八年级数学命题与证明(1)1-1

合集下载

湘教版数学八年级上册_《命题与证明(1)》参考教案1

湘教版数学八年级上册_《命题与证明(1)》参考教案1

2.2命题与证明第1课时定义与命题教学目标:1、了解命题、定义的含义;2、对命题的概念有正确的理解;3、区分命题的条件和结论。

教学重点:找出命题的条件(题设)和结论。

教学难点:命题概念的理解。

教学过程:一、回顾已知引入新课1、填空:(1)三角形的任意两边之和第三边;(2)三角形内角和等于;(3)三角形中,连接一个顶点和它对边中点的连线叫做;(4)三角形三条中线相交于一点,这三条中线的交点叫做。

2、(引入课题)像上(3)(4)这样,对一个概念加以描述说明或作出明确规定的语句叫做这个概念的定义。

二、自主学习探究新知1、师生共同探究第50面的“说一说”和“议一议”。

2、一般地,对某一事情作出判断的语句叫作命题。

我们来看看,下面的语句哪些是命题?(1)如果一个三角形的三个内角都是锐角,那么这个三角形是锐角三角形。

命题通常写成“如果……那么……”的形式,“如果……”就是条件,“那么……”是结论。

(2)在ΔABC中,如果∠A=∠B,那么这个三角形就是等腰三角形;此命题的条件是,结论是。

3、阅读第51面的“观察”,了解命题的一般表述式。

命题也可以不写“如果”、“那么”。

如:直角三角形的一个内角为22°,另外一个锐角为68°.此命题的条件是,结论是。

AB D C三、精讲点拨精练提升1、完成第51面的“做一做”,了解互逆命题。

2、如上图:(命题一)如果AD是ΔABC的中线,那么BD=DC.条件,结论;(命题二)如果BD=DC,那么AD是ΔABC的中线。

条件,结论。

比较命题一和命题二的条件和结论,你发现了什么?3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们就把这样的两个命题称为互逆命题。

其中一个叫作原命题,另一个叫作逆命题。

写一个命题的逆命题,只要将原命题的条件和结论互换就可以得到,所以每个命题都有逆命题。

四、达标检测当堂过关1、说出下列概念的定义:(1)有理数(2)分式方程(3)三角形(4)角平分线2、下列语句哪些是命题:(1)若ab=0,则a=0或b=0;(2)作直线a的平行线b;(3)两直线平行,同位角相等(4)过两点可画几条直线?3、如果ΔABC中∠A=∠B,那么ΔABC是等腰三角形。

华东师大版数学八年级上册1.1命题课件

华东师大版数学八年级上册1.1命题课件

如果两个角是对顶角,那么这两个角相等.
条件
结论
①两直线平行,同位角相等;②直角都相等.
这两个命题,条件和结论分别是什么?
有些命题的条件和结论不明显,可将它经过适当 变形,改写成“如果……,那么……”的情势.
①两直线平行,同位角相等;②直角都相等. ①如果两直线平行,那么同位角相等;
条件
结论
②如果给出的角是直角,那么这些角都相等.
条件成立时,不能保证结论总是正确,也就是 说结论不成立.像这样的命题,称为假命题.
命题的判断方法: 真命题:用演绎推理论证; 假命题: “举反例”.
例题
【例3】判断下列命题是真命题还是假命题. (1)互为补角的两个角相等; (2)若a=b,则a+c=b+c; (3)如果两个长方形的周长相等,那么这两个长 方形的面积相等. 分析:如果是真命题,给出理由即可,如果是 假命题,需要“举反例”.
练习
1.下列语句:①钝角大于90°;②两点之间,线
段最短;③希望明天下雨;④作AD⊥BC;⑤
同旁内角不互补,两直线不平行.其中是命题
的是( B)
A.①②③
B.①②⑤
C.①②④⑤ D.①②④
2.命题“平行于同一条直线的两条直线互相平行” 的
条件是( D )
A.平行
B.两条直线
C.同一条直线 D.两条直线平行于同一条直线
例2中的命题,是正确的吗?
根据等边三角形的判定,我们知道,例2的命题 是正确的. 如果条件成立,那么结论一定成立.像这样的 命题,称为真命题.
思考
内错角相等. 一个钝角和一个锐角的和是平角. 这两个命题是真命题吗?
我们知道,只有两直线平行时形成的内错角才 相等.所以第一个命题不是真命题. 91°和1°的和不是平角,所以第二个命题也不 是真命题.

湘教版八年级数学上册《命题与证明 》知识全解

湘教版八年级数学上册《命题与证明 》知识全解

《命题与证明》知识全解教学目标1、知识与能力目标:①结合具体实例,了解原命题与逆命题的概念,会识别两个互逆命题;知道原命题成立但其逆命题不一定成立;了解定理、逆定理和互逆定理;②知道证明的意义和必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达方式,掌握综合法证明的格式。

2、过程与方法:体验、理解证明的必要性。

3、情感态度与价值观:①培养学生树立科学严谨的学习方法;②体验、理解证明的必要性。

教学重点难点重点:说出命题、真命题、假命题、定义、定理、公理的的含义,能够区分命题的条件和结论。

表述反例的作用,知道利用反例可以说明一个命题是错误的.初步体会证明的基本步骤和书写格式。

难点:运用基本事实和相关定理进行简单的证明。

内容解析探究几何图形的性质可以通过观察、操作和实验的方法。

但这些方法得到的结论有时候是近似的、甚至是错误的。

要想结论使人信服就要用到推理、推理就需要思维、思维就需要作出判断,判断的语句就是命题。

1.定义对于一个概念特征特性性质的描述叫做这个概念的定义。

2.命题(1)叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命题。

(2)真命题与假命题:如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情事假的,那么她是假命题(3)证明及互逆命题的定义:从一个命题的条件出发,通过推理得出它的结论的成立,这个过程叫作证明。

注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件但它不满足命题的结论,从而判断这个命题是假命题。

(4)一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆命题,其中一个命题叫作另一个命题的逆命题。

3.公理与定理(1)数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理。

(2)以基本定义和公理作为推理的出发点,去判断其它命题的真假,已经判断为真的命题称为定理。

沪科版数学八年级上册1《命题与证明》第一课时课件

沪科版数学八年级上册1《命题与证明》第一课时课件
苏格拉底被称为西方的孔子,是 西方哲学的奠基者。苏格拉底曾 经把人定义为“人是有两条腿的 动物”。 有人便指着一只鸡问:“这是人吗?”
苏格拉底发现自己给人下的定义有问 题,又补充说:“人是有两条腿而没 有羽毛的动物。”于是那人再次反驳
:“这么说来,拔去羽毛的鸡就是人 了?”
苏格拉底无语了。
自学时间:5分钟
如: 2 2,则 2 2; 2)如果ab 0,那么a、b都是正数;假
2 (3) 0,而 2、 3都是负数;
3)两条平行线被第三条直线所截,同旁
内角互补; 真
命题可看做由
题设(条件) 和 结论 两部分
组成。
如果p,那么q .
P
题设
q
结论
指出下列命题的题设和结论。
1)如果∠1与∠2是对顶角,那么∠1=∠2 ; 题设: ∠1与∠2是对顶角 结论: ∠1=∠2
2)如果两条平行线被第三条直线所截,那 么内错角相等; 题设: 两条平行线被第三条直线所截 结论: 内错角相等
命题可看做由
题设 和 结论 两部 分组成。
改写时要求通 顺和简练,注 意要把省略的 词或句子添加 上去.
把下列命题改写成“如果……,那么……” 的情势。
1)两条直线相交,只有一个交点 ;
如果两条直线相交,那么只有一个交点。 2)直线AB⊥直线CD,交点为O, 则∠AOC=90°; 如果直线AB⊥直线CD,交点为O, 那么∠AOC=90°
说出下列命题的逆命题。
2)同位角相等,两直线平行。 逆命题: 两直线平行,同位角相等。
逆命题的真 假与原命题
原命题是真命题,那么它的逆 命题也是真命题吗?
无关,仍要
判断。
说出下列命题的逆命题。判断它们的真假

华东师大版数学八年级上册1命题、定理与证明(2课时20张)

华东师大版数学八年级上册1命题、定理与证明(2课时20张)

练习:将下列命题改写成“如果…那么…”
的情势,然后指出这个命题的题设和结论。
(1)同角的补角相等。 (2)两直线平行,同位角相等。 (3)在同一平面内,同垂直于第三条
直线的两直线平行。
分析命题“不相等的两个角不可能是对顶角” 条件: 两个角不相等
结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的情势: 如果两个角不相等, 那么这两个角不可能是对顶角。
华师版八年级上学期 第13章 《全等三角形》
1.1—1.2
命题、定理与证明
概念学习:
1、能清楚地规定某一名称或术语的意义 的句子叫做定义。
2、对某一件事情作出正确或不正确的 判断的句子叫做命题。
3、命题由条件和结论两部分组成。
4、命题可以写成“如果...那么...”的情势, 在如果后写条件,在那么后写结论。
5、命题是陈说句。
概念学习:
公理
综合法
真命题

定理 证 明
分析法

反证法
假命题
证 明
举反例
反例:具有命题条件,但不具有命题结论的例子。
概念学习:
推理方向是从已知到求证的思考方法 叫做综合法.
推理方向是从求证到已知的思考方法 叫做分析法.
先假设命题不成立,从这样的假设出发, 经过推理得出和已知条件矛盾,或者与 定义、公理、定理等矛盾,从而得出假 设不成立是错误的,即所求证命题正确, 这样的思考方法叫做反证法。
A
D
证法二:
1
如图,连接BC. B
2
C
∵在△ABC中, ∠BAC +∠ABC +∠ACB =180º
在△BDC中, ∠BDC+∠1+∠2=180º

【新人教版】2019-2020八年级数学上册 第13章 13.2 命题与证明 第1课时 命题与证明教案

【新人教版】2019-2020八年级数学上册 第13章 13.2 命题与证明 第1课时 命题与证明教案

13.2命题与证明第1课时命题与证明◇教学目标◇【知识与技能】1.了解命题、真命题、假命题的意义,了解公理、定理、证明的概念;2.了解原命题、逆命题的意义;3.会判断一个命题的真假,能用举反例的方法判断命题的真假,会写出一个命题的逆命题.【过程与方法】通过一些简单命题的证明,训练学生的逻辑思维.【情感、态度与价值观】通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.让学生积极参与教学活动,对数学定理、命题的由来产生好奇心和求知欲.◇教学重难点◇【教学重点】学习命题的概念和命题、公理、定理的区别.【教学难点】严密完整地写出推理过程.◇教学过程◇一、情境导入上一节课中,我们研究三角形的性质是通过折叠、剪拼或度量得到三角形的内角和为180°的,但这些做法都会出现很多误差,会存在疑问.有没有更准确更严格的方法得出结论呢?二、合作探究问题1:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断.例如:(1)长江是中国第一大河;(2)如果∠1和∠2是对顶角,那么它们相等;(3)2+3≠5;(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除.判断哪些是正确的,哪些是错误的?结论:(1)(2)(4)是正确的,(3)是错误的.问题2:什么叫命题?什么叫真命题?什么叫假命题?结论:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,其中正确的命题称为真命题,错误的命题称为假命题.典例1判断下面语句中哪些是命题?(1)请关上窗户;(2)你明天上学吗?(3)天真冷啊!(4)昨天我们去旅游了。

[解析](4)是命题,(1)(2)(3)不是命题问题3:(1)命题的一般形式是什么?(2)什么叫原命题、逆命题?(3)什么叫反例?结论:(1)命题的一般形式是“如果p,那么q”或“如果p,则q”.(2)将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个就叫做原命题的逆命题.(3)符合命题条件,但不满足命题结论的例子,我们称之为反例.典例2指出下列命题的条件与结论:(1)两条直线都平行于同一条直线,这两条直线平行;(2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.[解析](1)“两条直线都平行于同一条直线”是条件,“两条直线平行”是结论.(2)“∠A=∠B”是条件,“∠A的补角与∠B的补角相等”是结论.写出下列命题的逆命题,并判断所得逆命题的真假,如果是假命题,请举一个反例:(1)内错角相等,两直线平行;(2)如果a=0,那么ab=0.[解析](1)逆命题是“两直线平行,内错角相等”,是真命题.(2)逆命题是“如果ab=0,那么a=0”,是假命题.反例,当a=1,b=0时,ab=0.典例3已知:如图,直线c与直线a,b相交,且∠1=∠2.求证:a∥b.[解析]∵∠1=∠2,(已知)又∵∠1=∠3,(对顶角相等)∴∠2=∠3.(等量代换)∴a∥b.(同位角相等,两直线平行)已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.[解析]∵OE平分∠AOB,OF平分∠BOC,(已知)∴∠1=错误!未找到引用源。

八年级数学上册13.2命题与证明教案(新版)沪科版

八年级数学上册13.2命题与证明教案(新版)沪科版

13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果,,那么,,”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果,,那么,,”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果,,那么,,”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果,,那么,,”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果,,那么,,”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果,,那么,,”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果,,那么,,”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果,,那么,,”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p,那么q”,逆命题则为“如果q,那么p”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB和线段CD的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由.分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选 C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法; 2.折叠法; 3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠HPE+∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A+∠B+∠C=180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?分析:要判断△AHC的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC和∠DCA,这两个角是同旁内角,于是联想到已知条件中的AB∥CD.解:△AHC是直角三角形.理由如下:因为AB∥CD,所以∠BAC+∠DCA=180°.又因为AH,CH分别平分∠BAC和∠DCA,所以∠1=12∠BAC,∠2=12DCA,所以∠1+∠2=12(∠BAC+∠DCA),所以∠1+∠2=90°,所以△AHC为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。

八年级数学下册第六章证明(一)定义与命题

八年级数学下册第六章证明(一)定义与命题
正确的命题称为真命题,不正确的的命题称为假命题. 要说明一个命题是假命题,通常可以举出一个例子, 使之具备命题的条件,而不具备命题的结论,这种例子 称为反例.
小结 拓展
1、定义:对名称和术语的含义加以描述, 作出明确的规定,也就是给出它们的定 义.
2、命题的定义:判断一件事情的句子,叫 做命题.
3、命题的结构:每个命题都由条件和结论 两部分组成.条件是已知事项,结论是由 已事项推断出的事项.
1、原名: 某些数学名词称为原名. 2、公理: 公认的真命题称为公理.
3、证明: 除了公理外,其它真命题的正确性都通过
推理的方法证实.推理的过程称为证明.
4、定理: 经过证明的真命题称为定理.
经过证明的真
一些条件
推理的过程 叫证明
命题叫定理
+
推理
证实其它命 题的正确性
原名、公理 温馨提示:证明所需的定义、公理和其它定理都
语句.像这样判断一件事情的句子,叫做命题.
寻找命题的“共同的结构特征”
观察下列命题,试找出命题的共同的结构特征 (1)如果两个三角形的三条边对应相等,那么这两个三角形全等 (2)如果一个四边形的一组对边平行且相等,那么这个四边形是
平行四边形; (3)如果一个三角形是等腰三角形,那么这个三角形的两个底角
第六章 证明(一)
定义与命题
眼见未必为实!
a
线段a与线段b哪个 比较长?
b
a bc
谁与线段d在 一条直线上?
d
a
a bc
b
线段a与线段b哪个 比较长?
d
谁与线段d在 一条直线上?
a
b
a=b
a bc d
假如用一根比地球赤道长1 米的铁丝将 地球赤道围起来,那么铁丝与赤道之间的间 隙能有多大(把地球看成球形)?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以及社会的就业压力不断加剧,创业逐渐成为在校大学生和毕业大学生的一种职业选择方式。大学生有着较为丰富的知识储备和创造力,但同时也欠缺社会实践经验和 能力,所以大学生创业可谓是机遇与挑战并存。以下是在参加大学生创新创业项目时应该注意的几点:
(一)捐赠来源
该平台主打点对点捐赠的特色,捐赠者来自各方,例如企业、个人、公益组织等等。企业可以官方设立相关捐赠活动,提高企业的知名度,也可以鼓励员工进行爱心义卖等捐赠活动作为企业文化特色; 社会个人可以登录该平台,在捐赠板块选择个人募捐,选择你想捐赠的物品或资金,还可以选择指定的捐赠对象进行捐赠;公益组织可以通过该平台捐赠,平台将会公式捐赠名单,发放相关证书。
。 车星际 https:/// 车星际
6在军事方面亦是如此,他们发挥着诗的内在来创造世上多种学术的生命。
(二)可以怡悦性情,教育德行 “诗,因此是个摹仿艺术,这是说,它是一种再现,一种仿造,或者一种用形象的表现;用比喻来说,就是一种说着话的图画,目的在于教育和怡情悦性。”锡德尼认为诗有三种:一种是模仿上帝不可 思议的美德的,为了赞美神道,恭敬神灵;一种是属于搞哲学方面的人的,在于表达自己的见识并与他们争论;还有一种是真正的诗人的。他们才是真实地为了教育和怡情而去模仿的,引导人们走向善 行。善恶之间存在着区分线,而诗正拖着罪恶之人往善这一边跨去,并领着善良之人往更美好的葡萄园行去,让人们在怡情悦性的终点享受甘甜的果实。 二、可行性分析 三、大学生共享校园平台的建设
相关文档
最新文档