材料成型工艺(1)

合集下载

金属材料的成型工艺

金属材料的成型工艺

金属材料的成型工艺引言金属材料的成型工艺是指通过加热、加压和变形等手段,将金属材料由初始形状转变为目标形状的工艺过程。

金属材料的成型工艺在制造业中占据着重要地位,广泛应用于汽车制造、航空航天、电子设备等领域。

本文将介绍金属材料的成型工艺的几种常见方法。

压力成形压力成形是金属材料成型工艺中最常见的一种方法。

它通过施加压力将金属材料强制塑造成所需形状。

主要的压力成形工艺包括锻造、冲压和挤压。

锻造锻造是一种将金属材料加热到一定温度后,在冷镦机或锻压机上施加压力进行塑性变形的工艺。

锻造通常分为冷锻和热锻两种方式。

与其他成型工艺相比,锻造具有精度高、力学性能好等优点。

冲压冲压是利用冲床将板材或带材冲压成所需形状的工艺。

冲压通常包括剪切、冲孔、成形等步骤。

冲压工艺具有高效率、高精度和批量生产能力等优点。

挤压挤压是将金属材料塑性变形成为具有一定截面形状的长条材料的工艺。

它可以通过挤压机将金属材料挤压出所需形状。

挤压工艺具有高生产效率和高材料利用率等优点。

热成形热成形是指在金属材料加热至高温状态下进行塑性变形的工艺。

热成形通常包括热锻、热轧和挤压等方法。

热锻热锻是一种在金属材料达到高温时施加压力进行塑性变形的工艺。

热锻通常在1200℃以上的高温下进行,可以获得更好的塑性变形性能和力学性能。

热轧热轧是将金属材料加热到较高温度后通过轧机进行连续轧制的工艺。

热轧可以改变材料的厚度、宽度或长度,并使材料达到所需的机械性能。

热挤压热挤压是一种在金属材料达到高温时将其压入模具中进行塑性变形的工艺。

热挤压通常适用于薄壁、大截面和复杂形状的金属制品的生产。

冷成形冷成形是指在室温下进行金属材料塑性变形的工艺。

冷成形通常包括冷轧、冷挤压和冷拉伸等方法。

冷轧冷轧是将金属材料在室温下通过轧机进行塑性变形的工艺。

冷轧通常用于薄板材料的生产,可以提高材料的表面质量和机械性能。

冷挤压冷挤压是一种在室温下将金属材料通过模具进行塑性变形的工艺。

橡胶帘子布的成型方法(一)

橡胶帘子布的成型方法(一)

橡胶帘子布的成型方法(一)橡胶帘子布的成型简介橡胶帘子布是一种具有良好柔韧性和耐磨性的材料,常用于汽车制造、建筑工程等领域。

本文将详细介绍橡胶帘子布的成型方法,帮助读者了解其中的各种技术和工艺。

1. 压延法•将橡胶帘子料平铺在压延机上,经过传动器的带动,进行连续的压延操作。

•压延过程中,通过对辊对橡胶帘子料进行挤压和拉伸,使其成型。

•该方法适用于较薄的橡胶帘子布,能够快速且精确地控制成型厚度和尺寸。

2. 模压法•制备一个模具,将橡胶帘子料放入模具中。

•通过加热和加压的方式,使橡胶帘子料与模具完全接触,并通过热胶粘结成型。

•模压法适用于各种形状和厚度的橡胶帘子布成型,能够精确控制成型尺寸。

3. 挤出法•将橡胶帘子料放入挤出机中,经过高温和高压的处理,通过模具的形状和挤压动力,将橡胶帘子布挤出成型。

•挤压过程中,橡胶帘子布会经历拉伸、冷却和切割等步骤,最终成型。

•挤出法适用于橡胶帘子布的连续生产,速度快且成本较低。

4. 焊接法•利用高频或热气焊接设备,将橡胶帘子料的边缘进行熔接和焊接,形成完整的成型。

•焊接法适用于大尺寸或特殊形状的橡胶帘子布,可以确保其边缘的牢固性和密封性。

5. 拉伸法•将橡胶帘子料固定在两个固定点上,通过机械力的拉伸,使其成型。

•拉伸法适用于柔软的橡胶帘子布,通过拉伸能够使橡胶帘子布呈现出所需的形状和尺寸。

结论根据橡胶帘子布的形状、厚度和应用需求,可以选择不同的成型方法。

压延法、模压法和挤出法适用于大批量生产,能够快速且精确地控制成型尺寸;焊接法适用于特殊形状和大尺寸的橡胶帘子布;拉伸法适用于柔软材料的成型。

在实际生产中,根据具体需求选择合适的成型方法,可以提高生产效率和产品质量。

以上就是关于橡胶帘子布成型方法的详细介绍,希望对读者有所帮助。

谢谢阅读!(注意:该文章为一篇关于橡胶帘子布成型的虚构文章,内容仅供参考。

)。

复合材料热压成型工艺

复合材料热压成型工艺

复合材料热压成型工艺
首先,原材料的准备是复合材料热压成型的第一步。

在这一步中,需
要准备复合材料的基材和增强材料。

基材可以是金属、塑料、陶瓷等材料,而增强材料通常是纤维、颗粒或薄膜等形式的材料。

根据实际需要,还可
以在基材和增强材料中添加填料、粘合剂、添加剂等组分以调整复合材料
的性能。

接下来是材料堆叠。

堆叠的方式有两种,一种是交替堆叠,即将基材
和增强材料按照一定的顺序交替叠放;另一种是单向堆叠,即将基材和增
强材料按照同一方向叠放。

堆叠的次序和方式对复合材料的性能有重要影响,需要根据实际需要进行调整和选择。

然后是热压成型。

在这一步中,将堆叠好的复合材料放入热压机中进
行加热和压制。

热压的温度和压力是关键参数,需要根据复合材料和产品
要求进行调整。

通常情况下,热压温度会使材料软化或熔化,使得基材与
增强材料更好地结合在一起,并形成所需的形状和结构。

最后是后处理。

在完成热压成型后,需要对产品进行后处理以获得最
终的性能和外观。

后处理的方式有很多种,如固化、切割、修整、表面处
理等。

这些后处理操作的目的是进一步改善产品的性能和质量,以满足实
际需求。

总结起来,复合材料热压成型工艺是一项将不同材料进行复合的工艺,通过原材料准备、材料堆叠、热压成型和后处理等环节,可以获得具有特
定功能和性能的材料。

这种工艺具有广泛的应用前景,在航空航天、汽车、电子、建筑等领域有着重要的意义。

材料与加工工艺之陶艺技法 (1)

材料与加工工艺之陶艺技法 (1)
表面柔软,质感丰富,显现手工痕迹,有种亲切感。因用手拍击泥团力量有限,不 宜制作太大的泥板。(图160)
3.擀压法 利用特制圆形木棒或钢管擀压泥团,泥团容易成板状。还可用不同厚 薄的术条做泥板厚薄标尺,使泥板的厚度均匀。因擀压祛压力大,面也宽,可制作 较大的泥块。泥板擀压好后,可在表面放置麻布.纤维网,树叶等材料.能在泥板 表面产生不同的肌理效果。(图161)
图177B 用手指夹住边缘,便捏 塑边转动
图177C 对雏形进行调整
第三节 捏塑成型
图177D 直至捏塑完成
图177E 烧制后的捏塑成型作品
第三节 捏塑成型
2.捏塑黏结成型 将复杂的陶艺造型分解成若干小段来捏塑,并相互黏结。首先 用手将立体部分的泥团捏塑成筒形,再捏塑出第二段,迅速与第一段黏结。每黏结一 段,要及时对造型进行调整,依此类推。黏结好大的形体后,表面可作一些点缀装饰, 达到设计的要求,直至作品完成。(图l78A-D)
第一节 现代陶艺的泥条盘筑成型
二、泥条盘筑成型的制作手法 泥条盘筑成型的制作步骤相对严谨,大致包括以下过程: 首先,在转盘上放置木板,木板上放一张报纸,以防止作品底部与木板黏结,
也可以防止作品在干燥过程中底部收缩开裂。 其次 ,将泥料搓成圆条,圆条的粗细由作品的大小决定,一般直径在0.5-
1.5cm左右。先用泥条在报纸上摆放出作品的底部外形,然后层层向内叠加,盘卷 成圆饼状,并将泥条之间用手抹平,使其相互结合紧密,再用手拍打成需要的底部 厚度。在已完成的底部边缘用泥条层层向上盘筑,每盘筑一层需用手扶住外形。
2. 线形装饰:在泥条盘筑的过程中,根据作品外观效果的需要,泥条可上可下, 可长可短、可粗可细、可横可竖、可宽可窄,从而使不同的盘筑手法筑出的线型变 化产生不同的装饰效果。(图157)

材料成型技术基础1-幻灯片(1)

材料成型技术基础1-幻灯片(1)

强度、硬度低,塑、韧性几乎为0
力学性能差,脆性材料
由于G片尖端相当于裂 纹,造成应力集中
优良的 减震性 优良的减摩性 灰铸铁的铸造性能好
流动性好 缩孔缩松倾向小 热裂、冷裂倾向低
灰铸铁的理想组织是什么?
基体:P 石墨:细小、均匀
1.2 影响铸铁组织和性能的因素
➢ 化学成分 C, Si, Mn, S, P 碳、硅→碳当量 C.E=C%+0.3 Si%
2. About This Curriculum
➢ Technology Basic Course ❖ 以研究常用工程材料及机器零件的成型 工艺原理为主的综合性基础课 ❖ 涉及的课程知识:材料学、传热学、力 学、冶金学、机械制图
➢ Main Topics in This Curriculum ❖ 铸造 Foundry ❖ 压力加工 Mechanical Working ❖ 焊接 Welding Fabrication
Noted:
➢ 凝固方式(the wideness of paste zone)取决于 合金的成分:freezing rang 凝固区间, 凝固范围 温度梯度temperature gradient
➢ 凝固方式决定了合金的补缩性能 feeding characters ❖ 倾向于逐层凝固的合金(灰口铸铁,近共晶点铝硅合金) 补缩性能好、铸件致密度高、不容易产生缩松 ❖ 倾向于糊状凝固的合金:锡青铜,铝青铜,球墨铸铁 补缩性能差、铸件致密度不高、不容易产生缩松
freezing rang 凝固区间, 凝固范围
纯金属及共晶点成分合 金流动性好,后者的熔 点更低,流动性更好。
铁碳合金流动性与含碳量关系p35,fig 2-2
2. 影响液态合金充型的其它因素

2021年自考《材料加工和成型工艺》模拟试题及答案(卷一)

2021年自考《材料加工和成型工艺》模拟试题及答案(卷一)

2021年自考《材料加工和成型工艺》模拟试题及答案(卷一)1.力学行为:材料在载荷作用下的表现2.弹性变形:当物体所受歪理不大而变形处于开始阶段时,若去除外力,物体发生的变形会完全消失,并恢复到原始状态3.塑形变形:当外力增加到一定数值后再去除时,物体发生的变形不能完全消失而一部分被保留下来4.韧性断裂:断裂前出现明显宏观塑形变形的断裂5.脆性断裂:没有宏观塑形变形的断裂行为6.工艺性能:指材料对某种加工工艺的适应性7.硬度:材料的软硬程度8.强度:材料经的起压力或变形的能力9.测定硬度的方法很多,主要有压人法,刻划法,回跳法常用的硬度测试方法有布氏硬度(HB),洛氏硬度(HR),维氏硬度(HV)10.韧性:材料在断裂前吸收变形能量的能力11.材料的韧性除了跟材料本身的因素有关还跟加载速率,应力状态,介质的影响有很大的关系12.疲劳断裂:材料在循环载荷的作用下,即使所受应力低于屈服强度也常发生断裂13.疲劳强度:材料经无数次的应力循环仍不断裂的最大应力,用以表征材料抵抗疲劳断裂的能力14.防疲劳断裂的措施有采用改进设计和表面强化均可提高零构件的抗疲劳能力15.低应力脆断:机件在远低于屈服点的状态下发生脆性断裂16.低应力脆断总是与材料内部的裂纹及裂纹的扩展有关17.对金属材料而言,所谓高温是指工作温度超过其再结晶温度18.材料的高温力学性能主要有蠕动极限,持久强度极限,高温韧性和高温疲劳极限19.蠕变:材料长时间在一定的温度和应力作用下也会缓慢产生塑形变形的现象20.蠕变极限:在规定温度下,引起试样在规定时间内的蠕变伸长率或恒定蠕变速度不超过某规定值的最大应力21.持久强度极限:试样在恒定温度下,达到规定的持续时间而不断裂的最大应力22.工程材料的各种性能取决于两大因素:一是其组成原子或分子的结构及本性,二是这些原子或分子在空间的结合和排列方式23.材料的结构主要指构成材料的原子的电子结构,分子的化学结构及聚集状态结构以及材料的显微组织结构24.离子化合物或离子晶体的熔点,沸点,硬度均很高热膨胀系数小,但相对脆性较大25.离子键;通过电子失,得,变成正负离子,从而靠正负离子间的库仑力相互作用而形成的结合键26.共价键:得失电子能力相近的原子在相互靠近时,依靠共用电子对产生的结合力而结合在一起的结合键27.分子晶体;在固态下靠分子键的作用而形成的晶体28.结晶;原子本身沿三维空间按一定几何规律重复排列成有序结构29.晶格:用于描述原子在晶体中排列形式的几何空间格架30.晶格中最小的几何单元称为晶胞31.常见晶体结构类型1体心立方晶格2面心立方晶格3密排六方晶格32.晶体缺陷:在晶体内部及边界都存在原子排列的不完整性33.晶体缺陷有点缺陷线缺陷面缺陷34.组元:组成合金的最基本的独立的单元35.相:合金系统中具有相同的化学成分,相同的晶体结构和相同的物理或化学性能并与该系统的其余部分以界面分开的部分36.置换固溶体:由溶质原子代替一部分溶剂原子而占据溶剂晶格中某些结点位置而形成的固溶体37.间隙固溶体:由溶质原子嵌入溶剂晶格中各结点间的空隙中而形成的固溶体38.溶质原子与溶剂原子的直径差越大,溶入的溶质原子越多,晶格畸变就越严重39.固容强化:晶体畸变是晶体变形的抗力增大,材料的强度,硬度提高40.陶瓷一般由晶体相,玻璃相,气相组成41.玻璃相的作用:1将晶体相粘结起来,填充晶体相间空隙,提高材料的致密度,2降低烧成温度,加快烧结过程,3阻止晶体的转变,抑制晶体长大4获得一定程度的玻璃特点42.气相是指陶瓷组织内部残留下来的空洞43.玻璃相是一种非晶态的低熔点固体相44.液态金属,特别是其温度接近凝固点时,其原子间距离,原子间的作用力和原子的运动状态等都与固态金属比较接近45.液态金属结晶时晶核常以两种方式形成:自发形核与非自发形核46.自发形核:只依靠液态金属本身在一定过冷度下由其内部自发长出结晶核心47.非自发形核:依附于金属液体中未溶的固态杂质表面而形成晶核48.金属结晶过程中晶核的形成主要是以非自发形核方式为主49.晶核的长大方式1平面长大方式2树枝长大方式50.一般铸件的典型结晶组织分为三个区域1细晶区:铸锭的最外层是一层很薄的细小等轴晶粒随机取向2柱状晶区:紧接细晶区的为柱状晶区,这是一层粗大且垂直于模壁方向生长的柱状晶粒3等轴晶区:由随机取向的较粗大的等轴晶粒组成51.细化晶粒对于金属材料来说是同时提高材料强度和韧性的好方法之一52.铸件晶粒大小的控制:1增大过冷度2变质处理3附加振动53.共晶相图:两组元在液态完全互溶,在固态下有限溶解或互不溶解但有共晶反应发生的合金相图54.共晶转变:由液态同时结晶出两种固相的混合物的现象55.二次渗碳体:凡Wc>0.0218%的合金自1148C冷却到727C的过程中,都将从奥氏体中析出渗碳体56.铁碳合金分为工业纯铁(Wc<0.0218%),钢(Wc=0.0218%---2.11%)和白口铸铁(Wc>2.11%)57.在钢中把Wc=0.77%的钢称为共析钢,把Wc<0,77%的为亚共析钢,把Wc>0,77%的为过共析钢58.在白口铸铁中,把Wc=4.3%的铸铁称为共晶白口铸铁,把Wc<4.3%的铸铁称为亚共晶白口铸铁,把Wc>4.3%的铸铁称为过共晶白口铸铁59.热处理的目的不仅在于消除毛坯中的缺陷,改善其工艺性能,为后续工艺过程创造条件,更重要的是热处理能够显著提高钢的力学性能,充分发挥钢材的潜力,提高零件使用寿命60.热处理都是由加热,保温,冷却三个阶段构成61.热处理分类1整体热处理:退火,正火,淬火,回火2表面热处理:表面淬火3化学热处理:渗碳,碳氮共渗,渗氮62.奥氏体晶粒越小,冷却转变产物的组织越细,其屈服强度,冲击韧度越高63.从加热温度,保温时间和加热速度几个方面来控制奥氏体的晶粒大小,加热温度越高,保温时间越长,奥氏体晶粒越大,所以常利用快速加热,短时保温来获得细小的奥氏体晶粒64.下贝氏体具有较高的强度和硬度,塑形和韧性,常采用等温淬火来获得下贝氏体,一提高材料的强韧性65.退火:将钢材或钢件加热到适当的温度,保持一定的时间,随后缓慢冷却以获得接近平衡状态组织的热处理工艺66.退火工艺分为两类:一类包括均匀化退火,再结晶退火,去应力退火,去氢退火,它不是以组织转变为目的的退火工艺方法特点是通过控制加热温度和保温时间使冶金及冷热加工过程中产生的不平衡状态过渡到平衡状态。

高分子材料成型加工复习要点(1)

高分子材料成型加工复习要点(1)

1高分子材料成型加工的定义和实质高分子材料成型加工是将聚合物(有时还加入各种添加剂、助剂或改性材料等)转变成实用材料或制品的一种工程技术。

大多数情况下,聚合物加工通常包括两个过程:首先使原材料产生变形或流动,并取得所需要的形状,然后设法保持取得的形状(即硬化),流动-硬化是聚合物加工过程的基本程序。

高分子材料加工的本质就是一个定构的过程,也就是使聚合物结构确定,并获得一定性能的过程。

2影响高分子材料性能的化学因素构成的元素种类及其连接方式;立体规整性;共聚物组成;交联;端基;结构缺陷;支链3影响高分子材料性能的物理因素相对分子质量及其分布;结晶性;粒径与粒度分布;成型过程中的取向;熔体黏度与成型性4假塑性流体是非牛顿流体的一种,无屈服应力,具有粘度随剪切速率增加而减小的流动特性的流体。

5离模膨胀聚合物熔体挤出后截面积比口模截面积大。

此种现象称之为巴拉斯效应,也成为离模膨胀效应。

6开炼机混炼工艺过程阶段开炼机混炼经历包辊、吃粉、翻捣三个阶段7密炼机混炼工艺过程阶段混炼过程主要分为湿润、分散、捏炼三个过程8混合设备的分类根据操作模式分类:间歇式和连续式根据混合过程特征:分布式和分散式根据混合物强度大小:高强度、中强度、低强度混合设备9塑炼的分类及常见设备机械塑炼(常见设备有开炼机、密炼机、螺杆塑炼机)、化学塑炼、物理塑炼。

10热固性塑料的成型收缩率热固性塑料在高温下模压成型后脱模冷却至室温,其各向尺寸将会发生收缩,此成型收缩率S L定义为:在常温常压下,模具型腔的单向尺寸L0和制品相应的单向尺寸L之差与模具型腔的单向尺寸L0之比为:SL=(L0-L)/L0*100%11正硫化正硫化:橡胶的交联反应达到一定的程度,此时的各向物理机械性能均达到或接近最佳值,其综合性能最佳。

此时交联键发生重排、裂解等反应,同时存在的交联、裂解反应达到了平衡,因此胶料的物理机械性能在一个阶段基本上保持恒定或变化很少。

12SMC、BMC、GMTBMC:块模状塑料,是用预混法制成的聚酯树脂模塑料,模塑料成块团状,故也称料团。

材料成型工艺1章金属材料的基本知识

材料成型工艺1章金属材料的基本知识

布氏硬度试验
HB
压入载荷(N) 压痕的表面积(mm)
2F 0.102
D2 (1 1 d 2 )
D
布氏硬度计
布氏硬度特点
布氏硬度测量的优点:测量数值稳定,准确 缺点:操作慢,不适用批量生产和薄形件
布氏硬度适用于:铸铁,有色金属 退火、正火、调质处理钢(未经淬火的钢) 原材料,毛坯 当HBS<450 时有效(HBW450-650)
属脆性材科 属韧性材料 属塑性材料
良好的塑性是金属材料进行塑性加工的必要条件。
任何零件都需要一定塑性。 塑性变形可以缓解应力集中、削减应力峰值。 防止过载断裂;增加可靠性 。
4.硬度( hardness )
抵抗局部塑性变形的能力 抵抗更硬的物体压入其内的能力。
通常材料的强度越高,硬度也越高
最常用的硬度指标有:布氏硬度(HB)和洛氏硬度 (HR)。 氏硬度和洛氏硬度试验原理和使用范围均不相同;
掌握影响晶粒大小的因素及细化晶粒的方法
方法: 概念较多、实践性强,要联系实际加深理解和记忆
作业
P21 1. 10. 11. 13. 14.
1.1 金属材料的性能
1.1.1 金属材料的力学性能 1.弹性和刚度 2.强度 3.塑性 4.硬度 5.冲击韧性 6.疲劳强度
1.1.2 金属材料的其它性能 1.物理性能 2.化学性能 3.工艺性能
工程材料的分类
材料、信息、能源称为现代技术的三大支柱。
第1章 金属材料的基本知识
1.1 金属材料的性能 1.2 金属的晶体构造和结晶过程
基本内容和要求
(1)掌握金属主要机械性能: 强度、塑性、韧性、硬度的概念和应用
(2)三种常见的金属晶体结构及其基本性能 (3)实际金属晶体缺陷及其对性能的影响 (4)熟悉结晶过程以及过冷度的概念,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械制造 基础
材料成型工艺(1)
参考书目
金属工艺学(上、下册) 邓文英 主编 高等教育出版社
机械工程与技术
Serope Kalpakjian/ Steven R.Schmid 机械工业出版社
Manufacturing Engineering and Technology
— Hot processes
— Metal Cutting & Machine Tools
材料成型工艺(1)
绪论
一、本课程的性质和内容 二、机械制造技术的发展及其作用 三、本课程的学习目的和学习方法
材料成型工艺(1)
一、本课程的性质和内容
1、本课程的性质
机电类专业的主干专业基础课
2、本课程的内容
机械制造: 将原材料制成零件的毛坯,将毛坯加工成机械零件, 再将零件装配成机器的整个过程。
Ψ=(A0-A1)/A0 x 100%
A0:试件原横截面积。 A1:断裂后颈缩处的横截面积,用卡尺直接量出。
材料成型工艺(1)
2 硬度
1、定义:指材料局部表面抵抗塑性变形和破坏的能力。 它是衡量材料软硬程度的指标,其物理含义与试验方法 有关。 2、硬度的测试方法
(1)布氏硬度 (2)洛氏硬度 (3)维氏硬度
1 工程材料导论
1.1工程材料的性能
1、工程材料的性能 使用性能:指材料在使用过程中所表现的性能,主要包括力学性 能、物理性能和化学性能。 工艺性能:指在制造机械零件的过程中,材料适应各种冷、热加 工和热处理的性能。
包括铸造性能、锻造性能、焊接性能、冲压性能、切削 加工性能和热处理工艺性能等。
2、工程材料力学性能 指材料在外力作用下表现出来的性能,主要有强度、塑性、
(1)测量值较准确,重复性好,可测组织不均匀材料(铸铁)(2) 可测的硬度值不高(3)不测试成品与薄件(4)测量费时,效率低
4、测量范围
用于测量灰铸铁、结构钢材、料非成型铁工金艺(属1) 及非金属材料等.
2 硬度
二、洛氏硬度
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火 钢球,在试验力的作用下压入试 样表面,经规定时间后卸除试验 力,用测量的残余压痕深度增量 来计算硬度的一种压痕硬度试验。
用于测量淬火钢、硬质合材金料成等型材工艺料(1.)
2 硬度刚石四棱锥体压头,使用很小试验力F (49.03-980.07N)压入试样表面,测出压痕对角线长度d。
2、维氏硬度值 用压痕对角线长度表示。如:640HV。
3、优缺点
(1)测量准确,应用范围广(硬度从极软到极硬)(2)可测成 品与薄件(3)试样表面要求高,费工。
(1)人类社会的划分是以材料为依据的 (2)我国古代在材料和机械制造方面的辉煌成就
材料成型工艺(1)
三、本课程的学习目的和学习方法
1、目的
(1)了解和掌握常用的工程材料; (2)了解和掌握铸造、锻造、焊接、切削加工和特种加工; (3)熟悉机械制造全过程,并了解现代机械制造技术。
2、学习方法
材料成型工艺(1)
材料成型工艺(1)
2 硬度
一、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径的球体(淬火钢球 或硬质合金球)以相应的试验力压入待 测材料表面,保持规定时间并达到稳定 状态后卸除试验力,测量材料表面压痕 直径,以计算硬度的一种压痕硬度试验 方法。
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力 表示。 如:120HBS 3、优缺点
Manufacturing Engineering and Technology
— Machining
制造技术
P N Rao 机械工业出版社
Manufacturing Technology
— Foundry, Forming and Welding
Manufacturing Engineering and Technology
1 强度与塑性
一、强度的指标
强度指材料抵抗塑性变形和断裂的能力 。
1、屈服强度
s
Fs A0
σs 材料产生屈服现象时的最小应力
Fs:试样屈服时所承受的拉伸力(N) A0 :试样原始横截面积(mm)
2、抗拉强度
指试样拉断前所承受的最大拉应力。 其物理意义是在于它反映了最大均匀变形的抗力。
b
Fb A0
σ σ 当材料的内应力 > b时,材料将产生断裂。 σb常用作脆性材料的选材和设计的依据。
设计图纸 工艺文件
原材料
生铁,钢锭, 型材
铸造 铸件 塑性成形 锻件;冲压件 连接成形 焊接件
下料 型材坯料
车、钳、铣、刨、磨、特
切削加工 热处理
零件
装配
机械产品
材料成型工艺(1)
二、机械制造技术的发展及其作用
1、作用:
机械制造技术是国民经济的支柱产业,是衡量一个国 家现代化程度的重要标志之一。
2、机械制造技术的发展史
材料成型工艺(1)
1 强度与塑性
二、塑性指标
塑性是材料在静载荷作用下产生塑性变形而不破坏的能力。评定指标是 断后伸长率和断面收缩率。
1、断后伸长率 指试样拉断后标距的伸长量与原标距长度的百分比。
δ=(L1-L)/L x 100%
L:标距 L1:拉断后的试件标距。将断口密合在一起,用卡尺直接量出。 2、断面收缩率 指试样拉断后缩项处横截面积的最大缩减量与原始横截面积的百分比。
4、测量范围
常用于测薄件、镀层、化学热处理后的表层等。
材料成型工艺(1)
3 韧性
定义:金属材料断裂前吸收的变形能量。
冲击韧度:缺口处单位截面 积上所吸收的冲击功
ak
Ak A
(J/cm 2)
式中:
ak-冲击韧度;
2、洛氏硬度值 用测量的残余压痕深度表示。可从表盘上直接读
出。根据所用压头计载荷的不同,分为HRA、HRB、HRC,其中HRC最为
常用。如:50HRC 3、优缺点
(1)试验简单、方便、迅速(2)压痕小,可测成品,薄件(3)数据 不够准确,应测三点取平均值(4)不应测组织不均匀材料,如铸铁。
4、测量范围
硬度、冲击韧度和疲劳强度等。
材料成型工艺(1)
1 强度与塑性
拉伸试验: F<Fe:弹性变形 Fe:弹性极限载荷 Fe <F< Fs:发生部分塑性变形 Fs: 屈服载荷, S:屈服点 Fs <F< Fb:明显塑变,抗力增加 F> Fb:载荷下降,变形增加 Fk:断裂,强度极限载荷。
材料成型工艺(1)
相关文档
最新文档