高中数学一轮复习微专题第⑧季解三角形:第8节 高度问题
高三数学一轮复习 第八节 解三角形教案 新人教版

第8课 解三角形【考点导读】1.掌握正弦定理,余弦定理,并能运用正弦定理,余弦定理解斜三角形;2.解三角形的基本途径:根据所给条件灵活运用正弦定理或余弦定理,然后通过化边为角或化角为边,实施边和角互化. 【基础练习】1.在△ABC 中,已知BC =12,A =60°,B =45°,则AC =.2.在ABC ∆中,若sin :sin :sin 5:7:8AB C =,则B ∠的大小是______________. 3.在ABC △中,若1tan 3A =,150C =,1BC =,则AB4.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是等腰三角形或直角三角形. 5.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为 . 6.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B=30°,△ABC 的面积为23【范例解析】例1.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. (1)求ca的值;(2)求b 的值. 分析:利用2C A =转化为边的关系.解:(1)由sin sin 232cos sin sin 2c C A A a A A ====.(2)由20,3.2a c c a +=⎧⎪⎨=⎪⎩得8,12.a c =⎧⎨=⎩.由余弦定理2222cos a b c bc A =+-得: 218800b b -+=,解得:8b =或10b =, 若8b =,则A B =,得4A π=,即3cos 4A =≠矛盾,故10b =. 点评:在解三角形时,应注意多解的情况,往往要分类讨论.例2.在三角形ABC 中,已知2222()sin()()sin()a b A B a b A B +-=-+,试判断该三角形的形状.分析一:边化角解法一:由已知得:22[sin()sin()][sin()sin()]a A B A B b A B A B --+=---+,π2331+化简得222cos sin 2cos sin a A B b B A =,由正弦定理得:22sin cos sin sin cos sin A A B B B A =, 即sin sin (sin cos sin cos )0A B A A B B -=,又,(0,)A B π∈,sin sin 0A B ∴⋅≠,sin 2sin 2A B ∴=.又2,2(0,2)A B π∈,22A B ∴=或22A B π=-,即该三角形为等腰三角形或直角三角形. 分析二:角化边解法二:同解法一得:222cos sin 2cos sin a A B b B A =,由正余弦定理得:2222222222b c a a c b a b b a bc ac+-+-=,整理得:22222()()0a b c a b ---=,即a b =或222c a b =+,即该三角形为等腰三角形或直角三角形. 点评:判断三角形形状主要利用正弦或余弦定理进行边角互化,从而利用角或边判定三角形形状.例3.如图,已知△ABC 是边长为1的正三角形,M ,N 分别是边AB 、AC 上的点, 线段MN 经过△ABC 的中心G ,设∠MGA =α(233ππα≤≤). (1)试将△AGM 、△AGN 的面积(分别记为S 1与S 2)表示为α的函数; (2)求221211y S S =+的最大值与最小值. 分析:利用正弦定理建立目标函数. 解:(1)因为G 是边长为1的正三角形ABC 的中心, 所以AG =23,∠MAG =6π,由正弦定理GM GA sin sin 66πππα=(--)得GM 6sin 6πα=(+) 则S 1=12GM •GA •sin α=sin 12sin 6απα(+),同理可求得S 2=sin 12sin 6απα(-).(2)221211y S S =+=222144sin sin sin 66ππααα〔(+)+(-)〕=72(3+22cos sin αα) 因为233ππα≤≤,所以当α=3π或α=23π时,y 取得最大值y max =240;当α=2π时,y 取得最小值y min =216. 点评:本题关键是选取变量,建立目标函数,根据目标函数求最值.AB CNMGαD例3例4.如图,D 是直角△ABC 斜边BC 上一点,AB =AD ,记∠CAD =α,∠ABC =β. (1)证明:sin cos 20αβ+=; (2)若AC,求β.分析:识别图中角之间的关系,从而建立等量关系. (1)证明:C βα=+,2C B π=-,22πβα∴=+,(2)解:AC,2sin 2βαββ∴===.(0,)2πβ∈,sin 2β∴=,3πβ∴=. 点评:本题重点是从图中寻找到角之间的等量关系,从而建立三角函数关系,进而求出β的值.【反馈演练】 1.在ABC ∆中,,75,45,300===C A AB 则BC =_____________. 2.ABC ∆的内角∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a ,b ,c 成等比数列,且2c a =,则cos B =_____.3.已知ABC ∆顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,.若A ∠是钝角,则c 的取值范围 ___________ . 4.已知ABC ∆的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .5.在ABC ∆中,若2a b c =+,2sin sin sin A B C =,则∆的形状是____等边___三角形.6.若ABC ∆的内角A 满足2sin 23A =,则sin cos A A += .7. ABC ∆的三个内角为A B C 、、,则cos 2cos2B CA ++的最大值为 . 8.在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①tan 1tan AB= ;② 1sin sin A B <+≤③ 1cos sin 22=+B A ; ④ C B A 222sin cos cos =+.其中正确的序号有______②④_____.9.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,给出下列结论:①111A B C ∆和222A B C ∆都是锐角三角形;②111A B C ∆和222A B C ∆都是钝角三角形;BDCαβ A例433- 3425(,)3+∞ 32③111A B C ∆是钝角三角形,222A B C ∆是锐角三角形; ④111A B C ∆是锐角三角形,222A B C ∆是钝角三角形. 其中,正确结论的序号有____④_____. 10.在ABC ∆中,已知2AC =,3BC =,4cos 5A =-. (Ⅰ)求sinB 的值;(Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. 解:(Ⅰ)在ABC ∆中,3sin 5A ===,由正弦定理,sin sin BC AC A B =.所以232sin sin 355AC B A BC ==⨯=.(Ⅱ)因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是cos 5B ===,2217cos 22cos 12()1525B B =-=⨯-=,2sin 22sin cos 25525B B B ==⨯⨯=.sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭171252=+⨯= 11.在ABC ∆中,已知内角A π=3,边BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 解:(1)ABC ∆的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin cos sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 12.在ABC ∆中,1tan 4A =,3tan 5B =.(Ⅰ)求角C 的大小;(Ⅱ)若ABC ∆,求最小边的边长.解:(Ⅰ)π()C A B =-+,1345tan tan()113145C A B +∴=-+=-=--⨯.又0πC <<,3π4C ∴=.(Ⅱ)34C =π,AB ∴边最大,即AB =.又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭,,,,∴角A 最小,BC 边为最小边.由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin A =sin sin AB BC C A =得:sin 2sin A BC AB C== 所以,最小边BC =。
高三数学一轮复习 第八节 解三角形教案 新人教版

第8课 解三角形【考点导读】1.掌握正弦定理,余弦定理,并能运用正弦定理,余弦定理解斜三角形;2.解三角形的基本途径:根据所给条件灵活运用正弦定理或余弦定理,然后通过化边为角或化角为边,实施边和角互化. 【基础练习】1.在△ABC 中,已知BC =12,A =60°,B =45°,则AC =.2.在ABC ∆中,若sin :sin :sin5:7:8A B C =,则B ∠的大小是______________.3.在ABC△中,若1tan 3A =,150C =,1BC =,则AB = .4.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是等腰三角形或直角三角形. 5.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为 . 6.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B=30°,△ABC 的面积为23,那么b【范例解析】例1.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. (1)求ca的值;(2)求b 的值. 分析:利用2C A =转化为边的关系.解:(1)由sin sin 232cos sin sin 2c C A A a A A ====. (2)由20,3.2a c c a +=⎧⎪⎨=⎪⎩得8,12.a c =⎧⎨=⎩.由余弦定理2222cos a b c bc A =+-得: 218800b b -+=,解得:8b =或10b =, 若8b =,则A B =,得4A π=,即3cos 24A =≠矛盾,故10b =. 点评:在解三角形时,应注意多解的情况,往往要分类讨论.例2.在三角形ABC 中,已知2222()sin()()sin()a b A B a b A B +-=-+,试判断该三角形的形状. 分析一:边化角解法一:由已知得:22[sin()sin()][sin()sin()]a A B A B b A B A B --+=---+,3π 2233化简得222cos sin 2cos sin a A B b B A =,由正弦定理得:22sin cos sin sin cos sin A A B B B A =, 即sin sin (sin cos sin cos )0A B A A B B -=,又,(0,)A B π∈,sin sin 0A B ∴⋅≠,sin 2sin 2A B ∴=.又2,2(0,2)A B π∈,22A B ∴=或22A B π=-,即该三角形为等腰三角形或直角三角形. 分析二:角化边解法二:同解法一得:222cos sin 2cos sin a A B b B A =,由正余弦定理得:2222222222b c a a c b a b b a bc ac+-+-=,整理得:22222()()0a b c a b ---=,即a b =或222c a b =+,即该三角形为等腰三角形或直角三角形.点评:判断三角形形状主要利用正弦或余弦定理进行边角互化,从而利用角或边判定三角形形状. 例3.如图,已知△ABC 是边长为1的正三角形,M ,N 分别是边AB 、AC 上的点, 线段MN 经过△ABC 的中心G ,设∠MGA =α(233ππα≤≤). (1)试将△AGM 、△AGN 的面积(分别记为S 1与S 2)表示为α的函数; (2)求221211y S S =+的最大值与最小值. 分析:利用正弦定理建立目标函数. 解:(1)因为G 是边长为1的正三角形ABC 的中心, 所以AG =2323⨯=,∠MAG =6π, 由正弦定理GM GA sin sin 66πππα=(--)得GM 6sin 6πα=(+) 则S 1=12GM ∙GA ∙sin α=sin 12sin 6απα(+),同理可求得S 2=sin 12sin 6απα(-).(2)221211y S S =+=222144sin sin sin 66ππααα〔(+)+(-)〕=72(3+22cos sin αα) 因为233ππα≤≤,所以当α=3π或α=23π时,y 取得最大值y max =240;当α=2π时,y 取得最小值y min =216.点评:本题关键是选取变量,建立目标函数,根据目标函数求最值.AB CNMGαD例3例4.如图,D 是直角△ABC 斜边BC 上一点,AB =AD ,记∠CAD =α,∠ABC =β. (1)证明:sin cos 20αβ+=; (2)若AC,求β.分析:识别图中角之间的关系,从而建立等量关系. (1)证明:C βα=+,2C B π=-,22πβα∴=+,sin cos 20αβ∴+=(2)解:AC,2sin βαββ∴===(0,)2πβ∈,sin β∴=,3πβ∴=.点评:本题重点是从图中寻找到角之间的等量关系,从而建立三角函数关系,进而求出β的值. 【反馈演练】1.在ABC ∆中,,75,45,300===C A AB 则BC =_____________. 2.ABC ∆的内角∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a ,b ,c 成等比数列,且2c a=,则c o s B =_____.3.已知ABC ∆顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,.若A ∠是钝角,则c 的取值范围 ___________ . 4.已知ABC ∆的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 5.在ABC ∆中,若2a b c =+,2sin sin sin A B C =,则∆的形状是____等边___三角形.6.若ABC ∆的内角A 满足2sin 23A =,则sin cos A A += . 7. ABC ∆的三个内角为ABC 、、,则cos 2cos 2B CA ++的最大值为. 8.在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①tan 1tan AB= ;② 1sin sin A B <+≤③ 1cos sin 22=+B A ; ④ C B A 222sin cos cos =+.其中正确的序号有______②④_____. 9.如果111A BC ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,给出下列结论:①111A B C ∆和222A B C ∆都是锐角三角形; ②111A B C ∆和222A B C ∆都是钝角三角形;③111A B C ∆是钝角三角形,222A B C ∆是锐角三角形; ④111A B C ∆是锐角三角形,222A B C ∆是钝角三角形.BDCαβ A例433- 34 25(,)3+∞ 332其中,正确结论的序号有____④_____. 10.在ABC ∆中,已知2AC =,3BC =,4cos 5A =-. (Ⅰ)求sinB 的值;(Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. 解:(Ⅰ)在ABC ∆中,3sin 5A ===,由正弦定理,sin sin BC AC A B =.所以232sin sin 355AC B A BC ==⨯=. (Ⅱ)因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是cos 5B ===2217cos 22cos 12125B B =-=⨯-=,2sin 22sin cos 25525B B B ==⨯⨯=. sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭171252=⨯= 11.在ABC ∆中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 解:(1)ABC ∆的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5x xππππ⎛⎫⎫=++<+<⎪⎪6666⎝⎭⎭,所以,当xππ+=62,即xπ=3时,y取得最大值12.在ABC∆中,1tan4A=,3tan5B=.(Ⅰ)求角C的大小;(Ⅱ)若ABC∆解:(Ⅰ)π()C A B=-+,1345tan tan()113145C A B+∴=-+=-=--⨯.又0πC<<,3π4C∴=.(Ⅱ)34C=π,AB∴边最大,即AB=.又tan tan0A B A Bπ⎛⎫<∈ ⎪2⎝⎭,,,,∴角A最小,BC边为最小边.由22sin1tancos4sin cos1AAAA A⎧==⎪⎨⎪+=⎩,,且π2A⎛⎫∈ ⎪⎝⎭,,得sin17A=.由sin sinAB BCC A=得:sin2sinABC ABC==所以,最小边BC.。
解三角形的实际应用举例—高度、角度问题 课件

【变式练习】 3.5 m长的木棒斜靠在石堤旁,棒的一端在离
堤足1.2 m的地面上,另一端在沿堤上2.8 m的地 方,求堤对地面的倾斜角α. (精确到0.01°)
解:棒、石堤及地面构成一钝角三角形,其钝角大小为 180°-α. 由余弦定理得, cos(180°-α)= 1.22 + 2.82 - 3.52
113.15,
根据正弦定理,
BC sinCAB
= AC , sinABC
sinCAB=
BC
sin ABC AC
=
54.0sin137° 113.15
0.325
5,
所以,∠CAB = 1.
答:此船应该沿北偏东56.0°的方向航行, 需要航行113.15n mile.
解:在△ABC中,∠A=15°, ∠C= 25°-15°=10°. 根据正弦定理,
BC = AB , sinA sinC
正确转化为 数学模型
BC=
AB sin sin C
A
=
5 sin 15 sin10
7.452
(4 km)
CD=BC×tan∠DBC≈BC×tan8°≈1 047(m).
答:山的高约为1 047米.
把测量数据代入上式,得
BD = 27.3cos501' sin 5440' sin(5440' 501')
.
=
27.3cos501' sin sin 439'
5440'
177.(4 m)
CD=BD-BC≈177.4-27.3≈150(m).
答:山的高度约为150米.
2015届高考数学总复习第三章 第八节解三角形的应用精讲课件 文

变式探究
3.在海岸A处,发现北偏东45°方向,距离A处(
里的 C 处的缉私船奉命以每小时 10
-1)海
里的B 处有一艘走私船,在A 处北偏西 75°方向,距离A处 2 海 海里的速度追截走私
船.此时,走私船正以每小时 10 海里的速度从 B 处向北偏东
30°方向逃窜.问:缉私船沿什么方向能最快追上走私船?
变式探究
1. 某兴趣小组测量电视塔AE的高度H(单位:m).如示 意图,垂直放置的标杆BC的高度h=4 m,仰角∠ABE=α, ∠ADE=β,该小组已经测得一组 α、β的值,算出了tan α= 1.24,tan β=1.20,请据此算出H的值.
距离问题 【例2】 某城市有一块不规则的绿地如图所示,城建
第三章
第八节 解三角形的应用
高度问题 【例 1】 如下图,用同样高度的两个测角仪 AB 和CD同
时望见气球E在它们的正西方向的上空,分别测得气球的仰角
是α和β,已知B、D间的距离为a,测角仪的高度是b,求气球
的高度.
思路点拨: 在Rt△EGA中求解EG,只有角 α一个条件,需 要再有一边长被确定,而△ EAC 中有较多已知条件,故可在 △ EAC 中考虑 EA 边长的求解,而在△ EAC 中有角 β , ∠ EAC =
∵∠CBD=90°+30°=120°, 在△BCD中,由正弦定理,
∴∠BCD = 30°,即缉私船沿东偏北 30°方向能最快追 上走私船.
180°-α两角与BD=a一边,故可以利用正弦定理求解EA. 自主解答:
,
,
点评:高度的测量借助于两个或者多个三角形进行,基 本思想是把测量的高所在线段纳入到一个(或两个)可解三角 形中.测量底部不可到达的物体的高度,通常在基线上选 取两个观测点,在同一平面内至少测量三个数据(角边角),
解三角形的实际应用举例高度、角度问题 课件

【规范解答】设舰艇与渔船在B点相遇.
如图,则AC=10海里,∠ACB=120°.设所需时间为t小时,
则AB=21t海里,CB=9t海里,
在△ABC中,根据余弦定理,得AB2=AC2+
BC2-2AC·BCcos120°,
即(21t)2=102+81t2+2×10×9t×1,
2
整理得,36t2-9t-10=0,
答案:40
5.如图所示,港口A北偏东30°方向的点C处有一观测站, 港口正东方向的B处有一轮船,测得BC为31海里. 该轮船从 B处沿正西方向航行20海里后到达D处,测得CD为21海里. 问此时轮船离港口A还有多少海里?
【解析】由已知得∠CAD=60°,在△BCD中,由余弦定理
得 cos BDC BD2 CD2 BC2 1 ,
AB BCgtan singtan gs. sin( )
测量角度问题 【名师指津】解决测量角度问题的注意点: (1)注意作图的准确性,通过积累、归纳,学会根据题目已知 的方向角、方位角、仰角、俯角等已知量顺利地作出图形. (2)注意数学思想方法的应用: ①化归与转化思想,即将实际问题抽象概括,转化为解三角形 的问题;
2.如图所示,为测一树的高度,
在地面上选取A,B两点,从A、
B两点分别测得树尖的仰角为
30°,45°,且A,B两点间的距
离为60 m,则树的高度为( )
(A) (30 30 3) m (C) (15 30 3) m
(B) (30 15 3) m (D) (15 15 3) m
【解析】选A.设树的高度为h,由题意可知 BP 在2h,
【解析】在△OBC中,由余弦定理,得
CB2=CO2+OB2-2CO·OBcos120°
解三角形的应用 角度、高度问题30页PPT

36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们法律,事物有规律,这是不 容忽视 的。— —爱献 生
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
2012新高考全案 第8章 三角函数及解三角形 第8讲

第8章 第8讲一、选择题1.为了测某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶的仰角为30°,塔基的俯角为45°,那么塔AB 的高( )A .20(1+33) m B .20(1+32) m C .20(1+3) mD .30 m[解析] 如图:h =20tan30°+20tan45°=20(1+33)(m),故选A.[答案] A2.已知两座灯塔A 、B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°[解析] 如图,∠CBA =12(180°-80°)=50°,60°-50°=10°,故选B. [答案] B3.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处则这船航行的速度为( )A.1762海里/小时B .346海里/小时C.1722海里/小时D .342海里/小时[解析] 设船航行的速度为x 海里/小时,则MN =4x ,在△PMN 中PM =68,∠MPN =75°+45°=120°.∠PNM =45°,由正弦定理可得MN sin120°=MP sin45° ∴MN =68·sin120°sin45°=346(海里)∴x =MN 4=1726(海里/小时),故选C.[答案] C4.在某个位置测得某山峰仰角为θ,对着山峰在地面上前进600 m 后测得仰角为2θ,继续在地面上前进2003以后测得山峰的仰角为4θ,则该山峰的高度为( )A .200 mB .300 mC .400 mD .100 3 m[解析] 如图,△BED ,△BDC 为等腰三角形BD =ED =600,BC =DC =200 3.在△BCD 中,由余弦定理可得 cos2θ=6002+(2003)2-(2003)22×600×2003=32∴2θ=30°,4θ=60°在Rt △ABC 中,AB =BC ·sin4θ=2003×32=300 m 故选B. [答案] B5.在200 m 高的山顶上,测得山下一塔的塔顶和塔底的俯角分别为30°和60°,则塔高为( )A.4003m B.40033mC.20033 mD.2003m [解析] 设塔高为h ,则依题意,∠ADB =60°, ∠CAD =∠CDA =30°.在△ACD 中,(200sin60°)2=h 2+h 2-2h 2cos120°,∴h =4003(m).[答案] A6.甲船在岛B 的正南方A 处,AB =10 km ,甲船以每小时4 km/h 的速度向正北航行,同时乙船自B 出发以每小时6 km 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 min B.157 min C .21.5 minD .2.15 min[解析] t h 后,甲乙两船的距离为s 2=(6t )2+(10-4t )2-2×6t ×(10-4t )cos120° =28t 2-20t +100.∴当t =202×28=514 h =514×60=1507 min 时,甲乙两船的距离最近.[答案] A 二、填空题7.在△ABC 中,三边a 、b 、c 与面积S 的关系式为S =14(a 2+b 2-c 2),则角C 为________.[解析] S =14(a 2+b 2-c 2)=14×2ab cos C =12ab cos C又∵S =12ab sin C∴12ab sin C =12ab cos C ,∴tan C =1 ∴∠C =π4.[答案] π48.一船以32 km/h 的速度向正北方向航行,在点A 望见航标灯M 在船的北偏东30°方向上,15分钟后到点B 望见航标灯M 在船的北偏东60°方向上,则船在点B 时与航标灯M 的距离是________km.[解析] 在△ABM 中,∠BAM =∠AMB =30° ∴BM =AB =32×14=8(km).[答案] 89.从某电视塔的正东方向A 处,测得塔顶仰角是60°,从电视塔的西偏南30°的B 处,测得塔顶仰角是45°,A 、B 间距离是35 m ,则电视塔的高度是________m.[解析] 如图,CO ⊥平面OAB ,设塔高为h ,则 在Rt △BOC 中,OB =h /tan45°=h在Rt △AOC 中,OA =h /tan60°=33h 在△AOB 中,∠AOB =150° AB =35由余弦定理可得AB 2=OB 2+OA 2-2OA ·OB ·cos150° 即352=h 2+13h 2-2·h ·33·h ·(-32)解得h =521. [答案] 52110.已知A 、B 两地的距离为10 km ,B 、C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为________km.[解析] AC =AB 2+BC 2-2AB ·BC ·cos120°=102+202+2×10×20×12=107(km).[答案] 107 三、解答题11.(2007·山东卷)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,问乙船每小时航行多少海里?[解] 如题图,连结A 1B 1,A 2B 2=102,A 1A 2=2060×302=102,△A 1A 2B 2是等边三角形,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得 B 1B 22=A 1B 12+A 1B 22-2A 1B 1·A 1B 2cos45° =202+(102)2-2×20×102×22=200 B 1B 2=10 2.因此乙船的速度的大小为10220×60=30 2.答:乙船每小时航行302海里.12.(2010·陕西,17)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?[解] 由题意知AB =5(3+3)(海里),∠DBA =90°-60°=30°,∠DAB =90°-45°=45°, ∴∠ADB =180°-(45°+30°)=105°, 在△DAB 中,由正弦定理得DBsin ∠DAB =ABsin ∠ADB ,∴DB =AB ·sin ∠DAB sin ∠ADB=5(3+3)·sin45°sin105°=5(3+3)·sin45°sin45°cos60°+cos45°sin60°=53(3+1)3+12=103(海里),又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×12=900,∴CD =30(海里),则需要的时间t =3030=1(小时).答:救援船到达D 点需要1小时.亲爱的同学请写上你的学习心得。
高三数学第八章知识点总结

高三数学第八章知识点总结在高三数学学习中,第八章的内容涉及到一些重要的知识点,如三角函数、向量、指数函数等。
这些知识点在学生的数学基础中扮演着重要的角色。
在这篇文章中,我们将对这些知识点进行总结和归纳,以帮助同学们更好地理解和掌握。
一、三角函数1. sin、cos和tan的定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)这三个函数都是通过三角形中某个角的边长比例来定义的。
其中,sin A = a / c,cos A = b / c,tan A = a / b。
这些函数可以帮助我们计算角度的大小,解决相关的几何和物理问题。
2. 三角函数的基本关系三角函数之间存在着一系列的基本关系,如sin^2 A + cos^2 A = 1,1 + tan^2 A = sec^2 A等。
这些关系式可以帮助我们化简复杂的三角函数表达式,简化运算。
3. 三角函数的图像和性质通过绘制三角函数的图像,我们可以观察到它们的周期性、对称性和振幅等性质。
同时,这些图像可以带给我们直观的感受,帮助我们更好地理解三角函数的行为和性质。
二、向量1. 向量的定义和表示向量是由大小(模长)和方向(方向角)组成的量。
我们可以用箭头来表示一个向量,并且箭头的长度代表向量的大小和模长。
向量的方向可以用角度来表示,也可以用坐标系中的坐标来表示。
2. 向量的运算向量的运算包括加法、减法、数量积和向量积等。
向量加法是将两个向量的对应分量相加,得到一个新的向量。
向量减法是将一个向量的对应分量减去另一个向量的对应分量,得到一个新的向量。
数量积是两个向量的数量相乘再求和,得到一个标量。
向量积是两个向量的数量相乘再求和,得到一个新的向量。
3. 向量的应用向量在几何和物理中有广泛的应用。
例如,在平面几何中,我们可以用向量来表示线段的方向和长度。
在力学中,向量可以用来表示力的大小和方向,帮助我们解决相关的问题。
三、指数函数1. 指数函数的定义指数函数是以某个固定的正数为底数,变量为指数的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8节高度测量问题
【基础知识】
正弦定理和余弦定理
仰角和俯角
在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角.
【规律技巧】
求解高度问题首先应分清
(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内视线与水平线的夹角;
(2)准确理解题意,分清已知条件与所求,画出示意图;
(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.
【典例讲解】
例1、在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)()
A.2.7 m B.17.3 m
C.37.3 m D.373 m
【答案】C
【变式探究】
如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.
【解析】在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=AB BC
,AB =BC tan 60°=10 6. 【答案】10 6
【针对训练】
1、某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A ,B ,C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100米,
∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217
秒.在A 地测得该仪器至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音在空气中的传播速度为340米/秒)
【答案】1403
2、要测量电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.
【答案】B
3、如图,在坡度一定的山坡A 处测得山顶上一建筑物CD (CD 所在的直线与地平面垂直)对于山坡的斜度为α,从A 处向山顶前进l 米到达B 后,又测得CD 对于山坡的斜度为β,山
坡对于地平面的坡角为θ.
(1)求BC 的长;
(2)若l =24,α=15°,β=45°,θ=30°,求建筑物CD 的高度.
【答案】(1)sin sin()l BC αβα=-;(2)2483CD =-.
【练习巩固】
1、如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32
米的C 处看此树,则该人离此树________米时,看A ,B 的视角最大.
【答案】6
2、如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求出山高CD .
【答案】cos sin sin()h αβαβ- 3、如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得,,BCD BDC CD s αβ∠=∠==,并在点C 测得塔顶A 的仰角为θ,求塔高AB .
【答案】•s tan sin sin θβαβ(+)
【解析】在BCD ∆中,CBD παβ∠=--,由正弦定理得
BC CD sin BDC sin CBD ∠∠=,所以••CD sin BDC s sin BC sin CBD sin βαβ∠=∠=(+)
. 在Rt ABC ∆中,•tan s tan sin AB BC ACB sin θβαβ=∠=
(+). 4、如图,测量河对岸的塔高AB 时,可以选与塔
底B 在同一水平面内的两个测点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并
在点C 测得塔顶
A 的仰角为θ,求塔高A
B .
【答案】
tan sin
tan
sin()
s
AB BC ACB
θβ
αβ
⋅
=∠=
+
5、如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD=m.
【答案】6
100。