商的乘方和对数恒等式.

(3)144点拨:应用对数运算性质和积的乘方.

3.(1)0.826 6点拨:lg45=12lg45=12lg902=12(lg32+lg10-lg2).

(2)lg0.031 27=lg(3.127×10-2)=-2+lg3.127=-2+a

4.C点拨:a≠0,a可能是负数,应用对数运算性质要注意对数都有意义.

5.B点拨:底x+1>0且x+1≠1;真数x+1>0.

6.A点拨:对ab=M取以M为底的对数.

7.C点拨:注意0.673 1+0.326 9=1,log61x=0.326 9,

所以log63+log61x=log63x=1.∴3x=6, x=12.

8.x=8点拨:由外向内.log3(log2x)=1, log2x=3, x=23.

9.5点拨:log87·log76·log65=log85, 8log85=5.

10.16点拨:关于lgx的一元二次方程的两根是lgx1,lgx2.

由lgx1=-lg2,lgx2=-lg3,得x1=12,x2=13.

11.设第n个营养级能获得100千焦的能量,

依题意:106·10100n-1=100,

化简得:107-n=102,利用同底幂相等,得7-n=2,

或者两边取常用对数也得7-n=2.

∴n=5,即第5个营养级能获能量100千焦.

12 设3x=4y=6z=k,因为x,y,z∈R+,

所以k>1.取以k为底的对数,得:

x=1logk3,y=1logk4,z=1logk6.

∴3x=3logk3=113logk3=1logk33,

同理得:4y=1logk44,6z=1logk66.

而33=1281,44=1264,66=1236,

∴logk33>logk44>logk66.

又k>1,33>44>66>1,

∴logk33>logk44>logk66>0,∴3x<4y<6z.

13.∵axby=aybx=1,∴lg(axby)=lg(aybx)=0,

即xlga+ylgb=ylga+xlgb=0.(※)

两式相加,得x(lga+lgb)+y(lga+lgb)=0.

即(lga+lgb)(x+y)=0.∴lga+lgb=0 或x+y=0.

当lga+lgb=0时,代入xlga+ylgb=0,得:

(x-y)lga=0, a是不为1的正数lga≠0,∴x-y=0.

∴x+y=0或x-y=0,∴x2=y2.

14.∵2a5b=10,∴2a-1=51-b.两边取以2为底的对数,得:a-1=(1-b)log25.

∴log25=a-11-b(b≠1). 同理得log25=c-11-d(d≠1).

即b≠1,d≠1时,a-11-b=c-11-d.

∴(a-1)(1-d)=(c-1)(1-b),

∴(a-1)(d-1)=(b-1)(c-1).

当b=1,c=1时显然成立.

15.设lg〔ax2-2(a+1)x-1〕=t (t>0),则

ax2-2(a+1)x-1=10t(t>0).

∴10t>1 ,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.

①当a=0时,解集{x|x<-1} {x|x<0};

当a≠0时,M≠ 且M {x|x<0}.

∴方程ax2-2(a+1)x-2=0 必有两不等实根,设为x1,x2且x1

②当a>0时,M={x|xx2},显然不是{x|x<0}的子集;

③当a<0时,M={x|x1

a<0,

Δ=4(a+1)2+8a>0,

x1+x2=2(a+1)a<0,

x1·x2=-2a>0.

解得3-2

16.N=3.840×1011, lgN=11.584 3.

17.设经过x年,成本降为原来的40%.则

(1-10%)x=40%,两边取常用对数,得:

x·lg(1-10%)=lg40% ,

即x=lg0.4lg0.9=lg4-1lg9-1=2lg2-12lg3-1=10.

所以经过10年成本降低为原来的40%.

18.f(x)=log1.104x〔或f(x)=lgxlg1.104〕.

点拨:设原来一个季度产品为a,则a(1+10.4%)y=xa,∴y=log1.104x.

幂函数教学设计

§2.3幂函数(一) -----教学设计人:刘宏德 一.教材分析 幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合检测。 二.学情分析 学生通过对指数函数和对数函数的学习,已经初步掌握了如何去研究一类函数的方法,即由几个特殊的函数的图象,归纳出此类函数的一般的性质这一方法,为学习本节课打下了基础。 三.教学目标 1.知识目标 (1)通过实例,了解幂函数的概念; (2)会画简单幂函数的图象,并能根据图象得出这些函数的性质; (3)了解幂函数随幂指数改变的性质变化情况。 2.能力目标 在探究幂函数性质的活动中,培养学生观察和归纳能力,培养学生数形结合的意识和思想。 3.情感目标 通过师生、生生彼此之间的讨论、互动,培养学生合作、交流、探究的意 识品质,同时让学生在探索、解决问题过程中,获得学习的成就感。四.教学重点常见的幂函数的图象和性质。 五.教学难点画幂函数的图象引导学生概括出幂函数性质。 六.教学用具多媒体 七.教学过程 (一)创设情境(多媒体投影) 问题一:下列问题中的函数各有什么特征? (1)如果张红购买了每千克1元的蔬菜w(kg),那么她应支付p=w元.这里p是w的函数. (2)如果正方形的边长为a,那么正方形的面积为S=a2.这里S是a的函数. (3)如果立方体的边长为a,那么立方体的体积为V=a3.这里V是a的函数.

(4)如果一个正方形场地的面积为S,那么这个正方形的边长为a=.这里a是S的函数. (5)如果某人t(s)内骑车行进了1km,那么他骑车的平均速度为v=t-1(km/s).这里v是t的函数. 由学生讨论、总结,即可得出:p=w,s=a2,a=,v=t-1都是自变量的若干次幂的形式. 问题二:这五个函数关系式从结构上看有什么共同的特点吗? 这时,学生观察可能有些困难,老师提示,可以用x表示自变量,用y表示函数值,上述函数式变成:y=x a的函数,其中x是自变量,a是实常数.由此揭示课题:今天这节课,我们就来研究:§2.3幂函数 (二)、建立模型 定义:一般地,函数y=x a叫作幂函数,其中x是自变量,a是实常数。(投影幂函数的定义。) 深化认知(1)下列函数是幂函数的是: A.y=2x+1 B.y=3x2 C.y=x-3 D.y=1 (2)幂函数与指数函数有什么联系和区别? 学生回答,老师点评。 引导:有了幂函数的概念后,我们接下来做什么?―――研究幂函数的性质。 通过什么方式来研究?――――――画函数的图象。 为使作图高效,我们可先做点什么―――分析函数的定义域、奇偶性。(三)问题探究 1. 对于幂函数y=x a,讨论当a=1,2,3,,-1时的函数性质. 填表

高中数学对数函数教案

高中数学对数函数教案 数学对数函数教案【教学目标】 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 数学对数函数教案【教学建议】 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 数学对数函数教案【教学设计示例】 一.引入新课 一.对数函数的概念 1.定义:函数的反函数叫做对数函数. 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的 认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故 有着相同的限制条件. 在此基础上,我们将一起来研究对数函数的图像与性质.

高中数学必修一幂函数教案

高中数学必修一幂函数 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学必修一幂函数教案 教学目标: 知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点: 重点从五个具体幂函数中认识幂函数的一些性质. 难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 问题引入. 索一般幂函数的图象规律.

教学过程与操作设计:

环节教学内容设计师生双边互动 组织探究 材料二:幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定 义,并且图象都过点(1,1); (2)0 > α时,幂函数的图象通过原 点,并且在区间) ,0[+∞上是增函数.特别 地,当1 > α时,幂函数的图象下凸;当 1 0< <α时,幂函数的图象上凸; (3)0 < α时,幂函数的图象在区间 ) ,0(+∞上是减函数.在第一象限内,当x从 右边趋向原点时,图象在y轴右方无限地逼 近y轴正半轴,当x趋于∞ +时,图象在x轴 上方无限地逼近x轴正半轴. 师:引导学生 观察图象,归纳概 括幂函数的的性质 及图象变化规律. 生:观察图 象,分组讨论,探 究幂函数的性质和 图象的变化规律, 并展示各自的结论 进行交流评析,并 填表.

探究与发现 1.如图所示,曲线 是幂函数αx y=在第一象 限内的图象,已知α分别 取2, 2 1 ,1,1 -四个值,则相 应图象依次 为:. 2.在同一坐标系内,作出下列函数的图 象,你能发现什么规律? (1)3- =x y和3 1 - =x y; (2)4 5 x y=和5 4 x y=. 规律1:在第 一象限,作直线 )1 (> =a a x,它同 各幂函数图象相 交,按交点从下到 上的顺序,幂指数 按从小到大的顺序 排列. 规律2:幂指 数互为倒数的幂函 数在第一象限内的 图象关于直线x y= 对称. 作业回馈 1.在函数 1 , , 2 , 1 2 2 2 = + = = =y x x y x y x y中,幂函数的个数为: A.0 B.1 C.2 D.3 环节呈现教学材料师生互动设计2.已知幂函数) (x f y=的图象过点 )2 ,2(,试求出这个函数的解析式. 3.在固定压力差(压力差为常数)下, 当气体通过圆形管道时,其流量速率R与管 道半径r的四次方成正比. (1)写出函数解析式; (2)若气体在半径为3cm的管道中,流 量速率为400cm3/s,求该气体通过半径为r 的管道时,其流量速率R的表达式; (3)已知(2)中的气体通过的管道半 径为5cm,计算该气体的流量速率. 4.1992年底世界人口达到54.8亿, 若人口的平均增长率为x%,2008年底世界人 口数为y(亿),写出: (1)1993年底、1994年底、2000年底 的世界人口数; (2)2008年底的世界人口数y与x的 函数解析式.

高一数学 对数函数的图象与性质教案

课题:4.2.3 对数函数的图象和性质 【教学目标】 1. 初步了解对数函数的性质,并初步运用对数函数的性质解决诸如比较大小等简单问题; 2. 在用描点法或借助计算工具画出对数函数的图象,并探索对数函数的性质的过程中,发展学生的直观想象、数学抽象、逻辑推理等核心素养; 3. 类比指数函数的研究过程,让学生经历设计对数函数图象和性质的研究内容方法、步骤并实施,再次提升和丰富了函数的图象和性质研究的基本思想和基本活动经验. 【教学重点】 了解对数函数的图象和性质并能初步应用. 【教学难点】 抽象、概括出对数函数性质(底数a 对对数函数图象变化的影响). 【教学过程】 教学流程:明确思路→感知图象→发现性质→尝试应用→归纳小结→布置作业 (一) 回顾经验、明确思路 教师导语:对于具体的函数,我们一般按照“概念—图象—性质—应用”的过程进行研究.前面我们学习了对数函数的概念,接下来就要研究它的图象和性质.回顾指数函数的研究过程,你能说说我们要研究哪些内容?研究方法又是什么? 师生活动:教师引导学生类比指数函数的学习,共同商议、制定研究对数函数的图象和性质的内容、方法以及步骤. 【设计意图】:从初中到现在,学生已学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,已对函数的相关概念、研究函数的方法有了一定的了解和掌握,可以通过类比的方法研究学习,从而明确了对数函数的图象与性质的研究内容、方法以及步骤,为接下来的学习建立先行组织者. (二)尝试画图、形成感知 教师导语:在明确了探究方向后,下面请同学们按照“数学实验活动探究卡”的步骤进行探究活动. 活动(1)自主探究:用描点法画出对数函数x y 2log =的图象. 师生活动:由于描点法作图时列举点的个数的限制,学生对对数函数的图象特征缺乏直观感受.教师借助几何画板作出对数函数x y 2log =图象,验证猜想. 教师追问1:在同一个坐标系中,如何画出对数函数x y 2 1log =的图象?

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

高中数学必修1 《对数函数》教学设计

《对数函数》教学设计 一、教材分析 《对数函数》是在人教版高中数学第一册(上)第二章第2.8节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用。学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。 二、学情分析 学生在初中已经学习过二次函数及其图象,又刚刚学习了指数函数的定义、图象的画法并掌握了相关的性质,有了一定的读图能力,能够根据函数图象抽象概括出一些简单的性质。经过两个多月的教学观察,所教班级的学生数学能力及数学思想的形成还很欠缺,逻辑思维能力也有待加强训练。本节课课前布置学生带着问题预习,让学生找出指数函数与对数函数之间的关系,采用多媒体,采取“诱思探究”的教学方法进行教学,充分发挥学生的积极性和主动性,在独立思考与讨论中获取知识,实现教学目标。 三、设计理念 按照认知规律,从感性认识再到理性研究,由浅入深得出对数函数的概念。然后引导学生利用对称作图法和描点作图法比较作出函数图像。通过观察图象、分析图象特征,得出函数的基本性质。整个教学过程始终贯彻学生为主体、教师为引导的教学理念,综合培养学生动手、动眼、动脑的能力,培养学生的探究合作意识和创新能力。 四、学习三维目标 1、知识目标: ⑴、通过求指数函数的反函数,了解对数函数的概念。 ⑵、能画出具体对数函数的图像,掌握对数函数的图像和性质。 ⑶、能应用对数函数的性质解有关问题。 2、能力目标: ⑴、培养学生数形结合的意识。 ⑵、让学生学会用比较和联系的观点分析问题,认识事物间的相互转化。 ⑶、了解对数函数在实际问题中的简单应用。

高一数学《幂函数》公开课优秀教案(表格式,经典、完美)

高一数学《幂函数》公开课教案 ★课程标准:通过实例,了解幂函数的概念;结合函数12 1 3 2 ,,,,-=====x y x y x y x y x y 的图象, 了解它们的变化情况. 一、教学目标: 1.了解幂函数概念,会用描点法画幂函数图象,通过具体实例研究幂函数的图象和性质,并会简单应用. 2.通过对幂函数的学习,使学生进一步熟练掌握研究函数的一般思想方法. 3.通过引导学生主动参与作图、分析图象,培养学生的探索精神,并在研究函数变化的过程中体会事物的量变、质变规律,感受数学的对称美、和谐美. 二、教学重点:通过五个具体的幂函数认识概念,研究性质,体会图象的变化规律. 三、教学难点:画五个幂函数的图象并由图象概括幂函数的一般性质. 四、教学用具:实物投影仪等多媒体 五、教学过程: (一)创设情境 ①如果某人购买了每千克1 元的蔬菜w 千克,那么他需要付的钱数p (元)关于购 买的蔬菜量w (千克)的函数解析式为_____________. ②如果正方形的边长为a ,那么正方形的面积S 关于a 的函数解析式为___________. ③如果正方体的边长为a ,那么正方体的体积V 关于a 的函数解析式为___________. ④如果正方形场地面积为S ,那么正方形的边长a 关于s 的函数解析式为_________. ⑤如果某人t s 内骑车行进了1 km ,那么他骑车的速度v 关于t 的函数解析式为_________. 问题1.观察这些函数解析式,它们有什么共同的结构特征吗? 【设计意图】从特殊到一般,将实际问题转化为数学问题,经历一次发现之旅. (二)引入新知 幂函数的定义:一般地,函数α x y =叫做幂函数,其中x 是自变量,α是常数. 幂函数是一种特殊的基本初等函数. 问题2.请同学们举出一些具体的幂函数. 从引例和同学们刚才举的例子中,我们可以发现,幂指数α可以是正数、负数,也可以是0. (三)探究建构 2 1 21 2.(22)23m y m m x n m n -=+-+-若是幂函数,求、.

高中数学课时教案 对数函数及其性质(第三课时)

云南省昆明市第三中学课时教案 §2.2.2对数函数及其性质(第三课时) 一.教学目标: 1.知识与技能 (1)知识与技能 (2)了解反函数的概念,加深对函数思想的理解. 2.过程与方法 学生通过观察和类比函数图象,体会两种函数的单调性差异. 3. 情感、态度、价值观 (1)体会指数函数与指数; (2)进一步领悟数形结合的思想. 二.重点、难点: 重点:指数函数与对数函数内在联系 难点:反函数概念的理解 三.学法与教具: 学法:通过图象,理解对数函数与指数函数的关系. 教具:多媒体 四.教学过程: 1.复习 (1)函数的概念 (2)用列表描点法在同一个直角坐标点中画出22log x y y x ==与的函数图象.` 2.讲授新知 2x y = 2log y x = 图象如下:

探究:在指数函数2x y =中,x 为自变量,y 为因变量,如果把y 当成自变量,x 当成因变量,那么x 是y 的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由. 引导学生通过观察、类比、思考与交流,得出结论. 在指数函数2x y =中,x 是自变量, y 是x 的函数(,x R y R + ∈∈),而且其在R 上是单调递增函数. 过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一 个交点.由指数式与对数式关系,22log x y x y ==得,即对于每一个y ,在关系式2log x y =的作用之下,都有唯一的确定的值x 和它对应,所以,可以把y 作为自变量,x 作为y 的函 数,我们说2log 2()x x y y x R ==∈是的反函数. 从我们的列表中知道,22log x y x y ==与是同一个函数图象. 3.引出反函数的概念(只让学生理解,加宽学生视野) 当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数为反函数. 由反函数的概念可知,同底的指数函数和对数函数互为反函数. 如3log 3x x y y ==是的反函数,但习惯上,通常以x 表示自变量,y 表示函数,对调 3log x y =中的3,log x y y x =写成,这样3log (0,)y x x =∈+∞是指数函数 3()x y x R =∈的反函数. 以后,我们所说的反函数是,x y 对调后的函数,如2()x y x R =∈的反函数是 2log (0,)y x x =∈+∞. 同理,(1x y a a =≠且a >1)的反函数是log (a y x a =>0且1)a ≠. 课堂练习:求下列函数的反函数 (1)5x y = (2)0.5log y x = 归纳小结: 1. 今天我们主要学习了什么? 2log y x = x

3.2.3指数函数与对数函数的关系教案

3.2.3 指数函数与对数函数的关系 【学习要求】 1.了解反函数的概念及互为反函数图象间的关系; 2.掌握对数函数与指数函数互为反函数. 【学法指导】 通过探究指数函数与对数函数的关系,归纳出互为反函数的概念,通过指数函数图象与对数函数图象的关系,总结出互为反函数的图象间的关系,体会从特殊到一般的思维过程. 填一填:知识要点、记下疑难点 1.当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的 自变量 ,而把这个函数的自变量 作为新的函数的 因变量. 我们称这两个函数 互为反函数. 即y =f(x)的反函数通常用 y =f - 1(x) 表示. 2.对数函数y =log a x 与指数函数y =a x 互为反函数 ,它们的图象关于 直线y =x 对称. 3.互为反函数的图象关于直线 y =x 对称;互为反函数的图象同增同减. 4.当a>1时,在区间[1,+∞)内,指数函数y =a x 随着x 的增加,函数值的增长速度 逐渐加快 ,而对数函数y =log a x 增长的速度 逐渐变得很缓慢. 研一研:问题探究、课堂更高效 [问题情境] 设a 为大于0且不为1的常数,对于等式a t =s,若以t 为自变量可得指数函数y =a x ,若以s 为自变量可得对数函数y =log a x.那么指数函数与对数函数有怎样的关系呢?这就是本节我们要探究的主要问题. 探究点一指数函数与对数函数的关系 导引为了探究这两个函数之间的关系,我们用列表法画出函数y =2x 及y =log 2x 的图象. 问题1函数y =2x 及y =log 2x 的定义域和值域分别是什么,它们的定义域和值域有怎样的关系? 答:函数y =2x 的定义域为R,值域为(0,+∞);函数y =log 2x 的定义域为(0,+∞),值域为R.函数y =2x 的定义域和值域分别是函数y =log 2x 的值域和定义域. 问题2在列表画函数y =2x 的图象时,当x 分别取-3,-2,-1,0,1,2,3这6个数值时,对应的y 值分别是什么? 答:y 值分别是: 18, 14, 1 2 , 1, 2, 4, 8. 问题3在列表画函数y =log 2x 的图象时,当x 分别取18,14,1 2 ,1,2,4,8时,对应的y 值分别是什么? 答:y 值分别是:-3,-2,-1,0,1,2,3. 问题4综合问题2、问题3的结果,你有什么感悟? 答:在列表画y =log 2x 的图象时,可以把y =2x 的对应值表里的x 和y 的数值对换,就得到y =log 2x 的对应值表. 问题5观察画出的函数y =2x 及y =log 2x 的图象,能发现它们的图象有怎样的对称关系? 答:函数y =2x 与y =log 2x 的图象关于直线y =x 对称. 问题6我们说函数y =2x 与y =log 2x 互为反函数,它们的图象关于直线y =x 对称,那么对于一般的指数函数y =a x 与对数函数y =log a x 又如何? 答:对数函数y =log a x 与指数函数y =a x 互为反函数.它们的图象关于直线y =x 对称. 探究点二 互为反函数的概念 问题1对数函数y =log a x 与指数函数y =a x 是一一映射吗?为什么? 答:是一一映射,因为对数函数y =log a x 与指数函数y =a x 都是单调函数,所以不同的x 值总有不同的y 值与之对应,不同的y 值也总有不同的x 值与之对应. 问题2对数函数y =log a x 与指数函数y =a x 互为反函数,更一般地,如何定义互为反函数的概念? 答:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新 的函数的因变量,我们称这两个函数互为反函数.函数y =f(x)的反函数通常用y =f - 1(x)表示. 问题3 如何求函数y =5x (x ∈R)的反函数? 答:把y 作为自变量,x 作为y 的函数,则x =y 5,y ∈R.通常自变量用x 表示,函数用y 表示,则反函数为y =x 5 ,x ∈R. 例1 写出下列函数的反函数: (1)y =lg x; (2)y =log 1 3 x; (3)y =????23x . 解:(1)y =lg x(x>0)的底数为10,它的反函数为指数函数y =10x (x ∈R). (2)y =log 13x (x>0)的底数为1 3 ,它的反函数为指数函数y =????13x (x ∈R). (3)y =????23x (x ∈R)的底数为23,它的反函数为对数函数y =log 2 3x (x>0). 小结:求给定解析式的函数的反函数的步骤: (1)求出原函数的值域,这就是反函数的定义域; (2)从y =f(x)中解出x; (3)x 、y 互换并注明反函数的定义域. 跟踪训练1 求下列函数的反函数:(1)y =3x -1; (2)y =x 3+1 (x ∈R); (3)y =x +1 (x≥0); (4)y =2x +3 x -1 (x ∈R,x≠1).

中职数学:幂函数教学教案

2.3幂函数 一.教学目标: 1.知识技能 (1)理解幂函数的概念; (2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用. 2.过程与方法 类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质. 3.情感、态度、价值观 (1)进一步渗透数形结合与类比的思想方法; (2)体会幂函数的变化规律及蕴含其中的对称性. 二.重点、难点 重点:从五个具体的幂函数中认识的概念和性质 难点:从幂函数的图象中概括其性质 5.学法与教具 (1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质; (2)教学用具:多媒体 三.教学过程: 引入新知 阅读教材P90的具体实例(1)~(5),思考下列问题. (1)它们的对应法则分别是什么? (2)以上问题中的函数有什么共同特征? 让学生独立思考后交流,引导学生概括出结论 答:1、(1)乘以1 (2)求平方(3)求立方 (4)求算术平方根(5)求-1次方 =,其中x是自变量,α是 2、上述的问题涉及到的函数,都是形如:y xα 常数. 探究新知 1.幂函数的定义 =(x∈R)的函数称为幂孙函数,其中x是自变量,α是常一般地,形如y xα 数.

如112 3 4 ,,y x y x y x - ===等都是幂函数,幂函数与指数函数,对数函数一样,都 是基本初等函数. 2.研究函数的图像 (1)y x = (2)12 y x = (3)2 y x = (4)1 y x -= (5)3 y x = 一.提问:如何画出以上五个函数图像 引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像. . 2

高中数学 《对数的概念》教学设计 北师大版必修1.doc

《对数的概念》教学设计 一、教材分析 本节课是新课标高中数学必修①中第二章对数函数内容的第一课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备.同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义. 二、学情分析 大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法. 三、设计思路 学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权. 四、教学目标 1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能. 2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化. 3、通过学生分组探究进行活动,掌握对数的重要性质。通过做练习,使学生感受到理论与实践的统一. 4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识. 五、重点与难点 重点:(1)对数的概念;(2)对数式与指数式的相互转化. 难点:(1)对数概念的理解;(2)对数性质的理解.

人教版高中数学必修1《对数函数及其性质》教案

2.2.2对数函数及其性质(第一课时)教案 一、教学目标 知识目标:使学生理解对数函数的定义并了解其图象的特点.能力目标:培养学生动手操作的能力以及自主探究数学问题的素养.情感目标:培养学生勇于探索和创新的精神以及优化他们的个性品质.二、教学重点、难点与关键 重点:掌握对数函数的概念及其图象,使学生能初步自觉地、有意识地利用图象 研究对数函数的性质.难点:理解和掌握对数函数的概念,图象特征,区分01a <<和1a >不同条件下的性质. 关键:认识底数a 与对数函数图象之间的关系. 三、教学过程 (一)创设情境,导入新课 由§2.2.1的例题6(即考古学家是如何估算出土文物或古遗址的年代)引入,让学生利用计算器计算并填写下表. 学生填写完毕后,引导他们观察上表,让他们体会“对每一个碳14的含量P 的取值,通过对应关系,生物死亡年数t 都有唯一的值与它对应,并且对不同的P 值,也都有不同的t 值与它对应,从而t 是P 的函数”. (二)对数函数的概念 1、对数函数的定义函数x log y a =(0>a 且1≠a )称为对数函数.定义域:),0(+∞.2.例题1:求下列函数的定义域。 (1)() 2x log y a = (2)()x log y a -=4 (三)分组讨论,得出对数函数图象及其性质 1、学生分成几个小组并分发第一张表格(印有直角坐标系);然后引导学生通过常规方法(即列表、描点、连线成图)画出四个具体的对数函数x log y 2=、x y 21log =、x y 3log =以及 x y 3 1log =的图象. 生物的死亡年数t 0.001 0.01 0.1 0.3 0.5 碳14的含量P

人教版高一数学对数函数教案

有关高一数学对数函数的概念以及一些常见的解题方法和延伸,基本的知识点及简单的例题,希望对高中生们有帮助。 1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaM/N=logaM-logaN. (3)logaM^n=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下:

①若a<0,则N的某些值不存在,例如log- ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④ (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:aN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:①12-4=16. ②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

人教版高一数学必修一教案:幂函数

2.3.幂函数教学设计 【教学分析】 幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究2 11 32,,,,x y x y x y x y x y =====-等函数的性质和图象,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数0>α时,幂函数的图象都经过点()0,0和()1,1,且在第一象限内函数单调递增;当幂指数0<α时,幂函数的图象都经过点()1,1,且在第一象限单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习. 将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了1 2 ,,-===x y x y x y 等三个简单的幂函数,对它们的图像和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径. 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 【课前准备】 1.教师准备:PPT 课件,几何画板《幂函数》导学案. 2.学生准备:课前预习幂函数定义,完成导学案1,2,并画出1 2 ,,x y x y x y ===的图象. 【教学目标】 1.知识与技能 (1)通过实例,了解幂函数的概念. (2)通过具体实例了解几个常见幂函数的图象和性质,并能进行初步的应用. (3)学会研究函数图象和性质的一般方法和思想.

人教版高中数学必修第一册对数函数的定义教案

2.8(第一课时 对数函数的定义、图象和性质) 教学目的: 1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系; 2.会求对数函数的定义域; 3.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。 教学重点:对数函数的定义、图象、性质 教学难点:对数函数与指数函数间的关系. 教学形式:计算机辅助教学 教学过程: 一、复习引入: 对于函数y =x 2,根据对数的定义,可以写成对数的形式,就是y x 2log = 如果用x 表示自变量,y 表示函数,这个函数就是x y 2log = 由反函数概念可知, x y 2log =与指数函数x y 2=互为反函数。 二、新授内容: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数;它是指数函数x a y = )10(≠>a a 且的反函数。 对数函数x y a log = )10(≠>a a 且的定义域为),0(+∞,值域为),(+∞-∞。 2.对数函数的图象 由于对数函数x y a log =与指数函数x a y =互为反函数,所以x y a log =的图象与x a y =的图象关于直线x y =对称。因此,我们只要画出和x a y =的图象关于x y =对称的曲线,就可以得到x y a log =的图象,然后根据图象特征得出对数函数的性质。

3.对数函数的性质 先回顾指数函数 )10(≠>=a a a y x 且的图象和性质。 三、例题: 例1求下列函数的定义域:[(1)—(3) 课本P83例1] (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -= (4)2x x y lg(2322)=-+?- 解:(4)2x x x 23220,122,0x 1-+?->∴<<∴<

高一数学对数函数教案

高一数学对数函数教案 教学目标 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 教学建议 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.看过"高一数学对数函数教案"的还 看了:

(完整word)高中数学必修一对数函数.doc

2.3 对数函数 重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换 底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用. 考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数 或常用对数;了解对数在简化运算中的作用;②理解对数函数的概念;理解对数 函数的单调性,掌握函数图像通过的特殊点;③知道对数函数是一类重要的函数 模型; ④了解指数函数与对数函数互为反函数. 经典例题:已知 f( logax ) =,其中a>0,且a≠1. (1)求 f( x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数. 当堂练习: 1.若,则() A . B .C.D. 2.设表示的小数部分,则的值是() A . B .C.0 D . 3.函数的值域是() A .B. [0,1] C. [0, D . {0} 4.设函数的取值范围为() A .(- 1,1)B.(- 1,+∞)C.D. 5.已知函数,其反函数为,则是() A .奇函数且在( 0,+∞)上单调递减B.偶函数且在( 0,+∞)上单调递增C.奇函数且在( - ∞, 0)上单调递减 D .偶函数且在( -∞, 0)上单调递增 6.计算=.

7.若 2.5x=1000,0.25y=1000, 求. 8.函数 f(x) 的定义域为 [0,1], 则函数的定义域为. 9.已知 y=loga(2 -ax)在[ 0, 1]上是 x 的减函数,则 a 的取值范围是. 10 .函数图象恒过定点,若存在反函数,则 的图象必过定点. 11.若集合 {x , xy, lgxy} ={0 , |x|, y} ,则 log8 ( x2+ y2)的值为多少. 12. (1) 求函数在区间上的最值. (2) 已知求函数的值域. 13.已知函数的图象关于原点对称.(1)求 m 的值; (2)判断 f(x) 在上的单调性,并根据定义证明. 14.已知函数 f(x)=x2 - 1(x ≥1) 的图象是 C1,函数 y=g(x) 的图象 C2 与 C1 关于直线 y=x 对称. (1) 求函数 y=g(x) 的解析式及定义域M ; (2) 对于函数y=h(x) ,如果存在一个正的常数a,使得定义域 A 内的任意两个不等的值x1 ,x2 都有 |h(x1) - h(x2)| ≤ a|x1-x2|成立,则称函数y=h(x) 为 A 的利普希茨Ⅰ类函数.试证明: y=g(x) 是 M 上的利普希茨Ⅰ类函数. 参考答案:

相关文档
最新文档