微积分基础知识

合集下载

微积分知识点简单总结

微积分知识点简单总结

微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。

导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。

导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。

2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。

高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。

3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。

微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。

微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。

4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。

不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。

不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。

5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。

定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。

6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。

第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。

第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。

7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。

微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。

微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。

(word完整版)高中微积分基本知识

(word完整版)高中微积分基本知识

高中微积分基本知识第一章、极限与连续一、数列的极限1. 数列定义:按着正整数的顺序排列起来的无穷多个数X!,K,X n丄叫数列,记作x n,并吧每个数叫做数列的项,第n个数叫做数列的第n项或通项界的概念:一个数列X n ,若M 0,s.t对nN*,都有X n M,则称人是有界的:若不论M有多大,总m N*,s.t x m M,则称x n是无界的若a x n b,则a称为x n的下界,b称为x n的上界X n有界的充要条件:x n既有上界,又有下界2. 数列极限的概念定义:设X n为一个数列,a为一个常数,若对0,总N , st当n N时,有x n a 则称a是数列x n的极限,记作lim x n a或x n a(n )n数列有极限时,称该数列为收敛的,否则为发散的几何意义:从第N 1项开始,x n的所有项全部落在点a的邻域(a ,a )3. 数列极限的性质①唯一性②收敛必有界③保号性:极限大小关系数列大小关系(n N时)二、函数的极限1. 定义:两种情形①x X o :设f (x)在点X o处的某去心邻域内有定义,A为常数,若对0,0,s.t当0 x x0时,恒有f (x) A 成立,则称f (x)在x x0时有极限A记作lim f (x) A或 f (x) A(x x°)X X0几何意义:对0, 0, s.t当0 X X o 时,f(x)介于两直线y A单侧极限:设f(x)在点x o处的右侧某邻域内有定义,A为常数,若对0 ,0 , s.t当0 x x0时,恒有f (x) A 成立,称f (x)在x0处有右极限A,记作lim f (x) A或f(x°) Ax xlim f (x) A的充要条件为:f(x°) f(x°) = Ax x垂直渐近线:当lim f (x) 时,x x0为f (x)在x0处的渐近线X x 0②x :设函数f (x)在x b 0上有定义,A为常数,若对0,X b, s.t 当x X时,有| f (x) A 成立,则称f (x)在x 时有极限A,记作lim f (x) A 或f (x) A(x )xlim f (x) A 的充要条件为:Jim f (x) Jim f (x) A水平渐进线:若lim f (x) A或lim f (x) A,则y A是f (x)的水平渐近线x x2. 函数极限的性质:①唯一性②局部有界性③局部保号性(②③在当0 |x x0时成立)三、极限的运算法则1. 四则运算法则设f(x)、g(x)的极限存在,lim f(x) A,lim g(x) B 贝V①lim f(x) g(x) A B②lim[ f (x)g(x)] AB③lim - (当B 0 时)g(x) B④lim cf (x) cA ( c为常数)⑤lim[f(x)]k A k( k为正整数)2. 复合运算法则设 y f [ (x)],若 lim (x) a ,则 lim f[ (x)] f (a)xx x可以写成lim f[ (x)] f[lim (x)](换元法基础)XxXx四、极限存在准则及两个重要极限1 •极限存在准则①夹逼准则设有三个数列x n, y n, z n,满足y n X n Z n ,②单调有界准则lim y nnlimz nna 则lim X n an有界数列必有极限3.重要极限sin x ① lim1 ② lim 1 1 Xe1或lim 1 x ex0 x x x x 0五、无穷大与无穷小1.无穷小:在自变量某个变化过程中lim f(x) 0,则称f (x)为X在该变化过程中的无穷小探若f(X)0,则f(X)为x在所有变化过程中的无穷小若f(X),则f(x)不是无穷小性质:1.有限个无穷小的代数和为无穷小2. 常量与无穷小的乘积为无穷小3. 有限个无穷小的乘积为无穷小4. 有极限的量与无穷小的乘积为无穷小5. 有界变量与无穷小的乘积为无穷小定理:lim f(x) A的充要条件是f(x) A (x),其中(x)为x在该变化中过程中的无穷小无穷小的比较:(趋于0的速度的大小比较)(x), (x),为同一变化过程中的无穷小若lim--c (c 0常数)则是的同阶无穷小(当c 1时为等价无穷小)若lim- kc ( c 0常数)则是的k阶无穷小若lim- -0 则是的高阶无穷小常用等价无穷小:(x 0) x: sinx: tanx: arcsinx: arctanx: In(1 x) : e x 1 ;1 cosx: ; (1 x) 1: x; a x 1 : xlna22•无穷大:设函数f (x)在x0的某去心邻域内有定义。

高中数学微积分知识点

高中数学微积分知识点

高中数学微积分知识点一、导数的概念与运算。

1. 导数的定义。

- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。

- 函数y = f(x)的导数f^′(x),y^′或(dy)/(dx),f^′(x)=limlimits_Δ x→0(f(x + Δ x)-f(x))/(Δ x)。

2. 导数的几何意义。

- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。

- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。

3. 基本初等函数的导数公式。

- C^′=0(C为常数)- (x^n)^′=nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′=-sin x- (a^x)^′=a^xln a(a>0,a≠1)- (e^x)^′=e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)(x>0)4. 导数的运算法则。

- (u± v)^′=u^′± v^′- (uv)^′=u^′v + uv^′- ((u)/(v))^′=frac{u^′v - uv^′}{v^2}(v≠0)二、导数的应用。

1. 函数的单调性。

- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,则y = f(x)在这个区间内单调递增;如果f^′(x)<0,则y = f(x)在这个区间内单调递减。

2. 函数的极值。

- 设函数y = f(x)在点x_0处可导,且在x_0处取得极值,那么f^′(x_0) = 0。

微积分的基础知识与运算

微积分的基础知识与运算

微积分的发展历程
微积分作为现代数学中重要的分支,在牛顿、莱 布尼茨等数学家的努力下逐渐发展成熟。它的应 用领域广泛,是解决现实问题的重要工具之一。
● 05
第五章 链式法则与微分中 值定理
链式法则的概念
链式法则描述了复合 函数的导数计算规则, 对于求解复杂函数的 导数具有重要作用。 通过链式法则,我们 可以更有效地计算复 合函数的导数,提高 求导的效率。
物理学
近似计算物理现象 解决实际问题
工程学
估算工程参数 优化设计方案
微分方程
是求解微分方程的重要工 具
积分中值定理的 概念
积分中值定理描述函 数在某一区间上的平 均值性质,其中有柯 西中值定理、勒贝格 积分中值定理等,为 理解函数性质提供重 要依据。
积分中值定理的应用
性质证明
用于证明函数的 性质
学习微积分的建议
坚持练习
掌握基本概念和 方法
理解应用场 景
将理论知识应用 到实践中
多练习计算
熟练运用微积分 技巧
多与他人交 流
加深理解
拓展学习
学习高阶微积分
掌握不定积分、定积分等 高级概念 深入理解微积分的推导和 应用
探索多元微积分
理解多元函数概念 学习多元微分、多元积分 等内容
应用微积分解决问题
计算复杂图形的面积
03 速度与加速度
通过微积分求解物体的运动特性
微积分的数值计算
复化梯形法
求定积分的数值 近似
牛顿-拉夫逊 插值
曲线的插值与逼 近
预处理法
提高数值解的精 度
龙贝格积分 法
加速定积分的收 敛速度
感谢观看
THANKS
微分中值定理的应用

大学数学微积分基础知识

大学数学微积分基础知识

大学数学微积分基础知识微积分作为数学的一门重要分支,是大学数学必修的一门课程。

掌握微积分的基础知识对于理解和应用数学都具有重要意义。

本文将介绍微积分的基础知识,包括导数、积分和微积分的应用。

一、导数导数是微积分的基本概念之一,它描述了函数在某一点处的变化率。

定义上,如果函数f(x)在点x处可导,则它的导数f'(x)表示函数在该点的瞬时变化率。

导数有两种常见的表示方法:1. 函数f(x)的导数可以用极限的形式表示为:f'(x) = lim (h→0)[f(x+h) - f(x)] / h2. 也可以使用微分符号表示为:dy/dx = f'(x)导数有几个重要的性质:1. 导数可以用来求函数的切线斜率。

在点x0处函数的导数f'(x0)即为切线的斜率。

2. 导数可以判断函数的增减性。

当导数f'(x)>0时,函数在该点处增加;当导数f'(x)<0时,函数在该点处减小。

3. 导数还可以判断函数的凹凸性。

当导数f'(x)递增时,函数凹向上;当导数f'(x)递减时,函数凹向下。

二、积分积分是导数的逆运算,它是微积分的另一个基本概念。

积分可以理解为对函数的一个区间上所有微小变化的总和。

积分的定义有两种常见的方法:1.不定积分,也称原函数。

对于函数f(x),它的不定积分可以表示为∫f(x)dx。

计算不定积分的过程称为积分计算。

2.定积分,也称为区间积分。

对于函数f(x),它的定积分可以表示为∫abf(x)dx,其中a和b分别为积分的上下限。

定积分可以用来计算曲线下的面积。

积分有一些重要的性质:1. 积分的线性性质:∫[af(x) + bg(x)]dx = a∫f(x)dx + b∫g(x)dx2. 积分的区间可加性:∫abf(x)dx + ∫bcf(x)dx = ∫acf(x)dx3. 牛顿—莱布尼茨公式:如果F(x)是f(x)的一个原函数,那么∫f(x)dx = F(x) + C,其中C为常量。

微积分笔记整理

微积分笔记整理

微积分笔记整理以下是一份微积分笔记整理的示例,涵盖了微积分的一些关键概念和公式:一、导数(Derivative)1. 定义:函数在某一点的切线斜率。

2. 公式:$(f(x+h)-f(x))\div h$(当$h$趋近于$0$时)。

3. 导数的意义:- 函数的变化率。

- 曲线的切线斜率。

- 判断函数的单调性。

二、微分(Differential)1. 定义:函数在某一点的切线增量。

2. 公式:$df=f^\prime(x)dx$。

3. 微分的意义:- 切线的近似值。

- 函数的增量。

三、积分(Integral)1. 定义:函数在某个区间上的面积。

2. 公式:$\int_{a}^{b}f(x)dx$。

3. 积分的意义:- 函数的面积。

- 函数的平均值。

- 求导的逆运算。

四、微积分基本定理(Fundamental Theorem of Calculus)1. 牛顿-莱布尼茨公式(Newton-Leibniz Formula):若$F^\prime(x)=f(x)$,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$。

2. 不定积分(Indefinite Integral):函数的原函数族。

3. 定积分(Definite Integral):函数在某个区间上的确定积分值。

五、常见函数的导数和积分1. 常数函数:导数为$0$,积分为$cx$($c$为常数)。

2. 线性函数:导数为常数,积分为$cx+d$($c$、$d$为常数)。

3. 指数函数:导数为指数本身,积分为指数加$1$的反函数。

4. 对数函数:导数为$\frac{1}{x}$,积分为$x\ln|x|+c$。

5. 三角函数:正弦函数的导数为余弦函数,余弦函数的导数为负的正弦函数;积分根据不同的三角函数有不同的公式。

高中微积分重要知识点总结

高中微积分重要知识点总结

高中微积分重要知识点总结一、函数与极限1. 函数概念:函数是一种特殊的映射关系,它将一个自变量映射为一个因变量。

2. 函数的性质:奇函数、偶函数、周期函数等。

3. 极限概念:当自变量趋于某一值时,函数的取值趋于一个确定的常数。

4. 极限的性质:唯一性、有界性、保号性等。

5. 极限的计算方法:无穷小替换法、洛必达法则、泰勒展开式等。

二、导数与微分1. 导数的概念:函数在某一点的变化率。

2. 导数的性质:可加性、可积性、伊尔米特公式等。

3. 导数的计算方法:基本导数公式、复合函数求导、隐函数求导、参数方程求导等。

4. 微分的概念:函数值的变化量与自变量的变化量的比值。

5. 微分的性质:可加性、可积性、微分中值定理等。

三、微分中值定理与应用1. 微分中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理等。

2. 泰勒公式及应用:泰勒展开式、泰勒公式的应用。

3. 凹凸性与拐点:二阶导数的概念、凹凸性的判定、拐点的判定。

四、不定积分与定积分1. 不定积分:初等函数的不定积分、换元积分法、分部积分法、有理函数的积分、三角函数的积分等。

2. 定积分:黎曼积分的概念、定积分的性质、定积分的计算方法、定积分的应用。

五、微分方程1. 微分方程的基本概念:微分方程的定义、微分方程的分类、微分方程的初值问题等。

2. 微分方程的解法:可分离变量法、齐次微分方程、常数变易法、一阶线性微分方程等。

3. 高阶微分方程:高阶微分方程的基本概念、高阶微分方程的解法、特解与通解等。

六、级数与收敛1. 级数的概念:无穷级数、收敛级数、发散级数、等比级数、调和级数等。

2. 收敛的判定:级数的收敛判定、级数的比较判别法、级数的积分判别法、级数的根值判别法等。

3. 级数的运算:级数的加法、级数的乘法、级数的分解、级数的换序等。

综上所述,高中微积分的重要知识点包括函数与极限、导数与微分、微分中值定理与应用、不定积分与定积分、微分方程以及级数与收敛等内容。

高等数学微积分知识整理

高等数学微积分知识整理

f -1 f f f n nn n高等数学微积分知识整理第一章 极限与连续一、函数1、函数的定义与要素(定义域、对应法则;函数相等的条件)2、函数的性质:单调性,奇偶性,周期性,有界性 *单调性的定义(以递增为例):∀x 1 , x 2 ∈ D f ,若x 1<x 2时f (x 1 ) ≤ f (x )在D f 上严格单调递增。

f (x 2 ),则f (x )在D f 上单调递增;将≤ 改为<,则*有界的定义: ∃M >0,对于∀x ∈ A ⊆ D f ,都有| f (x ) |≤ M ,则f (x )在A 上有界。

(f (x )≥m ∈R ,则 f (x )下有界;反之则上有界。

只有既上有界又下有界的函数才是有界函数。

)3、函数的运算:四则运算、复合运算、反函数*题型:判断某个函数由哪些基本初等函数复合而成。

*反函数存在的可能情况:①y 与 x 一一对应;②f (x )是某区间上的严格单调函数 (反函数的单调性与原来的函数相同)* D = R ;当x ∈ D 时,f -1 ( f (x )) = x ;当x ∈ R 时,f ( f -1 (x )) = x 。

4、初等函数:包括 6 大基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数)以及它们的有限次四则、复合运算构成的函数。

二、数列的极限1、数列的定义及表示方法2、数列的性质:单调性、有界性3、数列极限的定义:ε-N 语言(存在性命题要学会寻找充分条件,即增加对 N 的限制,从而找到 N ;绝对值不等式与不等式放缩也很重要)4、极限的四则运算5、无穷小量的性质(1) 若lim a = A ,则{a - A }是无穷小量。

(一种证明极限的方法) n →∞(2)有限个无穷小量相加、相乘还是无穷小量。

(3)无穷小量乘以有界量还是无穷小量。

6、收敛数列的性质 (1) 收敛数列必然有界 (2) 收敛数列的任一子列与该数列收敛于同一极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D : ( ,)
奇函数,
Hale Waihona Puke 有界函数,22双曲函数常用公式
sh( x y ) shxchy chxshy ;
ch( x y ) chxchy shxshy ;
ch2x sh2x 1;
sh2x 2shxchx ;
ch2x ch2 x sh 2 x.
23
几何解释:
a x 2 x1 x N 1
2
a
xN 2
a
x3
x
当n N时, 所有的点 xn都落在 [a , a ] 内, 只有有限个 (至多只有N 个) 落在其外.
34
( 1)n1 观察数列 {1 } 当 n 时的变化趋势. n
n=5 n=7
( 1) n1 xn 1 . n
计算与分析的能力
了解和使用现代数学语言和符号的能力
使用数学软件学习和应用数学的能力
8
第0章
基本知识
一、基本概念
1.集合: 具有某种特定性质的对象的全体.
组成集合的事物称为该集合的元素.
a M, a M, A { a1 , a 2 , , a n }
M { x P( x) }
18
可定义复合
注: 复合函数
代入法
设 y u, u 1 x 2 ,
y 1 x2
复合函数可以由两个以上的函数经过复合 构成.
x 例如 y cot , 2
y u,
x u cot v , v . 2
19
初等函数
定义: 由基本初等函数经过有限次四则运算及有限次复合 运算所构成并可用一个式子表示的显函数,称为初等函数。 例:
y a0 a1 x an x n 为初等函数 y a0 a1 x an x n 不是初等函数
x y x 1 x, y x,
y e sin x 1
x 2
为初等函数
x0
x0 x0 x0
不是初等函数
可表为 y
1. 分析基础: 函数 , 极限, 连续 2. 微积分学: 一元微积分 (上册) 多元微积分 (下册) 3. 向量代数与空间解析几何 4. 无穷级数 5. 常微分方程
2
三、如何学习高等数学 ?
1. 认识高等数学的重要性, 培养浓厚的学习兴趣.会运用 数学能力。
一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
11
2.函数类别: 显函数 y=f(x) 隐函数 F(x,y)=0 参量函数 初等代数函数(只含代数运算显函数) 分段表达函数 单值函数 多值函数
基本初等函数(幂函数,指数函数,对数函数,三角函数 和反三角函数).
12
几个特殊的函数举例 (1) 符号函数
1 y
1 当x 0 y sgn x 0 当x 0 1 当x 0
例2 设f(x)在R上定义,证明f(x)可分解为一个奇函数与 一个偶函数的和。 证明:设 g( x ) f ( x ) f ( x ), h( x ) f ( x ) f ( x )
显然 g(x)是偶函数,h(x)是奇函数,而
g( x ) h( x ) f ( x) 2
29
o
x
-1
x sgn x x
13
(2) 取整函数 y=[x]
[x]表示不超过 x 的最大整数 4 3 2 1 o
y
-4 -3 -2 -1
1 2 3 4 5 x -1 -2 -3 -4
阶梯曲线
14
(3) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
y
1
31
2) 函数 对称 .
与其反函数 的图形关于直线
y yx
Q(b, a) y f (x)
例如 ,
指数函数 y e x , x ( , ) 对数函数 它们都单调递增, 其图形关于直线
o
x
互为反函数 , 对称 .
32
例1 证明若函数 y = f (x)是奇函数且存在反函数
x = f
y f ( x) , x D , 且有区间 I D .
B f ( x) A
称 f (x) 为有界函数. A为上界,B为下界。 (2) 单调性
x1 , x2 I , x1 x2 时,
当 单调增函数 ;
y
若 f ( x1 ) f ( x2 ) , 称 f (x) 为 I 上的 若 f ( x1 ) f ( x2 ) , 称 f (x) 为 I 上的

e x
y ch x
ch x
双曲余弦
o
x
28
例1
2 判断函数 y f ( x ) ln( x 1 x ) 的奇偶性.
解: f ( x ) ln( x 1 ( x ) 2 )
ln( x 1 x 2 ) f ( x )
∴ f(x)是奇函数.
第0章 基本知识
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 , 有了变数 , 微分和积分也就立刻成
恩格斯
为必要的了.
1
二、主要内容
设有函数链
— 复合映射的特例 ① ②
y f (u ), u D1

且 g ( D) D 1
称为由①, ②确定的复合函数 , u 称为中间变量. 注意: 构成复合函数的条件 g ( D) D 1 不可少.
例如, 函数链 : y arcsinu , 函数 但函数链 y arcsin u , u 2 x 2 不能构成复合函数 .
x , 故为初等函数.
20
2
双曲函数与反双曲函数
双曲函数
e e 双曲正弦 shx 2
x x
y chx
D : ( ,),
奇函数.
1 x y e 2 1 x y e 2
y shx
21
ex e x 双曲余弦 chx 2
D : ( ,),
偶函数.
sinh x e x e x 双曲正切 thx x cosh x e e x
y2 1
2 解: 当x0时,y1, y x 1 x
当x<0时,y<1,x=y-1,
x 2 1, x 1 综上, 得反函数 y . 33 x 1, x1
lim xn a 数列的极限(P6): n 数列xn当n无限变大时, xn能无限制的接近唯 一确定常数a
n=11
n=20
35
数列极限的 -N定义(P261): 0,N 0,当n N时,xn落在[a , a ]内
即有 xn a lim xn a. n 性质:设 lim an A, lim bn B, 则
n n
(1) lim[an bn ] A B;
2.反双曲函数
反双曲正弦 y arshx ;
y arshx ln(x x 2 1 ).
y arshx
D : ( ,)
奇函数,
在 (,) 内单调增加 .
24
反双曲余弦 y archx
y archx ln(x x 2 1 ).
y archx
代入法
设 y u, u 1 x 2 ,
y 1 x
2
定义: 设函数y=f(u),uU,函数u=(x), x X, 其值域
为(X)={u\u= (x), xX } U,则称函数y=f[(x)]为
x的复合函数。
x 自变量, u 中间变量,
y 因变量,
17
复合函数
1(y),
则反函数也是奇函数。
证明:f 1 ( y ) f 1 ( f ( x )) f 1 ( f ( x )) x f 1 ( y ).
∴反函数是奇函数。
例2
x2 1 x 0 求 f ( x) 的反函数 . x 1 x0
D : [1,)
在 [1,) 内单调增加.
25
反双曲正切 y arthx
y arthx
1 1 x ln . 2 1 x
y ar tanh x
D : ( 1,1)
奇函数,
在 ( 1,1) 内单调增加.
26
三. 函数的几种特性
(1) 有界性 设函数
x D , A, B 0 ,使
马克思
2. 学数学最好的方式是做数学. 聪明在于学习 , 天才在于积累 . 学而优则用 , 学而优则创 . 由薄到厚 , 由厚到薄 .
华罗庚
3
3、极限的思维方法 1) 计算圆的周长
圆内接正n 边形
O
n
r
S n 2nr sin n
S3
S4
S5
n 3,4,5,

n lim 2 r
• o 无理数点 有理数点
x
15
(4) 取最值函数
y max{ f ( x ), g( x )}
y
f ( x) g( x )
y min{ f ( x ), g( x )}
y
f ( x) g( x )
o
x
o
x
在自变量的不同变化范围中,对应法则
用不同的式子来表示的函数,称为分段函数.
16
相关文档
最新文档