史上最全快速排序法源代码
学习怎么用按键精灵制作游戏辅助——脚本源代码干货分享

学习怎么用按键精灵制作游戏辅助——脚本源代码干货分享一、用按键精灵确定人物朝向(以剑灵自动寻路为例)的代码在剑灵右上角的小地图里找色/找图,箭头坐标存储在(x1,y1),箭尾坐标存储在(x2,y2) FindColor1200,0,1920,300,"箭头颜色",x1,y1If x1 > 0 And y1> 0 ThenEnd IfFindColor1200,0,1920,300,"箭尾颜色",x2,y2If x1 > 0 And y1> 0 ThenEnd If'计算斜率/正切值斜率= (y1 - y2) / (x1 -x2)'计算角度角度= Atn(斜率)二、用按键精灵解决用户密码泄露问题的代码Function 加解密(源文件, 秘钥)Dim Z, iDim A, B, C加解密= ""If Len(源文件) = 0 Then’如果密码为空,则初始化为空加解密= ""Exit FunctionEnd If'调用Rnd函数使以后Rnd函数所产生的Rnd为相同的伪随机数列Z = Rnd(-秘钥)For i = 1 To Len(源文件)’将密码字符串一个一个字符通过加密,转换成另一个字符C = Mid(源文件, i, 1)A = Asc(C)B = Int(126 * Rnd) And&H7F’这里的&H7F,是指生成的伪随机代码,只取7位,以免数据溢出A = A Xor B’Xor是可逆的,第一次运行时是得到加密后的数据,再运行一次是得到解密后的数据C = Chr(A)加解密= 加解密+ CNextEnd Function举个例子吧~Function 加解密(源文件, 秘钥)Dim Z, iDim A, B, C加解密= ""If Len(源文件) = 0 Then加解密= ""Exit FunctionEnd If'调用Rnd函数使以后Rnd函数所产生的Rnd为相同的伪随机数列Z = Rnd(-密钥)For i = 1 To Len(源文件)C = Mid(源文件, i, 1)A = Asc(C)B = Int(126 * Rnd) And&H7FA = A Xor BC = Chr(A)加解密= 加解密+ CNextEnd FunctionEvent Form1.Load//获取小节名(如"e1df741f-d5ec-4ad7-969d-adb139c6a24f"),同一个Q文件生成的小节名不变a = GetMacroID()//获取到当前脚本/小精灵de ID加密文件=Plugin.File.ReadINI("e1df741f-d5ec-4ad7-969d-adb139c6a24f","Form1 .InputBox2.T ext", ".\uservar.ini")解密文件= 加解密(加密文件, 1234567890)'这里的1234567890是假使的密钥,可以修改,注意保密Form1.InputBox2.T ext = 解密文件End Event//写入密码信息源文件= Form1.InputBox2.T ext加密文件= 加解密(源文件, 1234567890)CallPlugin.File.WriteINI("e1df741f-d5ec-4ad7-969d-adb139c6a24f","Form1.InputBox2.T ext", 加密文件, ".\uservar.ini")//输出信息RunApp "notepad.exe"SayString Form1.InputBox1.T extKeyPress "Enter", 1SayString 源文件三、按键精灵快速排序的代码su = "6|1|2|7|9|3|4|5|10|8"su=Split(su, "|")L = UBound(su)Call ks(0, L)Function ks(L, B)If L > B ThenExit FunctionEnd If //判断数组上标下标是否超出范围i = Lj = Bkey =int( su(L) ) //数组第一位提取作为基数While j>iWhile int ( su(j)) >= key and j > i //要先从最右边开始找找到第一个小于key的数这里添加的j>i的判断是为了防止j的值不断递减导致下标越界j = j - 1WendWhile int (su(i)) <= key and j > i //从最左边开始找找到第一个大于key的数(这里的字符串数组需要转换为数值型)i = i + 1WendIf j>i then // 将和基数key对比得到的两个数对换将大于key的值往右边放小于key的值往左边放T = su(i)su(i) = su(j)su(j) = TEnd IfWend // 这个While 循环当i=j 第一轮比较完退出su(L) = su(i) // 重新设置数组第一个元素为基数su(i) = key// 基数归位(排完一轮之后左边的数<基数<右边的数那么基数就到了排序中它该在的位置。
源代码--数据结构与算法(Python版)chap10 排序

交换类
(2)快速排序 快速排序采用分而治之(Divide and Conquer)
的策略将问题分解成若干个较小的子问题,采用 相同的方法一一解决后,再将子问题的结果整合 成最终答案。快速排序的每一轮处理其实就是将 这一的基准数定位,直到所有的数都排序完成 为止。
21
快速排序的基本步骤:
1. 选定一个基准值(通常可选第一个元素); 2. 将比基准值小的数值移到基准值左边,形
14
• 交换类
交换类排序的基本思想是:通过交换无序序列 中的记录得到其中关键字最小或最大的记录,并将 其加入到有序子序列中,最终形成有序序列。交换 类排序可分为冒泡排序和快速排序等。
15
交换类
(1)冒泡排序 两两比较待排序记录的关键字,发现两
个记录的次序相反时即进行交换,直到没有 反序的记录为止。因为元素会经由交换慢慢 浮到序列顶端,故称之为冒泡排序。
3. 最后对这个组进行插入排序。步长的选法 一般为 d1 约为 n/2,d2 为 d1 /2, d3 为 d2/2 ,…, di = 1。
11
【例】给定序列(11,9,84,32,92,26,58,91,35, 27,46,28,75,29,37,12 ),步长设为d1 =5、d2 =3、 d3 =1,希尔排序过程如下:
for i in range(1,len(alist)):
#外循环n-1
for j in range(i,0,-1):
#内循环
if alist[j]<alist[j-1]:
alist[j],alist[j-1]=alist[j-1],alist[j] #交换
li=[59,12,77,64,72,69,46,89,31,9] print('before: ',li) insert_sort(li) print('after: ',li)
快速排序详解(lomuto划分快排,hoare划分快排,classic经典快排,dualp。。。

快速排序详解(lomuto划分快排,hoare划分快排,classic经典快排,dualp。
快速排序(lomuto划分快排,hoare划分快排,classic经典快排,dualpivot双轴快排)@⽬录⼀、快速排序思想快速排序的思想,是找出⼀个中轴(pivot),之后进⾏左右递归进⾏排序,关于递归快速排序,C程序算法如下。
void quick_sort(int *arr,int left,int right){if(left>right) return;int pivot=getPivot();quick_sort(arr,left,pivot-1);quick_sort(arr,pivot+1,right);}⼆、划分思想关于划分,不同的划分决定快排的效率,下⾯以lomuto划分和hoare划分来进⾏讲述思路1.lomuto划分思想:lomuto划分主要进⾏⼀重循环的遍历,如果⽐left侧⼩,则进⾏交换。
然后继续进⾏寻找中轴。
最后交换偏移的数和最左侧数,C程序代码如下。
/**lomuto划分*/int lomuto_partition(int *arr,int l,int r){int p=arr[l];int s=l;for(int i=l+1;i<=r;i++)if(arr[i]<p) {s++;int tmp=arr[i];arr[i]=arr[s];arr[s]=tmp;}int tmp=arr[l];arr[l]=arr[s];arr[s]=tmp;return s;}2.hoare划分思想:hoare划分思想是先从右侧向左进⾏寻找,再从左向右进⾏寻找,如果左边⽐右边⼤,则左右进⾏交换。
外侧还有⼀个嵌套循环,循环终⽌标志是⼀重遍历,这种寻找的好处就是,在⼀次遍历后能基本有序,减少递归的时候产⽣的⽐较次数。
这也是经典快排中所使⽤的⽅法/**hoare划分*/int hoare_partition(int *a,int l, int r) {int p = a[l];int i = l-1;int j = r+1 ;while (1) {do {j--;}while(a[j]>p);do {i++;}while(a[i] < p);if (i < j) {int temp = a[i];a[i] = a[j];a[j] = temp;}elsereturn j;}}3.经典快排的划分改进经典快排实际对hoare划分进⾏了少许改进,这个temp变量不需要每次找到左右不相等就⽴即交换,⽽是,暂时存放,先右边向左找,将左边放在右边,再左边向右找,把右边放左边,最后把初始temp变量放在左值。
php的9个经典排序算法

以下是使用PHP 实现的9个经典的排序算法:1. 冒泡排序```function bubble_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}for ($i = 0; $i < $n; $i++) {for ($j = 0; $j < $n - $i - 1; $j++) {if ($arr[$j] > $arr[$j+1]) {$temp = $arr[$j+1];$arr[$j+1] = $arr[$j];$arr[$j] = $temp;}}}return $arr;}```2. 选择排序```function selection_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}for ($i = 0; $i < $n; $i++) {$minIndex = $i;for ($j = $i+1; $j < $n; $j++) {if ($arr[$j] < $arr[$minIndex]) {$minIndex = $j;}}$temp = $arr[$i];$arr[$i] = $arr[$minIndex];$arr[$minIndex] = $temp;}return $arr;}```3. 插入排序```function insertion_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}for ($i = 1; $i < $n; $i++) {$value = $arr[$i];$j = $i - 1;for (; $j >= 0; $j--) {if ($arr[$j] > $value) {$arr[$j+1] = $arr[$j];} else {break;}}$arr[$j+1] = $value;}return $arr;}```4. 快速排序```function quick_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$pivotIndex = floor($n/2);$pivot = $arr[$pivotIndex];$left = array();$right = array();for ($i = 0; $i < $n; $i++) {if ($i == $pivotIndex) {continue;} else if ($arr[$i] < $pivot) {$left[] = $arr[$i];} else {$right[] = $arr[$i];}}return array_merge(quick_sort($left), array($pivot), quick_sort($right));}```5. 归并排序```function merge_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$mid = floor($n/2);$left = array_slice($arr, 0, $mid);$right = array_slice($arr, $mid);$left = merge_sort($left);$right = merge_sort($right);$newArr = array();while (count($left) && count($right)) {$newArr[] = $left[0] < $right[0] ? array_shift($left) : array_shift($right);}return array_merge($newArr, $left, $right);}```6. 堆排序```function heap_sort(&$arr) {$n = count($arr);if ($n <= 1) {return;}build_heap($arr);for ($i = $n-1; $i > 0; $i--) {$temp = $arr[0];$arr[0] = $arr[$i];$arr[$i] = $temp;heapify($arr, 0, $i);}}function build_heap(&$arr) {$n = count($arr);for ($i = floor($n/2)-1; $i >= 0; $i--) {heapify($arr, $i, $n);}}function heapify(&$arr, $i, $n) {$left = 2*$i+1;$right = 2*$i+2;$largest = $i;if ($left < $n && $arr[$left] > $arr[$largest]) {$largest = $left;}if ($right < $n && $arr[$right] > $arr[$largest]) {$largest = $right;}if ($largest != $i) {$temp = $arr[$i];$arr[$i] = $arr[$largest];$arr[$largest] = $temp;heapify($arr, $largest, $n);}}```7. 希尔排序```function shell_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$gap = floor($n/2);while ($gap > 0) {for ($i = $gap; $i < $n; $i++) {$temp = $arr[$i];for ($j = $i-$gap; $j >= 0 && $arr[$j] > $temp; $j -= $gap) {$arr[$j+$gap] = $arr[$j];}$arr[$j+$gap] = $temp;}$gap = floor($gap/2);}return $arr;}```8. 计数排序```function counting_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$maxVal = max($arr);$countArr = array_fill(0, $maxVal+1, 0);for ($i = 0; $i < $n; $i++) {$countArr[$arr[$i]]++;}for ($i = 1; $i < $maxVal+1; $i++) {$countArr[$i] += $countArr[$i-1];}$tmpArr = array();for ($i = $n-1; $i >= 0; $i--) {$tmpArr[$countArr[$arr[$i]]-1] = $arr[$i];$countArr[$arr[$i]]--;}for ($i = 0; $i < $n; $i++) {$arr[$i] = $tmpArr[$i];}return $arr;}```9. 桶排序```function bucket_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$maxVal = max($arr);$bucketSize = 10;$bucketCount = floor($maxVal / $bucketSize) + 1;$buckets = array();for ($i = 0; $i < $bucketCount; $i++) {$buckets[$i] = array();}for ($i = 0; $i < $n; $i++) {$index = floor($arr[$i] / $bucketSize);array_push($buckets[$index], $arr[$i]);}$newArr = array();for ($i = 0; $i < $bucketCount; $i++) {$bucketArr = $buckets[$i];$len = count($bucketArr);if ($len > 1) {sort($bucketArr);}for ($j = 0; $j < $len; $j++) {array_push($newArr, $bucketArr[$j]);}}return $newArr;}```以上就是使用PHP 实现的9个经典的排序算法。
C语言八大排序算法

C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。
想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。
⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。
1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。
排序分为内部排序和外部排序。
若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。
反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。
2、排序分类⼋⼤排序算法均属于内部排序。
如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。
如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。
元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。
3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。
acm算法源代码

| SPFA(SHORTEST PATH FASTER ALGORITHM) .............. 4 | 第K短路(DIJKSTRA)................................................... 5 | 第K短路(A*) .............................................................. 5 | PRIM求MST ..................................................................... 6 | 次小生成树O(V^2)....................................................... 6 | 最小生成森林问题(K颗树)O(MLOGM). ....................... 6 | 有向图最小树形图 ......................................................... 6
(O(NLOGN + Q)).............................................................19 | RMQ离线算法 O(N*LOGN)+O(1)求解LCA...............19 | LCA离线算法 O(E)+O(1).........................................20 | 带权值的并查集 ...........................................................20 | 快速排序 .......................................................................20 | 2 台机器工作调度........................................................20 | 比较高效的大数 ...........................................................20 | 普通的大数运算 ...........................................................21 | 最长公共递增子序列 O(N^2)....................................22 | 0-1 分数规划...............................................................22 | 最长有序子序列(递增/递减/非递增/非递减) ....22 | 最长公共子序列 ...........................................................23 | 最少找硬币问题(贪心策略-深搜实现) .................23 | 棋盘分割 .......................................................................23 | 汉诺塔 ...........................................................................23
数据结构经典代码(严蔚敏)

/* 线性表的顺序表示:类型和界面定义*//* 线性表的顺序表示:函数实现*//* 线性表的单链表表示:类型和界面函数定义*//* 线性表的单链表表示:函数实现*//* 线性表的顺序表示:类型和界面定义*//* 线性表的顺序表示:函数实现*//* 用顺序表解决josephus问题的算法*//* 用循环单链表解决josephus问题的算法*//*字符串的顺序表示*//* 字符串的链接表示 *//* 顺序栈表示:类型和界面函数声明 *//* 顺序栈表示:函数定义 *//* 栈链接表示:类型和界面函数声明 *//*栈链接表示:函数定义*//* 简化背包问题的递归算法*//* 简化背包问题的非递归算法*//* 迷宫问题的递归算法*//* 迷宫问题的非递归算法(栈实现)*//* 队列的顺序表示:类型和函数声明 *//* 队列的顺序表示:函数定义 *//*队列链接表示:类型和界面函数声明*//*队列链接表示:函数定义*//* 用队列解决农夫过河问题的算法*//* 树的长子-兄弟表示法*//* 树的父指针表示法*//* 树的子表表示法*//* 树的后根周游的递归算法*//* 树的先根周游的非递归算法*//* 树的中根周游的递归算法*//* 树的后根周游的递归算法*//* 树的广度优先周游算法*//* 二叉树的链接表示*//* 二叉树的顺序表示*//* 线索二叉树的定义,构造算法和中根周游算法*//* 二叉树前根周游的递归算法*//* 二叉树对称根周游的递归算法*//* 二叉树后根周游的递归算法*//* 二叉树后根周游的非递归算法*//* 本程序提供了用顺序表实现字典的存储表示定义*//* 本程序是用开地址法解决碰撞的散列表示方法,提供了字典的一些基本操作*//* 字典的二叉排序树实现,本程序实现了二叉排序树的基本操作的算法*/ /* 字典的AVL树实现*//* 本程序提供了用顺序表实现字典的情况下的顺序检索算法*//* 本程序提供了用顺序表实现字典的情况下的二分法检索算法*//* 本程序是用开地址法实现散列的检索算法*//* 二叉排序树的检索算法*//* AVL树的检索算法*//* 最佳二叉排序树是具有最佳检索效率的二叉排序树, 本程序提供了最佳二叉排序树的构造方法*//* 直接插入排序的算法源程序*//* 二分法插入排序的算法源程序*//* 表插入排序的算法源程序*//* shell排序的算法源程序 *//* 直接选择排序的算法源程序*//* 堆排序的算法源程序*//* 起泡排序的算法源程序*//* 快速排序的算法源程序*//* 基数排序的算法源程序*//* 二路归并排序算法的源程序*//* 用图邻接矩阵表示实现的一些基本运算*//* 用图邻接表表示实现的一些基本运算*//* 用邻接矩阵表示的图的广度优先周游算法*//* 用邻接表表示的图的广度优先周游算法*//* 用邻接矩阵表示的图的深度优先周游的递归算法*/ /* 用邻接矩阵表示的图的深度优先周游的非递归算法*/ /* 用邻接表表示的图的深度优先周游的非递归算法*/ /* 用邻接矩阵表示的图的Kruskal算法的源程序*//* 用邻接矩阵表示的图的prim算法的源程序*//* 用邻接矩阵表示的图的Dijkstra算法的源程序*//* 用邻接矩阵表示的图的Floyd算法的源程序*//* 用邻接表表示图的拓扑排序算法*//* 用邻接矩阵表示图的拓扑排序算法*//* 图的关键路径问题的算法*//* 背包问题的贪心法算法*//* 用动态规划法求组和数的算法*//* 用回溯法解决骑士周游问题的算法*//* 0/1背包问题的回溯法算法*//* 0/1背包问题的动态规划法算法*//* 0/1背包问题的分支定界法算法*//* 线性表的顺序表示:类型和界面定义*/#define TRUE 1#define FALSE 0#define SPECIAL -1/* 定义顺序表的大小。
源代码 - 副本

cout<<A[i]<<" ";
cout<<endl;
finish3=clock();
}
template<class T> //直接插入排序
void an<T>::insertsort(T A[],int n)
{
start1=clock();
#include<iostream.h>
#include<time.h>
#include<math.h>
#include<iomanip.h>
#include <stdlib.h>
//外部变量定义
int count1=0,bj1=0,yd1=0;
int count2=0,bj2=0,yd2=0;
count5++;
qsort(A,left,j-1);
qsort(A,j+1,right);
}
}
template<class T> //两路合并排序
void an<T>::merge(T A[],int i1,int j1,int i2,int j2)
{
T *temp=new T[j2-i1+1];
{
start6=clock();
int i1,j1,i2,j2;
int size=1;
while(size<n)
{
i1=0;
while(i1+size<n)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#define MAX 10
#define SWAP(x,y) {int t; t = x; x = y; y = t;}
int partition(int[], int, int);
void quicksort(int[], int, int);
void main()
{ int q;
if(left < right)
{ q = partition(number, left, right);
quicksort(number, left, q-1);
quicksort(number, q+1, right);
}
}
//////////////////////////////////////代码2:(轴在中心)/////////////////////////////////////////////
#include <iostream>
#include <ctime>
#include<iomanip>
using namespace std;
#define MAX 10
#define SWAP(x,y) {int t; t = x; x = y; y = t;}
int partition(int[], int, int);
void quicksort(int[], int, int);
void main()
{ int number[MAX] = {0};
int i;
srand(time(NULL));
cout<<"排序前:";
for(i = 0; i < MAX; i++)
{ number[i] = rand() % 100;
if(i >= j) break;
SWAP(number[i], number[j]);
}
quicksort(number, left, i-1); // 对左边进行递归
quicksort(number, j+1, right); // 对右边进行递归
}
}
////////////////////////////////////////代码3:(轴选在最左侧)///////////////////////////////////
////////////////////////////////////////////////////////////////////
///////代码1 多数的教科书上所提及的版本(轴在最右侧)///////////////
#include <iostream>
#include <ctime>
#include<iomanip>
void quicksort(int[], int, int);
void main()
{ int number[MAX] = {0};
int i;
srand(time(NULL));
cout<<"排序前:";
for(i = 0; i < MAX; i++)
{ number[i] = rand() % 100;
cout<<setw(6)<<number[i];
}
quicksort(number, 0, MAX-1);
cout<<"\n排序后:";
for(i = 0; i < MAX; i++)
cout<<setw(6)<<number[i];
cout<<"\n";
}
int partition(int number[], int left, int right)
cout<<setw(6)<<number[i];
}
quicksort(number, 0, MAX-1);
cout<<"\n排序后:";
for(i = 0; i < MAX; i++)
cout<<setw(6)<<number[i];
cout<<"\n";
}
void quicksort(int number[], int left, int right)
}
number[left]=s; // 枢轴记录到位
return left; // 返回枢轴位置
}
void quicksort(int number[], int left, int right)
{ int q;
if(left < right)
{ q=partition(number, left, right);
#include <iostream>
#include <ctime>
#include<iomanip>
using namespace std;
#define MAX 10
#define SWAP(x,y) {int t; t = x; x = y; y = t;}
int partition(int[], int, int);
{ int i, j, s;
if(left < right)
{ s = number[(left+right)/2];
i = left - 1;
j = right + 1;
while(1)
{ while(number[++i] < s) ; // 向右找
while(number[--j] > s) ; // 向左找
quicksort(number, left, q-1);
quicksort(number, q+1, right);
}
}
史上最全快速排序法源代码
快速排序法(quick sort)是目前所公认最快的排序方法之一(视解题的对象而定),虽然快速排序法在最差状况下可以达O(n2),但是在多数的情况下,快速排序法的效率表现是相当不错的。
快速排序法的基本精神是在数列中找出适当的轴心,然后将数列一分为二,分别对左边与右边数列进行排序,而影响快速排序法效率的正是轴心的选择。
{ int number[MAX] = {0};
int i;
srand(time(NULL));
cout<<"排序前:";
for(i = 0; i < MAX; i++)
{ number[i] = rand() % 100;
cout<<setw(6)<<number[i];
}
quicksort(number, 0, MAX-1);
i = left-1 ;
for(j = left; j < right; j++)
{ if(number[j] <= s)
{i++;
SWAP(number[i], number[j]);
}
}
SWAP(number[i+1], number[right]);
return i+1;
}
void quicksort(int number[], int left, int right)
cout<<"\n排序后:";
for(i = 0; i < MAX; i++)
cout<<setw(6)<<number[i];
cout<<"\n";
}
int partition(int number[], int left, int right)
{ int i, j, s;
s = number[right];
{ int s;
s = number[left];
while(left<right)
{ // 从表的两端交替地向中间扫描
while(number[right]><s)
left++;
SWAP(number[left], number[right]);