第三章习题解答1
电动力学第三章习题解答

⎞⎠⎟⎟⎟
=
−μ1
I πa
2
(1)
在导体圆柱外
1 r
∂ ∂r
⎛⎜⎜⎜⎝r
∂A2 ∂r
⎞⎠⎟⎟⎟
=
0
O
A
θr
y
x
P
(2)
解这两个微分方程得
A1
=
−
μ1Ir 2 4πa2
+ b ln
r
+c
- 58 -
华中师大 陈义成
A2 = f ln r + g
边界条件
在 r = 0 处, A1 有限,得到 b = 0 ;在 r = a 处,由式(3-1-13)和(3-1-16),有
B1 = μ0nIe z , B2 = 0
可以验证上述尝试解满足方程和边值关系,根据唯一性定理,这就是问题的解。
3.4 稳定电流 I 在半径为 a 的无限长圆柱导体中沿轴向流动,设导体的磁导率为
μ1 ,其外充满磁导率为 μ2 的均匀介质。通过矢势 A 求圆柱导体内、外的磁感应强度及
磁化电流分布。
【解】(1)求磁感应强度
华中师大 陈义成
第三章 习题解答
3.1 设在 x < 0 空间充满磁导率为 μ 的均匀介质,x > 0 区域为真空。今有线电流 I
沿 z 轴流动,求磁感应强度 B 和磁化电流分布。
【解】一、选柱坐标系(如图);
z
B2
二、定解问题:
∫ ∫∫ 1) H ⋅ dl = I ;2) B ⋅ dS = 0 ;
−
B1 μ
⎞ ⎟ ⎠
x=0
=
0
;
y eφ
μ
μ0
φ
x
第3章 习题解答

第三章 习题解答(部分)[1]求以下序列)(n x 的频谱()j X e ω,其中0a >。
(2)()an e u n - (5)0sin()()an e n u n ω-解:对题中所给的)(n x 先进行z 变换,再求其频谱。
(2)由于111)]([)(----==ze n u e Z z X a an ,所以ωωωj a ez j e e z X e X j --=-==11)()(。
(5)由于aa a ane z e z e z n u n eZ z X 2201010cos 21sin )]()sin([)(-------+-==ωωω,所以ωωj e z j z X e X ==)()(aj a j a j e e e e e e 2200c o s 21s i n ------+-=ωωωωω [2] 设()j X e ω和()j Y e ω分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换。
(7)(2)x n (8)(),()20n x n g n n ⎧⎪=⎨⎪⎩=偶,=奇解:(7)2)()2()]2([ωωn jn n jn en x en x n x DTFT -∞∞-∞=-∑∑==为偶数 2)]()1()([21ωn j nn e n x n x -∞-∞=-+=∑)(21)(21)(21)(212222⎪⎭⎫⎝⎛+∞-∞=⎪⎭⎫⎝⎛+-∞-∞=-+=+=∑∑πωωπωωj j n n j n n j e X e X e n x e n x(8))()'()2/()]([2''2ωωωj n n j n jn e X en x en x n g DTFT ===∑∑∞-∞=-∞-为偶数[3]求出下面序列的傅里叶变换(1))5(2)(-δ=n n x (4))3()2()(--+=n u n u n x解:由DFT 定义有:(1)ωωωδ52)5(2)(j n jn j e en e X -∞-∞=-=-=∑(4)ωωωωωωj j j n jn n jn j ee e een u n u e X ---=-∞-∞=---==--+=∑∑1)]3()2([)(3222⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--=------ωωωωωωωωωωωω21sin 25sin 11222225252525j j j j j j j j j j e e e e e e e e e e [5]已知001,()0,j X e ωωωωωπ⎧≤⎪=⎨<≤⎪⎩,求()j X e ω的傅里叶逆变换()x n 。
数字信号处理第三章习题答案

x1(n)
x2(n)
(b)
y (n)
(c)
(a) x1(n) (b) x2 (n)
(c) y(n) x1(n) x2 (n)
5.如果X(k)=DFT[ x(n)],证明DFT的初值定理
x(0)
1
N 1
X (k)
N k0
证明 由IDFT定义式
x(n)
1 N
N 1
1, 0 n 4 x2 (n) 1, 5 n 9 作图表示 x1(n) 、 x2 (n) 和 y(n) x1(n) ,x2 (n)
循环卷积区间长度L=10。
解 x1(n) 、 x2 (n) 和 y(n) x1(n) x2 (n) 分别如题3解图
(a)、(b)、(c)所示。
2
N
2
N
k) k)
N] 2 ,k 2]
0,1,L
,N
1
1 e j0N
或
X7 (k)
1
e
j (0
2 N
k
)
,k
0,1,L
,N
1
(9) 解法一
x9 (n)
cos(0n)RN
(n)
1 [e 2
j0n
e
] j0n
N 1
X9 (k) x9 (n)WNkn n0
fl(n)长度为27,f(n)长度为20.前面已推出二者的关系为
f (n) fl (n 20m) R20 (n) m
只有在如上周期延拓序列中无混叠的点上,才满足f(n)=fl(n),所以
f (n) fl (n) x(n) y(n), 7 n 19
矩阵理论第3章习题解答

4设 是 阶的实对称矩阵,并且 你能用几种方法证明
证:(1)设 是矩阵 的一个特征值, 是对应于 的一个非零特征向量,即 所以 即 所以矩阵 的特征值全为零,又 酉相似与对角矩阵 所以
(2)设 则 Βιβλιοθήκη 题设矛盾,所以结论成立。5试证:对于每一个实对称矩阵 ,都存在一个 阶方阵 ,使 。
证:矩阵 是一个对称矩阵,则 酉相似于一个对角矩阵,即
令 ,则
又由 令 则 。
7证明:一个正规矩阵若是三角矩阵,则它一定是对角矩阵.
证明参考课本101页引理3必要性的证明.
8证明:正规矩阵是幂零阵 的充要条件是
证:充分性: 则结论显然。
必要性:若 ,由题设矩阵 是正规矩阵,则 酉相似于一个对角矩阵,即
证:必要性:设 为正定的Hermite矩阵,根据定义有 ,即 ,同时有 所以
充分性:设 ,则 ,则矩阵 是Hermite矩阵。由于矩阵 是正定Hermite矩阵,存在一个正定的Hermite矩阵 ,使得 则有 对矩阵 施行相似变换: 则矩阵 与矩阵 有相同的特征值,且 是Hermite矩阵.
对 可得 即 是正定的Hermite矩阵,所以其所有的特征值为正,从而矩阵 所有的特征值为正,即矩阵 为正定的Hermite矩阵.
矩阵 的特征值为 ;其对应的特征向量构成的矩阵为
则酉变换为
13设矩阵 的最大秩分解为 ,证明:
证:充分性显然。
必要性:(反证法)如果存在向量 使得 ,但 ,令 ,则 。由于 是矩阵 的最大秩分解,则矩阵 的列向量是线性无关的,如果 ,则 ,从而 ,与题设矛盾,所以 。
15设 , 均为正定矩阵的Hermite矩阵,则 为正定的Hermite矩阵的充要条件是 .
复变函数习题解答(第3章)

p141第三章习题(一)[ 5, 7, 13, 14, 15, 17, 18 ]5. 由积分⎰C1/(z + 2) dz之值证明⎰[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = 0,其中C取单位圆周| z | = 1.【解】因为1/(z + 2)在圆| z | < 3/2内解析,故⎰C1/(z + 2) dz = 0.设C : z(θ)= e iθ,θ∈[0, 2π].则⎰C1/(z + 2) dz = ⎰C1/(z + 2) dz = ⎰[0, 2π] i e iθ/(e iθ + 2) dθ= ⎰[0, 2π] i (cosθ + i sinθ)/(cosθ + i sinθ + 2) dθ= ⎰[0, 2π] (- 2 sinθ + i (1 + 2cosθ ))/(5 + 4cosθ) dθ= ⎰[0, 2π] (- 2 sinθ)/(5 + 4cosθ) dθ+ i ⎰[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ.所以⎰[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.因(1 + 2cosθ ))/(5 + 4cosθ)以2π为周期,故⎰[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0;因(1 + 2cosθ ))/(5 + 4cosθ)为偶函数,故⎰[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = (1/2) ⎰[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.7. (分部积分法)设函数f(z), g(z)在单连通区域D内解析,α, β是D内两点,试证⎰[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -⎰[α, β] g(z) f’(z)dz.【解】因f(z), g(z)区域D内解析,故f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’的积分都与路径无关.⎰[α, β] f(z)g’(z)dz + ⎰[α, β] g(z) f’(z)dz = ⎰[α, β] ( f(z)g’(z)dz + g(z) f’(z))dz= ⎰[α, β] ( f(z)g(z))’dz.而f(z)g(z)是( f(z)g(z))’在单连通区域D内的一个原函数,所以⎰[α, β] ( f(z)g(z))’dz = f(β)g(β) -f(α)g(α) = ( f(z)g(z))|[α, β].因此有⎰[α, β] f(z)g’(z)dz + ⎰[α, β] g(z) f’(z)dz = ( f(z)g(z))|[α, β],即⎰[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -⎰[α, β] g(z) f’(z)dz.13. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,求证Γ亦为光滑曲线.【解】分两种情况讨论.(1) 当z(α) ≠z(β)时,C不是闭曲线.此时z(t)是[α, β]到D内的单射,z(t)∈C1[α, β],且在[α, β]上,| z’(t) |≠ 0.因Γ是曲线C在映射f下的象,所以Γ可表示为w = f(z(t)) (α≤t≤β).∀t∈[α, β],z(t)∈D.因f于区域D内解析,故f在z(t)处解析,因此f(z(t))在t处可导,且导数为f’(z(t))z’(t).显然,f’(z(t))z’(t)在[α, β]上是连续的,所以f(z(t))∈C1[α, β].因为f(z)于区域D内是单叶的,即f(z)是区域D到 的单射,而z(t)是[α, β]到D内的单射,故f(z(t))是[α, β]到 内的单射.因在D内有f’(z) ≠ 0,故在[α, β]上,| f’(z(t))z’(t) |= | f’(z(t)) | · |z’(t) |≠ 0.所以,Γ是光滑曲线.(2) 当z(α) = z(β)时,C是闭曲线.此时z(t)∈C1[α, β];在[α, β]上,有| z’(t) |≠ 0;z’(α) = z’(β);∀t1∈[α, β],∀t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2).与(1)完全相同的做法,可以证明f(z(t))∈C1[α, β],且| f’(z(t))z’(t) |≠ 0.由z(α) = z(β)和z’(α) = z’(β),可知f’(z(α))z’(α) = f’(z(β))z’(β).因为∀t1∈[α, β],∀t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2),由f(z)于区域D内单叶,因此我们有f(z(t1)) ≠f(z(t2)).所以Γ是光滑的闭曲线.14. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,证明积分换元公式⎰ΓΦ(w) dw = ⎰CΦ( f(z)) f’(z) dz.其中Φ(w)沿曲线Γ连续.【解】由13题知曲线Γ也是光滑曲线,其方程为w(t) = f(z(t)) (α≤t≤β).故⎰ΓΦ(w) dw = ⎰[α, β] Φ(w(t)) ·w’(t) dt = ⎰[α, β] Φ( f(z(t))) · ( f’(z(t)) z’(t)) dt.而⎰CΦ( f(z)) f’(z) dz = ⎰[α, β] ( Φ( f(z(t))) f’(z(t))) ·z’(t) dt.所以⎰ΓΦ(w) dw = ⎰CΦ( f(z)) f’(z) dz.15. 设函数f(z)在z平面上解析,且| f(z) |恒大于一个正的常数,试证f(z)必为常数.【解】因| f(z) |恒大于一个正的常数,设此常数为M.则∀z∈ ,| f(z) | ≥M,因此| f(z) | ≠ 0,即f(z) ≠ 0.所以函数1/f(z)在 上解析,且| 1/f(z) | ≤ 1/M.由Liuville定理,1/f(z)为常数,因此f(z)也为常数.17. 设函数f(z)在区域D内解析,试证(∂2/∂x2 + ∂2/∂y2) | f(z) |2 = 4 | f’(z) |2.【解】设f(z) = u + i v,w = | f(z) |2,则w = ln ( u 2 + v 2 ).w x = 2(u x u+ v x v),w y = 2(u y u+ v y v);w xx = 2(u xx u+ u x2 + v xx v+ v x2 ),w yy = 2(u yy u+ u y2 + v yy v+ v y2 );因为u, v都是调和函数,所以u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,故w xx + w yy = 2 (u x2 + v x2 + u y2 + v y2) = 4 (u x2 + v x2) = 4 | f(z) |2;即(∂2/∂x2 + ∂2/∂y2) | f(z) |2 = 4 | f’(z) |2.18. 设函数f(z)在区域D内解析,且f’(z) ≠ 0.试证ln | f’(z) |为区域D内的调和函数.【解】∀a∈D,因区域D是开集,故存在r1 > 0,使得K(a, r1) = { z∈ | | z -a | < r1 } ⊆D.因f’(a) ≠ 0,而解析函数f’(z)是连续的,故存在r2 > 0,使得K(a, r2) ⊆K(a, r1),且| f’(z) -f’(a)| < | f’(a) |.用三角不等式,此时有| f’(z)| > | f’(a) | - | f’(z) -f’(a)| > 0.记U = { z∈ | | z -f’(a)| < | f’(a) |},则U是一个不包含原点的单连通区域.在沿射线L = {z∈ | z = - f’(a) t,t≥ 0 }割开的复平面上,多值函数g(z) = ln z可分出多个连续单值分支,每个单值连续分支g(z)k在 \L上都是解析的.∀t≥ 0,| - f’(a) t -f’(a) | = (t + 1) | f’(a) | ≥ | f’(a) |,故- f’(a) t ∉U.所以U ⊆ \L,即每个单值连续分支g(z)k在U上都是解析的.因为当z∈K(a, r2)时,f’(z)∈U,故复合函数g( f’(z))k在上解析.而Re(g( f’(z))k) = ln | f’(z) |,所以ln | f’(z) |在K(a, r2)上是调和的.由a∈D的任意性,知ln | f’(z) |在D上是调和的.【解2】用Caucht-Riemann方程直接验证.因为f’(z)也在区域D内解析,设f’(z) = u + i v,则u, v也满足Cauchy-Riemann方程.记w = ln | f’(z) |,则w = (1/2) ln ( u 2 + v 2 ),w x = (u x u+ v x v) /( u 2 + v 2 ),w y = (u y u+ v y v) /( u 2 + v 2 );w xx = ((u xx u+ u x2 + v xx v+ v x2 )( u 2 + v 2 ) - 2(u x u+ v x v)2)/( u 2 + v 2 )2;w yy = ((u yy u+ u y2 + v yy v+ v y2 )( u 2 + v 2 ) - 2(u y u+ v y v)2)/( u 2 + v 2 )2;因为u, v都是调和函数,所以u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,u x v x + u y v y = 0,因此(u x u+ v x v)2 + (u y u+ v y v)2= u x2u 2+ v x 2v 2 + 2 u x u v x v+ u y2u 2+ v y 2v 2 + 2 u y u v y v= (u x2 + v x2 )( u 2 + v 2 );故w xx + w yy = (2(u x2 + v x2 )( u 2 + v 2 ) - 2(u x2 + v x2 )( u 2 + v 2 ))/( u 2 + v 2 )2 = 0.所以w为区域D内的调和函数.[初看此题,就是要验证这个函数满足Laplace方程.因为解析函数的导数还是解析的,所以问题相当于证明ln | f(z) |是调和的,正如【解2】所做.于是开始打字,打了两行之后,注意到ln | f’(z) |是Ln f’(z)的实部.但Ln z不是单值函数,它也没有在整个 上的单值连续分支,【解1】前面的处理就是要解决这个问题.]p141第三章习题(二)[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]1. 设函数f(z)在0 < | z | < 1内解析,且沿任何圆周C : | z | = r, 0 < r < 1的积分值为零.问f(z)是否必须在z = 0处解析?试举例说明之.【解】不必.例如f(z) = 1/z2就满足题目条件,但在z = 0处未定义.[事实上可以任意选择一个在| z | < 1内解析的函数g(z),然后修改它在原点处的函数值得到新的函数f(z),那么新的函数f(z)在原点不连续,因此肯定是解析.但在0 < | z | < 1内f(z) = g(z),而g(z)作为在| z | < 1内解析的函数,必然沿任何圆周C : | z | = r的积分值都是零.因此f(z)沿任何圆周C : | z | = r的积分值也都是零.若进一步加强题目条件,我们可以考虑,在极限lim z→0 f(z)存在的条件下,补充定义f(0) = lim z→0 f(z),是否f(z)就一定在z = 0处解析?假若加强条件后的结论是成立,我们还可以考虑,是否存在满足题目条件的函数,使得极限lim z→0 f(z)不存在,也不是∞?]2. 沿从1到-1的如下路径求⎰C1/√z dz.(1) 上半单位圆周;(2) 下半单位圆周,其中√z取主值支.【解】(1) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[0, π].⎰C1/√z dz = ⎰[0, π] i e iθ/e iθ/2dθ = ⎰[0, π] i e iθ/2dθ = 2e iθ/2|[0, π] = 2(- 1 + i).(2) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[-π, 0].⎰C1/√z dz = -⎰[-π, 0] i e iθ/e iθ/2dθ = -⎰[-π, 0] i e iθ/2dθ = - 2e iθ/2|[-π, 0] = 2(- 1 -i).[这个题目中看起来有些问题:我们取主值支,通常在是考虑割去原点及负实轴的z平面上定义的单值连续分支.因此,无论(1)还是(2),曲线C上的点-1总不在区域中(在区域的边界点上).因此曲线C也不在区域中.所以,题目应该按下面的方式来理解:考虑单位圆周上的点ζ,以及沿C从1到ζ的积分的极限,当ζ分别在区域y > 0和区域y < 0中趋向于-1时,分别对应(1)和(2)的情形,简单说就是上岸和下岸的极限情形.那么按照上述方式理解时,仍然可以象我们所做的那样,用把积分曲线参数化的办法来计算,这是由积分对积分区域的连续性,即绝对连续性来保证的.以后我们遇到类似的情形,都以这种方式来理解.]3. 试证| ⎰C(z + 1)/(z - 1) dz | ≤ 8π,其中C为圆周| z - 1 | = 2.【解】若z∈C,| z + 1 | ≤ | z - 1 | + 2 = 4,故| (z + 1)/(z - 1) | ≤ 2.因此| ⎰C(z + 1)/(z - 1) dz | ≤⎰C| (z + 1)/(z - 1) | ds≤ 2 · Length(C) = 8π.4. 设a, b为实数,s = σ+ i t (σ > 0)时,试证:| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.【解】因为f(z) = e sz在 上解析,故f(z)的积分与路径无关.设C是从a到b的直线段,因为e sz/s是f(z)的一个原函数,所以| ⎰C e sz dz | = | e sz/s |[a, b] | = | e bs–e as|/| s |.而| ⎰C e sz dz | ≤⎰C | e sz|ds = ⎰C | e(σ+ i t)z|ds = ⎰C | eσ z+ i tz|ds= ⎰C | eσ z|ds ≤⎰C e max{a, b} ·σ ds = | b–a | e max{a, b} ·σ.所以| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.5. 设在区域D = { z∈ : | arg z | < π/2 }内的单位圆周上任取一点z,用D内曲线C 连接0与z,试证:Re(⎰C1/(1 + z2) dz ) = π/4.【解】1/(1 + z2)在单连通区域D内解析,故积分与路径无关.设z = x + i y,∀z∈D,i z∈{ z∈ : 0 < arg z < π } = { z∈ : Im z > 0 },-i z∈{ z∈ : -π < arg z < 0 } = { z∈ : Im z < 0 },故1 + i z∈{ z∈ : Im z > 0 }, 1 -i z∈{ z∈ : Im z < 0 }.设ln(z)是Ln(z)的主值分支,则在区域D内( ln(1 + i z) - ln(1 -i z) )/(2i)是解析的,且(( ln(1 + i z) - ln(1 -i z) )/(2i))’ = (i/(1 + i z) + i/(1 -i z))(2i) = 1/(1 + z2);即( ln(1 + i z) - ln(1 -i z) )/(2i)是1/(1 + z2)的一个原函数.⎰C1/(1 + z2) dz = ( ln(1 + i z) - ln(1 -i z) )/2 |[0, z]= (ln(1 + i z) - ln(1 -i z))/(2i) = ln((1 + i z)/(1 -i z))/(2i)= (ln |(1 + i z)/(1 -i z)| + i arg ((1 + i z)/(1 -i z)))/(2i)= -i (1/2) ln |(1 + i z)/(1 -i z)| + arg ((1 + i z)/(1 -i z))/2,故Re(⎰C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2.设z = cosθ + i sinθ,则cosθ> 0,故(1 + i z)/(1 -i z) = (1 + i (cosθ + i sinθ))/(1 -i (cosθ + i sinθ)) = i cosθ/(1 + sinθ),因此Re(⎰C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2= arg (i cosθ/(1 + sinθ))/2 = (π/2)/2 = π/4.[求1/(1 + z2) = 1/(1 + i z) + 1/(1 -i z) )/2的在区域D上的原函数,容易得到函数( ln(1 + i z) - ln(1 -i z) )/(2i),实际它上就是arctan z.但目前我们对arctan z的性质尚未学到,所以才采用这种间接的做法.另外,注意到点z在单位圆周上,从几何意义上更容易直接地看出等式arg ((1 + i z)/(1 -i z))/2 = π/4成立.最后,还要指出,因曲线C的端点0不在区域D中,因此C不是区域D中的曲线.参考我们在第2题后面的注释.]6. 试计算积分⎰C( | z | - e z sin z ) dz之值,其中C为圆周| z | = a > 0.【解】在C上,函数| z | - e z sin z与函数a- e z sin z的相同,故其积分值相同,即⎰C( | z | - e z sin z ) dz = ⎰C( a- e z sin z ) dz.而函数a- e z sin z在 上解析,由Cauchy-Goursat定理,⎰C( a- e z sin z ) dz = 0.因此⎰C( | z | - e z sin z ) dz = 0.7. 设(1) f(z)在| z | ≤ 1上连续;(2) 对任意的r (0 < r < 1),⎰| z | = r f(z) dz = 0.试证⎰| zf(z) dz = 0.| = 1【解】设D(r) = { z∈ | | z | ≤r },K(r) = { z∈ | | z | = r },0 < r≤ 1.因f在D(1)上连续,故在D(1)上是一致连续的.再设M = max z∈D(1) { | f(z) | }.∀ε > 0,∃δ1> 0,使得∀z, w∈D(1), 当| z-w | < δ1时,| f(z) -f(w)| < ε/(12π).设正整数n≥ 3,z k= e 2kπi/n ( k = 0, 1, ..., n- 1)是所有的n次单位根.这些点z0, z1, ..., z n– 1将K(1)分成n个弧段σ(1), σ(2), ..., σ(n).其中σ(k) (k = 1, ..., n- 1)是点z k– 1到z k的弧段,σ(n)是z n– 1到z0的弧段.记p(k) (k = 1, ..., n- 1)是点z k– 1到z k的直线段,p(n)是z n– 1到z0的直线段.当n充分大时,max j {Length(σ( j))} = 2π/n < δ1.设P是顺次连接z0, z1, ..., z n– 1所得到的简单闭折线.记ρ = ρ(P, 0).注意到常数f(z j)的积分与路径无关,⎰σ( j)f(z j) dz =⎰p( j)f(z j) dz;那么,| ⎰K(1)f(z) dz -⎰P f(z) dz |= | ∑j⎰σ( j)f(z) dz -∑j⎰p( j)f(z) dz |= | ∑j (⎰σ( j)f(z) dz -⎰p( j)f(z) dz ) |≤∑j | ⎰σ( j)f(z) dz -⎰p( j)f(z) dz |≤∑j ( | ⎰σ( j)f(z) dz -⎰σ( j)f(z j) dz | + | ⎰p( j)f(z j) dz -⎰p( j)f(z) dz | )= ∑j ( | ⎰σ( j) ( f(z)-f(z j)) dz | + | ⎰p( j) ( f(z)-f(z j)) dz | )= ∑j ( ⎰σ( j)ε/(12π) ds + ⎰p( j)ε/(12π) ds )= (ε/(12π))·∑j ( Length(σ( j)) + Length(p( j)) )≤ (ε/(12π))·∑j ( Length(σ( j)) + Length(σ( j)) )= (ε/(12π))· (2 Length(K(1)))= (ε/(12π))· 4π = ε/3.当ρ< r < 1时,P中每条线段p(k)都与K(r)交于两点,设交点顺次为w k, 1, w k, 2.设Q是顺次连接w1, 1, w1, 2, w2, 1, w2, 2, ..., w n, 1, w n, 2所得到的简单闭折线.与前面同样的论证,可知| ⎰K(r)f(z) dz -⎰Q f(z) dz |≤ε/3.因此,| ⎰K(1)f(z) dz | = | ⎰K(1)f(z) dz -⎰K(r)f(z) dz |≤ | ⎰K(1)f(z) dz -⎰P f(z) dz | + | ⎰K(r)f(z) dz -⎰Q f(z) dz | + | ⎰P f(z) dz-⎰Q f(z) dz |≤ε/3 + ε/3 + | ⎰P f(z) dz-⎰Q f(z) dz |.记连接w k, 2到w k +1, 1的直线段为l(k),连接w k, 2到z k +1的直线段为r(k),连接z k +1到w k +1, 1的直线段为s(k),则| ⎰r(k)f(z) dz + ⎰s(k)f(z) dz-⎰l(k)f(z) dz |≤M ( Length(l(k)) + Length(r(k)) + Length(s(k)) ) ≤ 3 M · Length(l(k)).因为当r → 1-时,有Length(l(k)) → 0,故存在r∈(ρ, 1)使得| ⎰r(k)f(z) dz + ⎰s(k)f(z) dz-⎰l(k)f(z) dz | < ε/(3n).对这个r,我们有| ⎰P f(z) dz-⎰Q f(z) dz | = | ∑k (⎰r(k)f(z) dz + ⎰s(k)f(z) dz-⎰l(k)f(z) dz ) |≤∑k (| ⎰r(k)f(z) dz + ⎰s(k)f(z) dz-⎰l(k)f(z) dz |) ≤∑k ε/(3n) = ε/3.故| ⎰K(1)f(z) dz | ≤ε.因此⎰K(1)f(z) dz = 0.8. 设(1) f(z)当| z–z0 | > r0 > 0时是连续的;(2) M(r)表| f(z) |在K r : | z–z0 | = r > r0上的最大值;(3) lim r → +∞r M(r) = 0.试证:lim r → +∞⎰K(r) f(z) dz = 0.【解】当r > r0时,我们有| ⎰K(r) f(z) dz | ≤⎰K(r) | f(z) | ds≤⎰K(r) M(r) ds = 2πr M(r) → 0 (当r → +∞时),所以lim r → +∞⎰K(r) f(z) dz = 0.9. (1) 若函数f(z)在点z = a的邻域内连续,则lim r → 0 ⎰| z–a | = r f(z)/(z–a) dz = 2πi f(a).(2) 若函数f(z)在原点z = 0的邻域内连续,则lim r → 0 ⎰[0, 2π] f(r e iθ ) dθ = 2π f(0).【解】(1) 当r充分小时,用M(r)表| f(z) |在K r : | z–a | = r上的最大值;| ⎰| z–a | = r f(z)/(z–a) dz– 2πi f(a) |= | ⎰| z–a | = r f(z)/(z–a) dz–f(a)⎰| z–a | = r1/(z–a) dz |= | ⎰| z–a | = r( f(z) –f(a))/(z–a) dz | ≤⎰| z–a | = r| f(z) –f(a) |/| z–a| ds≤M(r) ⎰| z–a | = r1/| z–a| ds = 2πr M(r).当r → 0时,由f(z)的连续性,知M(r) → | f(a) |.故| ⎰| z–a | = r f(z)/(z–a) dz– 2πi f(a) | → 0.因此,lim r → 0 ⎰| z–a | = r f(z)/(z–a) dz = 2πi f(a).(2) 根据(1),lim r → 0 ⎰| z | = r f(z)/z dz = 2πi f(0).而当r充分小时,我们有⎰| z | = r f(z)/z dz = ⎰[0, 2π] f(r e iθ )/(r e iθ )· (r e iθi ) dθ = i ⎰[0, 2π] f(r e iθ ) dθ.所以,lim r → 0 (i ⎰[0, 2π] f(r e iθ ) dθ)= 2πi f(0).故lim r → 0 ⎰[0, 2π] f(r e iθ ) dθ = 2π f(0).10. 设函数f(z)在| z | < 1内解析,在闭圆| z | ≤ 1上连续,且f(0) = 1.求积分(1/(2πi))⎰| z | = 1 (2 ± (z + 1/z)) f(z)/z dz之值.【解】(1/(2πi))⎰| z | = 1 (2 ± (z + 1/z)) f(z)/z dz= ⎰| z | = 1 (2f(z)/z± (zf(z)/z + (1/z)f(z)/z) dz= (1/(2πi)) ·( ⎰| z | = 1 2f(z)/z dz ± (⎰| z | = 1 f(z) dz +⎰| z | = 1 f(z)/z 2dz) )= (1/(2πi)) ·( 2(2πi) f(0)± (0+ (2πi/1!)f’(0)) )= 2 f(0)±f’(0) = 2 ±f’(0).11. 若函数f(z)在区域D内解析,C为D内以a, b为端点的直线段,试证:存在数λ,| λ| ≤ 1,与ξ∈C,使得f(b) -f(a) = λ(b -a) f’(ξ).【解】设C的参数方程为z(t) = (1 –t ) a + t b,其中t∈[0, 1].在区域D内,因f(z)是f’(z)的原函数,故f(b) -f(a) = ⎰C f’(z) dz = ⎰[0, 1] f’((1 –t ) a + t b) (b -a) dt == (b -a) ⎰[0, 1] f’((1 –t ) a + t b) dt.(1) 若⎰[0, 1]| f’((1 –t ) a + t b) | dt = 0,因| f’((1 –t ) a + t b) |是[0, 1]上的连续函数,故| f’((1 –t ) a + t b) |在[0, 1]上恒为零.即f’(x)在C上恒为零.此时取λ= 0,任意取ξ∈C,则有f(b) -f(a) = (b -a) ⎰[0, 1] f’((1 –t ) a + t b) dt = 0 = λ(b -a) f’(ξ).(2) 若⎰[0, 1]| f’((1 –t ) a + t b) | dt > 0,因| f’((1 –t ) a + t b) |是[0, 1]上的实变量连续函数,由积分中值定理,存在t0∈[0, 1],使得⎰[0, 1]| f’((1 –t ) a + t b) | dt = | f’((1 –t0) a + t0b) |.取ξ = (1 –t0) a + t0b,则f’(ξ) = f’((1 –t0) a + t0b) ≠ 0,令λ= (⎰[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ).因为| ⎰[0, 1] f’((1 –t ) a + t b) dt | ≤⎰[0, 1]| f’((1 –t ) a + t b) | dt = | f’(ξ) |.所以| λ| = | (⎰[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ) |= | ⎰[0, 1] f’((1 –t ) a + t b) dt |/| f’(ξ) | ≤ 1.且f(b) -f(a) = (b -a) ⎰[0, 1] f’((1 –t ) a + t b) dt = λ(b -a) f’(ξ).12. 如果在| z | < 1内函数f(z)解析,且| f(z) | ≤ 1/(1 - | z |).试证:| f(n)(0) | ≤ (n + 1)!(1 + 1/n)n < e (n + 1)!,n =1, 2, ....【解】设K(r) = { z∈ | | z | = r },0 < r≤ 1.由Cauchy积分公式和高阶导数公式,有| f(n)(0) | = (n!/(2π)) | ⎰K(r) f(z)/z n + 1dz | ≤ (n!/(2π)) ⎰K(r) | f(z) |/| z |n + 1ds≤ (n!/(2π)) ⎰K(r) 1/((1 - | z |)| z |n + 1) ds = (n!/(2π))/((1 -r ) r n + 1) 2πr= n!/((1 -r ) r n).为得到| f(n)(0) |的最好估计,我们希望选取适当的r∈(0, 1),使得n!/((1 -r ) r n)最小,即要使(1 -r ) r n最大.当n≥ 1时,根据均值不等式,(1 -r ) r n = (1 -r ) (r/n)n ·n n≤ (((1 -r ) + (r/n) + ... + (r/n))/(n + 1))n + 1 ·n n = n n/(n + 1)n + 1.当1 -r = r/n,即r = n/(n + 1)时,(1 -r ) r n达到最大值n n/(n + 1)n + 1.因此,我们取r = n/(n + 1),此时有| f(n)(0) | ≤n!/((1 -r ) r n) = n!/(n n/(n + 1)n + 1) = (n + 1)!(1 + 1/n)n < e (n + 1)!.[也可以用数学分析中的办法研究函数g(r) = (1 -r ) r n在(0, 1)内的上确界,也会得到同样的结果.]13. 设在| z | ≤ 1上函数f(z)解析,且| f(z) | ≤ 1.试证:| f’(0) | ≤ 1.【解】设D = { z∈ | | z | ≤ 1 }.由高阶导数公式,| f’(0) | = (1/(2π)) | ⎰∂D f(z)/z 2dz | ≤ (1/(2π)) ⎰∂D1/| z |2 ds = 1.14. 设f(z)为非常数的整函数,又设R, M为任意正数,试证:满足| z | > R且| f(z) | > M的z必存在.【解】若不然,当| z | > R时,| f(z) | ≤M.而f(z)为整函数,故必连续,因此f(z)在| z | ≤R上有界.所以f(z)在 上有界.由Liouville定理,f(z)必为常数,这与题目条件相矛盾.15. 已知u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),试确定解析函数f(z) = u + i v.【解】由于u x + v x = 3(x2 + 2xy–y2) – 2,u y + v y = 3(x2– 2xy–y2) – 2,两式相加,再利用Cauchy-Riemann方程,有u x = 3(x2–y2) – 2.两式相减,再利用Cauchy-Riemann方程,有v x = 6xy.所以f’(z) = u x + i v x = 3(x2–y2) – 2 + 6xy i = 3(x + y i)2– 1 = 3 z2– 2.因此,f(z) = z3– 2z + α,其中α为常数.将z = 0代入,f(z) = z3– 2z + α,得α = f(0).把(x, y) = (0, 0)带入u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),得u(0, 0) + v(0, 0) = 0.设u(0, 0) = c∈ ,则v(0, 0) = -c.因此α = f(0) = u(0, 0) + v(0, 0) i = (1 -i )c.所以,f(z) = z3– 2z + (1 -i )c,其中c为任意实数.[书上答案有误.设f(z) = z3– 2z + (a + b i),则f(z) = (x + y i)3– 2(x + y i) + (a + b i) = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)i.因此,u + v = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)= (x–y)(x2 + 4xy + y2) – 2(x + y) + (a + b),所以,当a + b≠ 0时,不满足题目所给条件.]16. 设(1) 区域D是有界区域,其边界是周线或复周线C;(2) 函数f1(z)及f2(z)在D内解析,在闭域cl(D) = D + C上连续;(3) 沿C,f1(z) = f2(z).试证:在整个闭域cl(D),有f1(z) = f2(z).【解】设f(z) = f1(z) -f2(z).用Cauchy积分公式,∀z∈D有f(z) = (1/(2πi))⎰C f(ζ)/(ζ–z) dζ = 0.所以∀z∈cl(D)有f(z) = 0,即f1(z) = f2(z).∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞•︒ℵℜ℘∇∏∑⎰⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
第三章习题解答

第三章习题与解答模拟信号的数字传输一、填空题:1、PAM信号的幅度连续,时间离散,它属于模拟 (模拟或数字)信号。
2、一路语音信号进行PCM数字编码,已知采样频率为8kHz,均匀量化为128等级,则一路数字话音信号传输速率为56kbit/s 。
3、一组7位的二进制符号最多可以表示128 个状态。
对26个英文字母进行编码时,需要 5 位二进制符号。
4、再生中继器主要由均衡放大、定时电路和识别再生三部分组成。
二、简答题和计算题1、已知一基带信号m(t)=cos2πt+2cos4πt,对其抽样,为了在接收端能不失真地从已抽样信号ms(t)中恢复m(t),试问其抽样间隔应为多少?答:fs≥4Hz。
2、设模拟信号的频谱为0~4000Hz,如果抽样速率f S=6000Hz,画出抽样后样值序列的频谱。
这会产生什么噪声?合理的抽样速率应该多少?答:模拟信号频谱如图3-1(a)所示,则抽样后的频谱图为3-1(b),这会产生折叠噪声,合理的抽样频率为8KHz。
3、非均匀量化和均匀量化有何区别?采用非均匀量化的目的是什么?答:均匀量化的特点是量化间隔相等,而非均匀量化是量化间隔不相等。
采用非均匀量化的目的是为了在相同码位时,小信号时信噪比也比较大。
4、已知取样脉冲的幅度为+137△,①试将其进行13折线A压扩律PCM编码;②求收端译码器的译码结果和量化误差;③写出对应的11位线性码。
答:PCM码:11000011,译码结果为+140△,量化误差3△,11位线性编码00010001000。
5、试求用13折线A压扩律编译码电路,接收到的码组为01010011,若最小量化电平为1mV,求译码器输出电压。
答:-312mV6、对频率范围为300∽3400HZ的模拟信号进行PCM编码,①求最小抽样频率f S②若按此抽样频率抽样后再采用均匀量化,量化电平数为64,求PCM信号的信息速率R b 答:6800Hz,40.8Kbps。
7、设简单增量调制系统的量化台阶σ=50mv ,抽样频率为32KHZ ,求当输入信号为800HZ 正弦波时,允许的最大振幅为多大? 答:根据σf S ≥A Ω8、已知信号为f (t)=cos ω1t+cos2ω1t ,并用理想的低通滤波器来接收抽样后的信号, (1)试画出该信号的时间波形和频谱图;(2)确定最小抽样频率是多少?(3)画出抽样后的信号波形和频谱组成。
湖南大学离散数学第三章习题一解答

第三章习题一解答一、求下列集合的幂集1、{杨,李,石}解:P({杨,李,石}) ={Φ, {石},{李,石},{杨},{杨,石},{杨,李},{杨,李,石}}2、{{1,2},{2,1,1},{2,1,1,2}}解:原集合={{1,2},{2,1},{2,1}}={{1,2}},只含一个元素,故其幂集只有2 个元素: P={Φ,{1,2}}二、利用包含排斥原理,求解以下各题。
1、对60 人调查,25 读《每周新闻》,26 读《时代》,26 人读《财富》,9 人读《每周新闻》和《财富》,11 读《每周新闻》和《时代》,8 人读《时代》与《财富》,还有 8 人什么都不读,请计算:(1) 阅读全部三种杂志的人数。
(2) 分别求只阅读每周新闻、时代、财富杂志的人数。
解:记A={《每周新闻》的读者},B={《时代》的读者},C={《财富》的读者}。
由于8 人什么都不读,故只有 52 人读杂志,即 |A ∪B ∪C|=52。
已知|A|=25,|B|=26,|C|=26|A ∩C|=9,|A ∩B|=11,|B ∩C|=8(1)由包含排斥原理可知|A ∪B ∪C|=|A|+|B|+|C|-|A ∩C|-|A ∩B|-|B ∩C|+| A ∩B ∩C|,故 52=25+26+26-9-11-8+| A ∩B ∩C|,即有| A ∩B ∩C|=3,所以同时读三种杂志的人为3 人。
(2)注意到 |S ∩T| = |S|-|S ∩T|,故只读《每周新闻》的人数为:|)()(||||)(||||)(|||C A B A A C B A A C B A C B A ⋂⋃⋂-=⋃⋂-=⋃⋂=⋂⋂ =|A|-|A ∩B|-|A ∩C|+| A ∩B ∩C|=25-9-11+3=8;只读《时代》人数为:=⋂⋂||C A B |B|-|B ∩A|-|B ∩C|+| A ∩B ∩C|=26-11-8+3=10 ; 只读《财富》的人为:=⋂⋂||B A C |C|-|C ∩A|-|C ∩B|+| A ∩B ∩C|=26-9-8+3=12。
杨圣洪第三章习题一解答

第三章习题一一、求下列集合的幂集1、{杨,李,石}P({杨,李,石})={A000, A001, A010, A011, A100, A101, A110, A111 }={{},{石},{李,石},{杨},{杨,石},{杨,李},{杨,李,石}}2、{{1,2},{2,1,1},{2,1,1,2}}原集合={{1,2},{2,1},{2,1}}={{1,2}},只有一个元素,其幂集只有2个元素P={{},{1,2}}二、利用包含排斥原理,求解以下各题。
1、对60人调查,25读《每周新闻》,26读《时代》,26人读《财富》,9人读《每周新闻》和《财富》,11读《每周新闻》和《时代》,8人读《时代》与《财富》,还有8人什么都不读,请计算:(1)阅读全部三种杂志的人数。
(2)分别求只阅读每周新闻、时代、财富杂志的人数。
解:令A={每周新闻的读者},B={时代的读者},C={财富的读者}。
由于8人什么都不读,故只有52人读杂志,即|A∪B∪C|=52|A|=25,|B|=26,|C|=26|A∩C|=9,|A∩B|=11,|B∩C|=8由包含排斥原理可知|A∪B∪C|=|A|+|B|+|C|-|A∩C|-|A∩B|-|B∩C|+| A∩B∩C|,故52=25+26+26-9-11-8+| A∩B∩C|故| A∩B∩C|=3即同时读三种杂志的人为3人|A-B-C|=|A|-|A∩B|-|A∩C|+| A∩B∩C|=25-9-11+3=8人只读每周新闻的人|B-A-C|=|B|-|B∩A|-|B∩C|+| A∩B∩C|=26-11-8+3=10人只读时代的人|C-A-B|=|C|-|C∩A|-|C∩B|+| A∩B∩C|=26-9-8+3=12人只读财富的人财富2、某班25个学生,14人会打篮球,12人会打排球,6人会篮球和排球,5人会打篮球和网球,还有2人会打这三种球,已知6人会网球的都会篮球或排球,求不会打球的人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 试编程将片外RAM中40H单元的内容与R0的内容交换。
答:
MOV @R1, #40H
MOVX A, @R1
XCH A, R0
MOVX @R1, A
4. 已知(A)=C9H,(B)=8DH,CY=1,执行指令ADDC A,B后结果如何?执行指令SUBB A,B后结果如何?
答:
执行指令ADDC A,B后(A)=57H,(B)=8DH,CY=1
执行指令SUBB A,B后(A)=3BH,(B)=8DH,CY=0
5. 试编程将片外RAM中30H和31H单元的内容相乘,结果存放在32H和33H单元,高位存放在32H单元。
MOV R1, #30H
MOVX A, @R1
MOV B, A
INC R1
MOVX A, @R1
MUL AB
INC R1
INC R1
MOVX @R1, A
MOV A, B
DEC R1
MOVX @R1, A
6. 试编程将20H单元的2个BCD数拆开,并变成相应的ASCII码存入21H和22H单元。
MOV A, 20H
ANL A, #0FH
ORL A, #30H
MOV 21H, A
MOV A, 20H
ANL A, #0F0H
SWAP A
ORL A, #30H
MOV 22H, A
7. 设在寄存器R3的低4位存有数码0~F中的一个数,试将其转换成ASCII码,并存入片外RAM的2000H单元。
MOV A, R3 ;取4位二进制数
ANL A, #0FH ;屏蔽高4位
PUSH A ;保存A内容到堆栈
CLR C ;清C
SUBB A, #0AH ;(A)-10
POP A ;恢复A内容
JC LOOP ;若C =1,则数<10转到LOOP
ADD A, #07H ;若C =0,则加37H
LOOP:ADD A, #30H ;转换成ASCII码
MOV DPTR,#2000H
MOVX @DPTR, A
8. 试编程将片内RAM中30H单元中8位无符号二进制数转换成3位BCD码,并存入片内RAM的40H(百位)和41H(十位、个位)2个单元中。
MOV A, 30H ;取二进制数到A
MOV B, #100 ;除数送入B
DIV AB ;相除
MOV 40H, A ;存入百位数
MOV A, B ;余数送入A
MOV B, #10 ;除数送入B
DIV AB ;相除
SWAP A ;十位移到高4位
ORL A, B ;十位、个位合并到1个字节
MOV 41H, A ;存十位、个位数
SJMP $
9. 试用MCS-51指令实现以下传送:
(1) R2的内容传送入R7;
MOV B, R2
MOV R7, B
(2) ROM中1000H单元的内容传送入R1;
MOV DPTR, #1000H
CLR A
MOVC A, @A+DPTR
MOV R1, A
(3) ROM中1000H单元的内容传送入片内RAM 50H单元;
MOV DPTR, #1000H
CLR A
MOVC A, @A+DPTR
MOV 50H, A
(4) ROM中1000H单元的内容传送入片外RAM 70H单元。
MOV DPTR, #1000H
CLR A
MOVC A, @A+DPTR
MOV R1, #70H
MOVX @R1, A
10. 编程将片内35H~55H单元中的内容传送入以3000H为首地址的片外数据存储区中。
MOV R0, #35H
MOV DPTR, #3000H
LOOP: MOV A, @R0
MOVX @DPTR, A
INC R0
INC DPTR
CJNE R0, #56H, LOOP
SJMP $
11. 编程计算片内RAM区50H~57H共8个单元中数的算术平均值,结果存放于5AH中。
答:
MOV R2, #8 ;计数器
MOV R0, #50H ;取数首地址
CLR A ;清A
KKK: ADD A, @R0 ;加数
INC R0
DJNZ R2,KKK
MOV B, #8
DIV AB
MOV 5AH, A
SJMP $
12. 设有100个无符号数,连续存放在以2000H为首地址的存储区中,试编程统计奇数和偶数的个数。
MOV R2, #100
MOV DPTR, #2000H
MOV R3, #0 ;奇数个数存放
MOV R4, #0 ;偶数个数存放
KKK: MOVX A, @DPTR
MOV B, #2
DIV AB
MOV A, B
INC DPTR
CJNE A,#0,DDD
INC R4
SJMP NNN
DDD: INC R3
NNN: DJNZ R2,KKK
SJMP $
13. 将片外数据存储器地址为1000H~1030H的数据块全部搬到片内RAM的30H~60H单元中,并将原数据块区域全部清0。
MOV DPTR, #1000H
MOV R0, #30
LOOP: MOVX A, @DPTR
MOV @R0, A
CLR A
MOVX @DPTR, A
INC DPTR
INC R0
CJNE R0, #61H, LOOP
SJMP $
14. 从20H单元开始有一无符号数据块,其长度在20H单元中。
试求出数据块中的最小值,并存入21H单元。
答:
MOV @R0,#21H ;数据块首地址
MOV R1, 20H ;取数据块长度
MOV A, @R0 ;取一个数
MOV 21H,A ;存数
DDD:DJNZ R1,KKK ;判断是否取完
SJMP $ ;取完结束
KKK:INC R0 ;指向下一个数
MOV A, @R0 ;取数
MOV B,A ;暂存
CLR C
SUBB A,21H ;比较
JNC DDD ;C=0,21H中数小,转移
MOV 21H,B ;存小数
SJMP DDD
15. 在以2000H为首地址的存储区中,存放着20个用ASCII码表示的0~9之间的数,试编程将它们转换成BCD码,并以压缩BCD码(即一个单元存储两位BCD码)的形式存放在3000H~3009H单元中。
ORG 2000H
MOV R1,#10
MOV R0,#30H
MOV DPTR,#2000H
LOOP: MOVX A,@DPTR
ANL A,#0FH
MOV B,A
INC DPTR
MOVX A,@DPTR
ANL A,#0FH
SWAP A
ORL A,B
MOV @R0, A
INC R0
INC DPTR
DJNZ R1,#00H,LOOP
END。