《最优化方法》复习题.pdf

合集下载

《最优化方法》期末试题

《最优化方法》期末试题

作用:①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。

尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。

②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。

③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。

④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。

同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。

2.简述两个Wardrop 均衡原理及其适用范围。

答:Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。

在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行驶时间。

Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本最小为依据来分配。

第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。

3.系统协调的特点。

答:(1)各子系统之间既涉及合作行为,又涉及到竞争行为。

(2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体(3)整体系统往往具有多个决策人,构成竞争决策模式。

(4)系统可能存在第三方介入进行协调的可能。

6.对已经建立了概念模型的系统处理方式及其特点、适用范围。

答:对系统概念模型有三种解决方式。

1.建立解析模型方式对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。

《最优化方法》课程复习考试.doc

《最优化方法》课程复习考试.doc

《最优化方法》复习提要 第一章最优化问题与数学预备知识§1.1模型无约束最优化问题 min /(x ), x =(旺,兀2,…心)'w R"・A约束最优化问题疋简(兀)》0,心1,2,・・・,加也(兀)=0,丿=1,2,・・・,") min /(x );s.t. gQ )nO,i = l,2,…,加,hj (x ) = 0,j = \,2,・・・,l ・其中.f (X )称为目标函数,西,兀2,…,暫称为决策变量,S 称为可行域,gQ ) no (心1,2,…,加),勺(兀) = 0。

= 1,2,…丿)称为约束条件. §1. 2多元函数的梯度、Hesse 矩阵及Tayloi •公式定义设f:R“TR,J^R“・如果%维向量〃,VAre R n,有+ Ax) -f(x) = p T\x + 0(||Ax||)・则称/(x )在点元处町微,并称df (x ) = p T\x 为/(x )在点元处的微分.如果/(X )在点元处对丁」=(兀“2,・・・,£)丁的各分量的偏导数。

/(元)d x i都存在,则称/(兀)在点元处一阶可导,并称向量为/(兀)在点元处一阶导数或梯度.定理1设f :R n^R,xeR n・如果/(兀)在点元处可微,则/(兀)在点元处梯度V/(x)存在,并且有#(x) = W)7'Ar .定义 设f:R"TR,J^R“・d 是给定的n 维非零向量,e = 2・如杲 dmin /(兀);即 vS.t. X G S.V/(x)=(df(x)T。

/(可。

/(元)Um /a + 2e )-V (x )久TO2存在,则称此极限为/(x )在点元沿方向d 的方向导数,记作冬学.da定理2设f :R n^R,xeR n.如果/(兀)在点元处可微,则/(兀)在点元处沿任何非零方向d 的方向导数存在,且= VA 元)。

,其中丘=厶~・daa定义 设/(兀)是/?"上的连续函数,xeR n. d 是〃维非零向量.如果3^>0,使得V2w (O0),有/(x + 2J )< (>) /(x ).则称d 为f (兀)在点元处的下降(上 升)方向.定理3设f:R n^R.xeR n,且/(兀)在点元处可微,如果日非零向量de R n9 使得Vf (x )Td < (>) 0,则d 是/(兀)在点元处的下降(上升)方向.定义 设f:R”TR,HeR”・如果/(兀)在点元处对丁自变量x = (x p x 2,---,x /J )7'的 各分量的二阶偏导数£単匕丿・=1,2,…,)都存在,则称函数/(兀)在点元处二阶 U Xj 可导,并称矩阵为/(x )在点元处的二阶导数矩阵或Hesse 矩阵.定义 设h:R" 记/1(兀)=(肉(兀),爲(兀),・・・,饥(兀))7',如果勺• (x ) (i = 1,2,…,加)在点元处对于自变量x =(兀],吃,…£)丁的各分量的偏导数d 2x } 扌/(元) dx }dx 2 巧(元) d 2f(x) 3 x 2d• d 2x 2• d x^d x n L n• •■d 2f(x) ■97(^) • •d 2f(x)d x n d X] d x n d x 2d 2f(x)V 2/(x)丿号⑴(i = 1,2,…,加;J = 1,2,…加 dx f都存在,则称向量函数加对在点元处是一阶可导的,并且称矩阵为/?(%)在点x 处的一阶导数矩阵或Jacobi 矩阵,例2 设aw R",xw R",bw R ,求f (x ) = a Tx-{-h 在任意点兀处的梯度和Hesse 矩阵.解 设0 =(绚卫2,・・・,%)/,兀=(旺,兀2,・・・,£)‘,则/(兀)=工绞母+b ,k=\因。

最优化方法(试题+答案)

最优化方法(试题+答案)
一、填空题
1.若 ,则 , .
2.设 连续可微且 ,若向量 满足,则它是 在 处的一个下降方向。
3.向量 关于3阶单位方阵的所有线性无关的共轭向量有.
4.设 二次可微,则 在 处的牛顿方向为.
5.举出一个具有二次终止性的无约束二次规划算法:.
6.以下约束优化问题:
的K-K-T条件为:
.
7.以下约束优化.证明:要证凸规划,即要证明目标函数是凸函数且可行域是凸集。
一方面,由于 二次连续可微, 正定,根据凸函数等价条件可知目标函数是凸函数。
另一方面,约束条件均为线性函数,若任意 可行域,则
故 ,从而可行域是凸集。
2.证明:要证 是 在 处的一个可行方向,即证当 , 时, ,使得 ,
解此线性规划(作图法)得 ,于是 .由线性搜索
得 .因此, .重复以上计算过程得下表:
0
1
1
2
(注:范文素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)
2.采用精确搜索的BFGS算法求解下面的无约束问题:
3.用有效集法求解下面的二次规划问题:
4.用可行方向算法(Zoutendijk算法或Frank Wolfe算法)求解下面的问题(初值设为 ,计算到 即可):
参考答案
一、填空题
1. 2. 3. , (答案不唯一)。4.
5. 牛顿法、修正牛顿法等(写出一个即可)
0
1/2
1
2
2
3.解:取初始可行点 求解等式约束子问题
得解和相应的Lagrange乘子
转入第二次迭代。求解等式约束子问题
得解

转入第三次迭代。求解等式约束子问题
得解和相应的Lagrange乘子

《最优化方法》复习题.docx

《最优化方法》复习题.docx

《最优化方法》复习题一、 简述题1、怎样判断一个函数是否为凸函数.(例如:判断函数f(x) =昇+ 2兀內+ 2近一 10州+ 5兀2是否为凸函数)2、 写出几种迭代的收敛条件.3、 熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法).见书本61页(利用单纯形表求解);69页例题(利用大M 法求解、二阶段法求解); 4、 简述牛顿法和拟牛顿法的优缺点.简述共辘梯度法的基木思想.写岀Goldstein> Wolfe 非精确一维线性搜索的公式。

5、叙述常用优化算法的迭代公式.心=务+吕—%),化-知1仏二务+召一色)(3) Newton —维搜索法的迭代公式:x k+i = x k -G~'g k ・ (4) 推导最速下降法用于问题min/(x) = —++ c 的迭代公式:耳+1 二无一-VfgS k G k gx k(5) Newton 法的迭代公式:x k+] = x k -[V 2/(^)]_l V/*(x A )・ (6) 共轨方向法用于问题min/(x)=丄x rQx+b 1x + c 的迭代公式:2忑+1 =J二、计算题双折线法练习题 课本135页 例3.9.1FR 共辘梯度法例题:课本150页 例4.3.5(1) 0.618法的迭代公式:A- =ak +(1-厂)(勺一务),(2) Fibonacci 法的迭代公式: 伙= 1,2,…,一1)二次规划有效集:课本213页例6.3.2,所有留过的课后习题.三、练习题:1、 设A G R ,iXn是对称矩阵,bwR”,cwR,求/(%) =丄*心+戻兀+ c 在任意点x 处 的梯度和Hesse 矩阵.解 V/*(x) = Ar + /?, V 2/(x) = A ・2、 设0(/) = /(兀 + 力),其屮/:/?" T R 二阶可导,XG R\de R\te R ,试求0"(/)・解 0(/) = W(x + /d) 丁4,矿⑴=dF f(x~Hd)d .3、 证明:凸规划min f(x)的任意局部最优解必是全局最优解.xeS证明 用反证法.设住S 为凸规划问题min /(x)的局部最优解,即存在丘的某xeS个5邻域N s (x),使f(x)<f(x)yxeN 6(x)C\S ・若元不是全局最优解,则存在花S,使/(i) < /(x)・由于/(兀)为S 上的凸函数,因此VA G (0,1),有/(Ax + (1-2)x) < 2/(x) + (1-2)/(x) < f(x)・当2充分接近1时,可使2元+(1 — 2)农 皿(元)「IS,于是/(x)</(2x + (l-/i)x), 矛盾.从而元是全局最优解.min f(x) = 2x t -x 2 +x 3; s.t. 3兀]+ x 2 + x 3 < 60,x l - 2X 2 + 2X 3 <10,%! + x 2 - x 3 < 20, (1)用单纯形法求解该线性规划问题;(2)写出线性规划的对偶问题;解 (1)引进变量兀,兀5,兀6,将给定的线性规划问题化为标准形式:min /(%) = 2x t -x 2 +x 3; s.t. 3x ( + 兀 + 耳 + % = 60,%j - 2X 2 + 2X 3 + 冯=10,所给问题的最优解为x = (0,20,0)r ,最优值为/ = -20・4、已知线性规划:(2)所给问题的对偶问题为:max g(y) = -60^-10^ - 20%;皿_3”_旳_儿52,< _必+2旳_儿S_l,一开_2旳 + %<1,儿力*3»°・5、用0.618法求解min 0(f) = (f-3尸,要求缩短后的区间长度不超过0.2,初始区间取[0,10]・解第一次迭代:取y [0,10],£ = 0.2.确定最初试探点人,“分别为入=^+0.382(^-^,) = 3.82, M =坷+0.618(勺一马)=6・18 .求目标函数值:°(人)=(3.82— 3)2 =0.67, °(“)= (6.18 — 3)2 =10.11.比较目标函数值:0(人)< 0(")・比较 //| —6f| = 6.18 — 0 > 0.2 = E ・第二次迭代:a2 = a x = 0,Z?2= “| = 6.18,/ =人=3.82,。

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题1、设n n A R ⨯∈是对称矩阵,,n b R c R ∈∈,求1()2TT f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵.解 2(),()f x Ax b f x A ∇=+∇=.2、设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ϕ''. 解 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+.3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令()()()()()T TT Tdd f x f x H I d f x f x f x ∇∇=--∇∇∇, 其中I 为单位矩阵,证明方向()p H f x =-∇也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ∇<,从而()()()T T f x p f x H f x ∇=-∇∇()()()()()()()()T TTT T dd f x f x f x I f x d f x f x f x ∇∇=-∇--∇∇∇∇()()()0T T f x f x f x d =-∇∇+∇<,所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ⊆是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ∀≥∀∈的一切凸组合都属于S .证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令11k i i i x x λ+==∑,其中,0,1,2,,1i i x S i k λ∈≥=+,且111k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈,结论成立),记111kii i k y x λλ=+=-∑,有111(1)k k k x y x λλ+++=-+,又1110,1,2,,,111kiii k k i k λλλλ=++≥==--∑,则由归纳假设知,y S ∈,而1k x S +∈,且S 是凸集,故x S ∈.5、设n R S ⊆为非空开凸集,R S f →:在S 上可微,证明:f 为S 上的凸函数的充要条件是2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.证明 必要性.设f 是S 上的凸函数,则12,x x S ∀∈及(0,1)λ∈,有2121((1))()(1)()f x x f x f x λλλλ+-≤+-,于是121121(())()()()f x x x f x f x f x λλ+--≤-,因S 为开集,f 在S 上可微,故令0λ+→,得12121()()()()T f x x x f x f x ∇-≤-,即2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.充分性.若有2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈, 则[0,1]λ∀∈,取12(1)x x x S λλ=+-∈,从而11()()()()T f x f x f x x x ≥+∇-,22()()()()T f x f x f x x x ≥+∇-,将上述两式分别乘以λ和1λ-后,相加得1212()(1)()()()((1))T f x f x f x f x x x x λλλλ+-≥+∇+--12()((1))f x f x x λλ==+-,所以f 为凸函数.6、证明:凸规划min ()x Sf x ∈的任意局部最优解必是全局最优解.证明 用反证法.设x S ∈为凸规划问题min ()x Sf x ∈的局部最优解,即存在x 的某个δ邻域()N x δ,使()(),()f x f x x N x S δ≤∀∈.若x 不是全局最优解,则存在x S ∈,使()()f x f x <.由于()f x 为S 上的凸函数,因此(0,1)λ∀∈,有((1))()(1)()()f x x f x f x f x λλλλ+-≤+-<.当λ充分接近1时,可使(1)()x x N x S δλλ+-∈,于是()((1))f x f x x λλ≤+-,矛盾.从而x 是全局最优解.7、设n R S ⊆为非空凸集,R S f →:是具有一阶连续偏导数的凸函数,证明:x 是问题min ()x Sf x ∈的最优解的充要条件是:()()0,T f x x x x S ∇-≥∀∈.证明 必要性.若x 为问题min ()x Sf x ∈的最优解.反设存在x S ∈,使得()()0T f x x x ∇-<,则d x x =-是函数()f x 在点x 处的下降方向,这与x 为问题min ()x Sf x ∈的最优解矛盾.故()()0,T f x x x x S ∇-≥∀∈.充分性.若()()0,T f x x x x S ∇-≥∀∈.反设存在x S ∈,使得()()f x f x <.(())()((1))()f x x x f x f x x f x λλλλλ+--+--=()(1)()()()()0((0,1)f x f x f x f x f x λλλλ+--≤=-<∀,因S 为凸集,f 在S 上可微,故令0λ+→,得()()()()0T f x x x f x f x ∇-≤-<,这与已知条件矛盾,故x 是问题min ()x Sf x ∈的最优解.8、设函数()f x 具有二阶连续偏导数,k x 是()f x 的极小点的第k 次近似,利用()f x 在点k x 处的二阶Taylor 展开式推导Newton 法的迭代公式为 211[()]()k k k k x x f x f x -+=-∇∇.证明 由于()f x 具有二阶连续偏导数,故21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ϕ≈=+∇-+-∇-.且2()k f x ∇是对称矩阵,因此()x ϕ是二次函数.为求()x ϕ的极小点,可令()0x ϕ∇=,即2()()()0k k k f x f x x x ∇+∇-=,若2()k f x ∇正定,则上式解出的()x ϕ的平稳点就是()x ϕ的极小点,以它作为()f x 的极小点的第1k +次近似,记为1k x +,即211[()]()k k k k x x f x f x -+=-∇∇,这就得到了Newton 法的迭代公式.9、叙述常用优化算法的迭代公式.(1)0.618法的迭代公式:(1)(),().k k k k k k k k a b a a b a λτμτ=+--⎧⎨=+-⎩(2)Fibonacci 法的迭代公式:111(),(1,2,,1)()n k kk k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+⎧=+-⎪⎪=-⎨⎪=+-⎪⎩.(3)Newton 一维搜索法的迭代公式: 1()()k k k k t t t t ϕϕ+'=-''. (4)最速下降法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()()()()()T k k k k k Tk k f x f x x x f x f x Q f x +∇∇=-∇∇∇ (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-∇∇. (6)共轭方向法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()T k kk k k Tk kf x d x x d d Qd +∇=-. 10、已知线性规划:123123123123123min ()2;..360,2210,20,,,0.f x x x x s t x x x x x x x x x x x x =-+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪⎪≥⎩(1)用单纯形法求解该线性规划问题的最优解和最优值; (2)写出线性规划的对偶问题; (3)求解对偶问题的最优解和最优值.解 (1)引进变量456,,x x x ,将给定的线性规划问题化为标准形式:123123412351236126min ()2;..360,2210,20,,,,0.f x x x x s t x x x x x x x x x x x x x x x =-+⎧⎪+++=⎪⎪-++=⎨⎪+-+=⎪⎪≥⎩所给问题的最优解为(0,20,0)T x =,最优值为20f =-. (2)所给问题的对偶问题为:123123123123123max ()601020;..32,21,21,,,0.g y y y y s t y y y y y y y y y y y y =---⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩(1) (3)将上述问题化成如下等价问题:123123123123123min ()601020;..32,21,21,,,0.h y y y y s t y y y y y y y y y y y y =++⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩引进变量456,,y y y ,将上述问题化为标准形式:123123412351236126min ()601020;..32,21,21,,,,0.h y y y y s t y y y y y y y y y y y y y y y =++⎧⎪---+=⎪⎪-+-+=-⎨⎪--++=⎪⎪≥⎩ (2)问题(2)的最优解为(0,0,1)T y =,最优值为20h =(最小值). 问题(1)的最优解为(0,0,1)T y =,最优值为20g =-(最大值).11、用0.618法求解 2min ()(3)t t ϕ=-,要求缩短后的区间长度不超过0.2,初始区间取[0,10]. 解 第一次迭代: 取11[,][0,10],0.2a b ε==. 确定最初试探点11,λμ分别为11110.382() 3.82a b a λ=+-=,11110.618() 6.18a b a μ=+-=.求目标函数值:21()(3.823)0.67ϕλ=-=,21()(6.183)10.11ϕμ=-=. 比较目标函数值:11()()ϕλϕμ<. 比较11 6.1800.2a με-=->=. 第二次迭代:212121210, 6.18, 3.82,()()0.67a a b μμλϕμϕλ========.2222220.382()0.382(6.180) 2.36,()(2.363)0.4a b a λϕλ=+-=-==-=.2222()(), 3.82a ϕλϕμμε<-=>.323232320, 3.82, 2.36,()()0.4a a b μμλϕμϕλ========.2333330.382()0.382(3.820) 1.46,()(1.463) 2.37a b a λϕλ=+-=-==-=.3333()(), 3.82 1.46b ϕλϕμλε>-=->. 第四次迭代:434343431.46, 3.82, 2.36,()()0.4a b b λλμϕλϕμ========.444440.618() 1.460.0.618(3.82 1.46) 2.918,()0.0067a b a μϕμ=+-=+-==. 4444()(), 3.82 2.36b ϕλϕμλε>-=->. 第五次迭代:545454542.36, 3.82, 2.918,()()0.0067a b b λλμϕλϕμ========.555550.618() 3.262,()0.0686a b a μϕμ=+-==. 5555()(), 3.262 2.36a ϕλϕμμε<-=->. 第六次迭代:656565652.36, 3.262, 2.918,()()0.0067a a b μμλϕμϕλ========.666660.382() 2.7045,()0.087a b a λϕλ=+-==.6666()(), 3.262 2.7045b ϕλϕμλε>-=->. 第七次迭代:767676762.7045, 3.262, 2.918,()()0.0067a b b λλμϕλϕμ========.777770.618() 3.049,()0.002a b a μϕμ=+-==. 7777()(),b ϕλϕμλε>->. 第八次迭代:878787872.918, 3.262, 3.049,()()0.002a b b λλμϕλϕμ========.888880.618() 3.131,()0.017a b a μϕμ=+-==. 8888()(),a ϕλϕμμε<->.989899982.918, 3.131, 3.049,()()0.002a a b μμλϕμϕλ========.999990.382() 2.999,()0.000001a b a λϕλ=+-==. 9999()(), 3.049 2.918a ϕλϕμμε<-=-<. 故993.0242x λμ+==.12、用最速下降法求解 22112212min ()2243f x x x x x x x =++--,取(0)(1,1)T x =,迭代两次.解 1212()(224,243)T f x x x x x ∇=+-+-, 将()f x 写成1()2TT f x x Qx b x =+的形式,则224,243Q b -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭. 第一次迭代:(0)(0)(1)(0)(0)(0)(0)()()()()()T T f x f x xxf x f x Q f x ∇∇=-∇∇∇ 0(0,3)1013220131/4(0,3)243⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭. 第二次迭代:(1)(1)(2)(1)(1)(1)(1)()()()()()T T f x f x xx f x f x Q f x ∇∇=-∇∇∇ 3/2(3/2,0)13/27/40223/21/401/4(3/2,0)240-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭⎝⎭. 13、用FR 共轭梯度法求解222123123123min ()()()()f x x x x x x x x x x =-++-++++-,取(0)11(,1,)22T x =,迭代两次.若给定0.01,ε=判定是否还需进行迭代计算. 解 222123121323()3()2()f x x x x x x x x x x =++-++,再写成1()2T f x x Gx =,622262226G --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,()f x Gx ∇=.第一次迭代:(0)()(0,4,0)T f x ∇=,令(0)0()(0,4,0)T d f x =-∇=-,从(0)x 出发,沿0d 进行一维搜索,即求(0)200min ()21648f x d λλλλ≥+=-+的最优解,得(1)(0)0001/6,(1/2,1/3,1/2)T x x d λλ==+=.第一次迭代:(1)()(4/3,0,4/3)T f x ∇=.2(1)02(0)()29()f x f x α∇==∇, (1)100()(4/3,8/9,4/3)T d f x d α=-∇+=---.从(1)x 出发,沿1d 进行一维搜索,即求(1)10142362214181418min ()(,,)262233923392261423f x d λλλλλλλλ≥⎛⎫- ⎪--⎛⎫ ⎪⎪⎪+=------ ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪- ⎪⎝⎭的最优解,得(2)(1)1111/24/333,1/38/9(0,0,0)881/24/3T x x d λλ-⎛⎫⎛⎫ ⎪ ⎪==+=+-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.此时(2)(2)()(0,0,0),()00.01T f x f x ε∇=∇=<=.得问题的最优解为(0,0,0)T x =,无需再进行迭代计算.14、用坐标轮换法求解 2212112min ()242f x x x x x x =+--,取(0)(1,1)T x =,迭代一步.解 从点(0)(1,1)T x =出发,沿1(1,0)T e =进行一维搜索, 即求(0)210min ()43f x e λλλλ≥+=--的最优解,得(1)(0)0012,(3,1)T x x e λλ==+=.再从点(1)x 出发,沿2(0,1)T e =进行一维搜索, 即求(1)220min ()227f x e λλλλ≥+=--的最优解,得(2)(1)1121/2,(3,3/2)T x x e λλ==+=.15、用Powell 法求解2212112min ()3f x x x x x x =+--,取(0)(0,0)T x =,初始搜索方向组01(0,1),(1,0)T T d d ==,给定允许误差0.1ε=(迭代两次). 解 第一次迭代:令(0)(0)(0,0)T y x ==,从点(0)y 出发沿0d 进行一维搜索,易得(1)(0)0000,(0,0)T y y d λλ==+=;接着从点(1)y 出发沿1d 进行一维搜索,得(2)(1)11133,(,0)22T y y d λλ==+=由此有加速方向 (2)(0)23(,0)2T d y y =-=.因为23/2d ε=>,所以要确定调整方向.由于 (0)(1)(2)9()0,()0,()4f y f y f y ===-,按(8.4.17)式有(1)(2)()(1)()()max{()()|0,1}j j f y f y f y f y j +-=-=,因此1m =,并且()(1)(1)(2)9()()()()4m m f y f y f y f y +-=-=. 又因(2)(0)(2)0f y y -=,故(8.4.18)式不成立.于是,不调整搜索方向组,并令(1)(2)3(,0)2T x y ==.第二次迭代:取(0)(1)3(,0)2T y x ==,从点(0)y 出发沿0d 作一维搜索,得(1)(0)000333,(,)424T y y d λλ==+=.接着从点(1)y 出发沿方向1d 作一维搜索,得(2)(1)1113153,(,)884Ty y d λλ==+=. 由此有加速方向(2)(0)233(,)84T d y y =-=.因为2d ε=>,所以要确定调整方向.因(0)(1)(2)945189(),(),()41664f y f y f y =-=-=-, 故按(8.4.17)式易知0m =,并且()(1)(0)(1)9()()()()16m m f y f y f y f y +-=-=. 由于(2)(0)45(2)16f y y -=-, 因此(8.4.18)式成立。

最优化方法试卷及答案5套.docx

最优化方法试卷及答案5套.docx

《最优化方法》1一、填空题:1. _______________________________________________________ 最优化问题的数学模型一般为:_____________________________________________ ,其中___________ 称为目标函数,___________ 称为约束函数,可行域D可以表示为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。

2.设f(x)= 2斤+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿方向d的一阶方向导数为___________ ,几何意义为_____________________________________ ,二阶方向导数为____________________ ,几何意义为_____________________________3.设严格凸二次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中子(兀)为严格凸函数,D 是凸集)的最优解是唯一的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可行点,若在元处 d 满足巧(计<0,VC,(元)(可则d 是元处的可行下降方向。

最优化计算方法试题

最优化计算方法试题

最优化计算方法试题
一、(20分)解释下列概念:
(1)凸集,凸规划;
(2)线性规划的基和基本解;
(3)无约束优化算法的下降搜索方向,举出两种搜索方向;
(4)约束最优化问题的可行解集合或容许解集合;
(5)共轭方向。

二、(10分)解答下列问题
三、(15分)写出下列线性规划的对偶形式,并用单纯形法求解原规划的最优解和最优值。

五、(10分)写出一维搜索0.618法的基本思想和算法步骤或框图。

六、(15分)分别利用外点罚函数法和内点罚函数法求解非线性规划
七、(15分)设A为n阶对称正定矩阵,
(1)写出A共轭向量组的定义;
(2)并证明该向量组必为线性无关向量组;
八、(15分)简述DFP算法的优缺点;并证明矩阵
满足拟牛顿方程。

最优化方法试卷及答案5套.docx

最优化方法试卷及答案5套.docx

最优化⽅法试卷及答案5套.docx《最优化⽅法》1⼀、填空题:1. _______________________________________________________ 最优化问题的数学模型⼀般为:_____________________________________________ ,其中___________ 称为⽬标函数,___________ 称为约束函数,可⾏域D可以表⽰为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。

2.设f(x)= 2⽄+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿⽅向d的⼀阶⽅向导数为___________ ,⼏何意义为_____________________________________ ,⼆阶⽅向导数为____________________ ,⼏何意义为_____________________________3.设严格凸⼆次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中⼦(兀)为严格凸函数,D 是凸集)的最优解是唯⼀的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可⾏点,若在元处 d 满⾜巧(计<0,VC,(元)(可则d 是元处的可⾏下降⽅向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《最优化方法》复习题
一、简述题
1、怎样判断一个函数是否为凸函数.
(例如:判断函数212
2
212151022)(x x x x x x x f-=是否为凸函数)2、写出几种迭代的收敛条件.
3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M法及二阶段法).
见书本61页(利用单纯形表求解);
69页例题(利用大M法求解、二阶段法求解);4、简述牛顿法和拟牛顿法的
优缺点.简述共轭梯度法的基本思想.
写出Goldstein、Wolfe非精确一维线性搜索的公式。

5、叙述常用优化算法的迭代公式.
(1)0.618法的迭代公式:(1)(),
().k k k k k
k k k a b a a b aλτμτ=--??=-?
(2)Fibonacci法的迭代公式:111(),(1,2,,1)()
n k k
k k k n k n k k k k k n k F a b a F k n F a b a Fλμ-----? =-??
=-?
?=-??
L.(3)Newton一维搜索法的迭代公式:1
1k k k。

相关文档
最新文档