铝合金的熔炼与浇铸

合集下载

铝合金熔炼工序

铝合金熔炼工序

铝合金熔炼工序
铝合金熔炼工序一般分为以下几个步骤:
1. 铝合金的原料准备:将所需的铝合金原料,如铝锭、合金添加剂等按比例准备好。

2. 铝合金熔炼:将铝合金原料放入熔炼炉中,加热至一定温度,使其完全熔化。

3. 添加合金元素:在铝合金熔化的过程中,根据合金的配方要求,逐步添加所需的合金元素,如铜、硅、锰等,以调整合金的化学成分。

4. 调整温度和搅拌:根据合金的特点,调整炉内的温度和搅拌速度以保持合金中的元素均匀分布。

5. 除杂和净化:通过气体吹炼、共熔法等方法,除去合金中的夹杂物和气体,提高合金的质量。

6. 浇注:将熔融的铝合金从熔炼炉中倒入铸造模具中,形成所需的铝合金产品。

7. 冷却和固化:待铝合金产品冷却后,开始固化过程,使其恢复到固态,获取最终产品。

以上是常见的铝合金熔炼工序,具体的操作步骤和工艺参数可能会因合金类型和生产工艺的不同而有所差异。

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺规范与流程资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范(1)总则①按本文件生产的铸件,其化学成分和力学性能应符合GB/T9438-1999《铝合金铸件》、JISH5202-1999《铝合金铸件》、ASTMB108-03a《铝合金金属型铸件》、GB/T15115-1994《压铸铝合金》、JISH5302-2006《铝合金压铸件》、ASTMB85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。

②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。

一般采取石墨坩埚或铸铁坩埚。

铸铁坩埚须进行液体渗铝。

(2)配料及炉料1)配料计算①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。

②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。

2)金属材料及回炉料①新金属材料铝锭:GB/T1196-2002《重熔用铝锭》铝硅合金锭:GB/T8734-2000《铸造铝硅合金锭》镁锭:GB3499-1983《镁锭》铝铜中间合金:YS/T282-2000《铝中间合金锭》铝锰中间合金:YS/T282-2000《铝中间合金锭》各牌号的预制合金锭:GB/T8733-2000《铸造铝合金锭》、JISH2117-1984《铸件用再生铝合金锭》、ASTMB197-03《铸造铝合金锭》、JISH2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。

②回炉料包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。

回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50%。

3)清除污物为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。

铝合金铸轧工艺

铝合金铸轧工艺

铝合金铸轧工艺
铝合金铸轧工艺是指在铝合金材料制备过程中,先将铝合金熔化后,通过浇铸、轧制等工艺进行成型和加工的过程。

铝合金铸轧工艺一般包括以下步骤:
1. 材料准备:选择合适的铝合金材料,根据产品的要求进行材料准备,包括铝合金材料的成分控制和预处理等。

2. 熔炼:将铝合金材料加热至熔点,使其熔化成液态铝合金。

熔炼可采用电炉、气炉等不同方式进行。

3. 浇铸:将熔化的铝合金液浇入预先准备好的铸型中。

铸型可以是砂型、金属型等不同材料制成,根据产品要求进行选择。

4. 冷却和固化:铝合金液在铸型中冷却后逐渐固化成为实体。

固化过程通常需要一定的时间和恒温条件。

5. 压铸:将固化的铸坯放入压铸机中,通过对铸坯进行压力加工,使其具有所需的形状和尺寸。

压铸可以是冷压铸、热压铸等不同方式。

6. 热处理:对压铸后的铝合金进行热处理,包括时效、淬火等工艺,以改善其性能和组织结构。

7. 轧制:经过热处理后的铝合金坯料可以通过轧机进行轧制,使其具有所需的厚度和形状。

8. 退火处理:通过对轧制后的铝合金进行退火处理,消除残余应力,改善其机械性能。

9. 表面处理:对轧制后的铝合金进行酸洗、氧化等表面处理,以提高其表面质量和耐腐蚀性能。

10. 检验和包装:对成品进行检验,包括外观检查、尺寸测量、性能测试等,然后进行包装和贮存。

铝合金铸轧工艺可以根据具体产品的要求进行调整和改进,在不同的铝合金材料、铸型和轧制设备等条件下,工艺参数和工艺流程也会有所差异。

铝合金的熔炼和铸造工艺规程

铝合金的熔炼和铸造工艺规程

受控状态:文件编号:熔铸操作规程第一版施编制:审核:批准:铝合金的熔炼和铸造工艺规程总则:严格按照YS67-93部颁标准组织生产和检验铸造质量。

一、配料:1、配料所需的原料,包括铝锭、镁锭、中间合金、废料等,必须符合该合金对成份的要求方面进行配料。

2、所使用的原材料必须保持清洁、干燥、无水、无泥、无油、无腐蚀。

二、装炉和熔炼1、小块或片状的废料应先装在炉底层,大块废料或铝锭最后装炉,即装在最上层。

除保护炉底外,还有利于减少金属烧损。

2、Al-Si中间合金随炉装料,Mg在炉料全部熔化后,取样分析前加入。

3、严格控制好Mg:Si在1.5左右,Mg+Si=0.95%左右。

4、等炉内料熔化后,加入打渣剂,把熔体表面的灰渣除净,再往铝液中浸料,直到炉内铝水达到规定容量为止。

三、精炼1、当熔体温度达到700℃-750℃时,扒净表面浮渣,进行充分搅拌。

搅拌时要做到平稳彻底,不许搅起波浪,以免铝溶液流出炉门。

2、加入打渣剂于精炼罐中(用量为铝液的0.1%),用氮气进行5-10分钟的喷浆搅拌,使铝液与氧化夹渣分离,然后除去铝水表面的熔渣。

3、用试样勺在铝液一半深处抽样品,进行炉前分析。

4、根据分析结果,补充硅镁合金。

熔化后,进行充分搅拌,使中间合金分布均匀,加入精炼剂于精炼罐中(用量为铝液的0.05%),用氮气进行喷粉精炼除气,精炼要均匀,细致。

精炼完毕后,要进行第二次取样分析。

5、成份合格后,达到内控标准,进行第二次精炼(用量为0.1%)。

扒净表面浮渣,均匀加入覆盖剂,使铝水表面形成覆盖层与空气隔开,可防止污染和烧损。

6、静置30分钟,然后进行铸造。

四、铸造1、铸造前要安置好引锭头,维修好各个分流孔及结晶器,检查冷却水缝及耐火纸等,有损坏及时更换或维修。

2、当石墨环磨损过大或出现裂纹时,要及时更换。

3、铸造前要检查铸造机运转正常,润滑良好,钢丝绳无破损,铸造机开关灵活,行程指示灵敏准确,给水、抽水、停水及水泵系统运转正常。

铝合金的熔炼与铸造

铝合金的熔炼与铸造

第二章铝合金的冶炼1.金属铝的制取金属铝最初是用化学法制取的。

1825年丹麦化学家H.C.Örested和1827年德国Wöhler F.分别用钾汞齐和钾还原无水氯化铝,都得到少量金属粉末。

1854年Wöhler F.还用氯化铝气体通过熔融钾的表面,得到了金属铝珠,每颗重约10~15mg,因而能够初步测定铝的密度,并认识到铝的熔点不高,且具有延展性。

后来,法国S.G。

Deville用钠代替钾还原熔融的氯化钠_氯化铝络盐,也制取金属铝。

1854年他在法国巴黎附近建立了一座小型炼铝厂。

1865年俄国 H.H.BeKeTOB 提议用镁来置换冰晶石中的铝,这一方案被德国Gmelingen Aluminium und Magnesium Fabrik 采用。

由于电解法兴起,化学法便渐渐被淘汰。

在整个化学法炼铝阶段中(1854~1895年),大约总共生产了200Ton铝。

电解法熔炼铝起源与1854年。

当时德国R.W.Bunsen和法国S.C.Deville分别电解氯化钠_氯化铝络盐,得到金属铝。

1883年美国S.Bradley申请了电解熔融冰晶石的专利。

1886年美国的C.M.Hall 和法国的L.T.Héroult同时发明了冰晶石_氧化铝融盐电解法并申请到专利。

此法便是一百年来全世界炼铝工业上采用的唯一方法,统称为霍尔_埃鲁法。

中国的炼铝试验工作起始自1934年天津的黄海化学工业社,用800A预焙阳极电解槽炼出金属铝。

抚顺铝厂开始兴建于1937年,电解槽为自焙阳极式,电解强度为2400 A,最高年产铝量达到8000Ton。

台湾省高雄铝厂亦兴建于1937年。

从南阳 Bintan岛运来三水铝土矿,在厂内用拜耳法生产氧化铝,用24000A 和30000A自焙阳极电解槽生产铝,最高年产量达到10KTon。

新中国成立后,铝合金工业得到迅速的发展。

我国的铝冶炼工业经过几十年的发展,取得了前所未有的成绩,2000年氧化铝产量达429万Ton,铝锭283万Ton,我国已成为世界铝生产和消费的大国。

铝合金熔炼与铸造技术

铝合金熔炼与铸造技术

铝合金熔炼与铸造技术一、引言铝合金是一种重要的结构材料,具有轻质、高强度和良好的耐腐蚀性能,在航空航天、汽车制造、建筑工程等领域广泛应用。

铝合金的制备过程中,熔炼与铸造技术起到关键作用,本文将对铝合金熔炼与铸造技术进行详细探讨。

二、铝合金熔炼技术2.1 熔炼原料准备熔炼铝合金的原料主要包括铝、合金元素和辅助材料。

铝采用高纯度的铝锭,合金元素可以通过添加铝合金粉末或其他化合物来实现。

辅助材料包括熔剂、脱气剂等。

这些原料的准备对于保证铝合金的成分和质量非常重要。

2.2 熔炼设备和工艺熔炼铝合金的常用设备有电阻加热炉、感应加热炉和气体燃烧炉等。

其中,感应加热炉在铝合金熔炼中应用最广泛,具有加热速度快、能耗低和温度控制准确等优点。

熔炼工艺包括预热、熔化、调温和净化等步骤,其中净化技术对于铝合金的纯净度和性能起到重要作用。

2.3 熔炼过程控制与优化熔炼过程中,熔体温度、保温时间、搅拌方式等因素对铝合金的成分和组织结构有重要影响。

熔炼过程需要进行温度控制、气氛控制和搅拌控制等,以确保铝合金的成分均匀、杂质含量低。

三、铝合金铸造技术3.1 铸造方法铝合金的常用铸造方法包括压铸、重力铸造、低压铸造和砂型铸造等。

压铸是最常用的铸造方法,适用于生产复杂形状和尺寸精度要求高的铝合金件。

重力铸造适用于大型铝合金零部件的生产,低压铸造适用于长条状和壳状铝合金件的生产,砂型铸造适用于非常大型和特殊形状的铝合金件的生产。

3.2 铝合金铸造过程铝合金的铸造过程主要包括熔炼、准备模具、浇注、冷却和后处理等步骤。

熔炼过程中,需要根据具体合金配方和要求,控制熔体温度、浇注温度和浇注速度等参数。

准备模具是确保铸造件尺寸和表面质量的重要环节。

浇注过程需要保证熔体充分填充模腔,并避免气孔和缺陷的产生。

冷却过程中需控制冷却速率,以避免铝合金件出现应力和变形。

3.3 铝合金铸造工艺改进为了提高铝合金铸造件的质量和效率,可以采取一些工艺改进措施。

铝合金的熔炼、铸锭与固溶处理

铝合金的熔炼、铸锭与固溶处理

铝合金的熔炼、铸锭与固溶处理LT熔炼温度愈高,合金化程度愈完全,但熔体氧化、吸氢倾向愈大,铸锭形成粗晶组织和裂纹的倾向性愈大。

通常,铝合金的熔炼温度都控制在合金液相线温度以上50~100℃的范围内。

从图1的Al-Cu相图可知,Al-5%Cu的液相线温度大致为660~670℃,因此,它的熔炼温度应定在710(720)℃~760(770)℃之间。

浇注温度为730℃左右。

图1 铝铜二元状态图2.熔炼时间熔炼时间是指从装炉升温开始到熔体出炉为止,炉料以固态和液态形式停留于熔炉中的总时间。

熔炼时间越长,则熔炉生产率越低,炉料氧化吸气程度愈严重,铸锭形成粗晶组织和裂纹的倾向性愈大。

精炼后的熔体,在炉中停留愈久,则熔体重新污染,成分发生变化,变形处理失效的可能性愈大。

因此,作为一条总的原则,在保证完成一系列的工艺操作所必需的时间的前提下,应尽量缩短熔炼时间。

3.合金化元素的加入方式与铝相比,铜的比重大,熔点虽高(1083℃),但在铝中的溶解度大,溶解热也很大,无需将预热即可溶解,因此,可以以纯金属板的形式在主要炉料熔化后直接加入熔体中,亦可与纯铝一同加入。

4.要注意覆盖众所周知,铝在高温熔融状态,极易形成Al2O3氧化膜,因此要对铝熔体进行保护。

就铝铜合金而言,所用的覆盖剂为:40%KCl+40%NaCl+20%冰晶石(Na3AlF6)的粉状物。

它的比重约为2.3g/cm3,熔点约670℃,这种覆盖剂不仅能防止熔体氧化和吸氢,同时还具有排氢效果。

这是因为它的熔点比熔体温度低,比重比熔体小,还具有良好的润湿性能,在熔体表面能够形成一层连续的液体覆盖膜,将熔体和炉料隔开,且具有一定的精炼能力,因而,这种覆盖剂具有良好的覆盖、分离、精炼的综合工艺性能。

加入量一般为熔体质量的2~5%。

5. 要注意扒渣当炉料全部熔化后,在熔体表面会形成一层有溶剂、金属氧化物和其它非金属夹杂物所组成的熔渣。

在进行浇注之前,必须将这层渣除掉。

铝合金熔炼浇铸工艺分析

铝合金熔炼浇铸工艺分析

铝合金熔炼浇铸工艺分析铝合金的熔炼与浇注是铸造生产中主要环节。

严格控制熔炼与浇铸的全过程,对防止针孔、夹杂、欠铸、裂纹、气孔以及缩松等铸造缺陷起着重要的作用。

由于铝熔体吸收氢倾向大,氧化能力强,易溶解铁,在熔炼与浇铸过程中必须采取简易而又谨慎的预防措施,以获得优质铸件。

熔炼:熔炼铝合金在能源使用上分为传统燃料(煤、燃油、燃气)与电力加热,在热传递上分为辐射导热和感应加热。

坩埚式热电阻炉和熔池式的反射炉都属于辐射导热,坩埚式热电阻炉是通过辐射传递热量,导热效率低,内部溶液不流动,成分不容易均匀;有的会在原基础上加电磁搅拌装置,造价比较昂贵。

熔池式反射炉使用燃煤,燃气,燃油,导热效率通过不断的工艺改进已经较高,但其更适合大量持续产出铝水,因其属于持续生产,会导致成分不稳定。

中频感应电炉是通过磁场转换感应加热,对空气的污染小,热量的损耗也小,是比较理想的加热方式,加热效率高,速度快,同时炉内有电磁扰动,铝水在内部产生对流,成分比较均匀。

经过和同事交流得知,我们目前设计的产线将生产多种产品,规格相差较大,且产量相对较低,考虑到铝水量要求有限,但品质要求较高,非常适合使用中频感应电炉来参与铝水的熔炼。

中频感应电炉型号多样技术成熟,可根据我方具体需求采购相应容量和功率的炉体。

浇铸:铝合金熔体易吸氧,因此我们应尽可能的让熔体避免与空气的接触。

在工艺体现上应尽量减少熔炼和浇铸的时间,避免熔体的转包,避免在空气流通良好的环境下实施浇注作业等。

因本人在铝合金铸造上见识有限,只能根据个人的经验谈一些见解,减少空气接触的问题上,中频感应电炉熔炼期间可以加装炉盖,取料和调制精炼时都可以由观察口进行,必要时可以通氮气保护。

浇铸方案上可采取1.流水线过熔炉口,直接炉体倾转就可实施浇铸作业。

2.用保温铝水包转运;这样就灵活多了,既可以采用沙型固定,移动铝水包进行浇铸,也可以采用铝水包固定,移动沙型线进行浇铸。

根据我方沙型种类较多,个人认为移动铝水包进行浇铸的方案较易实现自动化浇铸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝合金的熔炼与浇铸6.5.1铝合金的性能及应用铝合金是比较年轻的材料,历史不过百年,铝合金以比重小,强度高著称,可以说没有铝合金就不可能有现代化的航空事业和宇航事业,在飞机、导弹、人造卫星中铝合金所占比重高达90%,是铸造生产中仅次于铸铁的第二大合金,其地壳含量达7.5%,在工业上有着重要地位。

铝合金有良好的表面光泽,在大气及淡水中具有良好的耐腐蚀性,故在民用器皿制造中,具有广泛的用途。

纯铝在硝酸及醋酸等氧化性酸类介质中具有良好的耐蚀性,因而铝铸件在化学工业中也有一定的用途。

纯铝及铝合金有良好的导热性能,放在化工生产中使用的热交换装置,以及动力机械上要求具有良好导热性能的零件,如燃机的汽缸盖和活塞等,也适于用铝合金来制造。

铝合金具有良好的铸造性能。

由于熔点较低(纯铝熔点为660℃,铝合金的浇注温度一般约在730~750℃左右),故能广泛采用金属型及压力铸造等铸造方法,以提高铸件的在质量、尺寸精度和表面光洁程度以及生产效率。

铝合金由于凝固潜热大,在重量相同条件下,铝液的凝固过程时间延续比铸钢和铸铁长得多,其流动性良好,有利于铸造薄壁和结构复杂的铸件。

铸造铝合金的分类、牌号:铝合金按照加工方法的不同分为两大类,即压力加工铝合金和铸造铝合金(分别以YL和ZL表示)。

在铸造铝合金中又依主要加入的合金元素的不同而分为四个系列,即铸造铝硅合金、铸造铝铜合金、铸造铝镁合金和铸造铅锌合金(分别以 ZL1X X,ZL2 X X,ZL3 X X和ZL4 X X表示),在每个系列中又按照化学成分及性能的不同而分为若干牌号。

表1中列出了铸造铝合金国家标准所包括的几种铝合金的牌号。

6.5.2 铝合金的熔炼设备合金熔炼的目的是要获得符合一定成分和温度要求的金属熔液。

不同类型的金属,需要采用不同的熔炼方法及设备。

如钢的熔炼是用转炉、平炉、电弧炉、感应电炉等;铸铁的熔炼多采用冲天炉;而非铁金属铝合金的熔化通常采用坩埚电阻炉,炉子的大小一般为30-500kg,电热体有金属(铁铬合金)、非金属(碳化硅)两种,是广泛用来熔化铝合金的炉子,优点是:炉气呈中性,金属也不会强烈氧化,炉温便于控制,操作简单,劳动条件好。

坩埚分金属坩埚(铸铁、铸钢、钢板)非金属坩埚(石墨、粘土、炭质)两类。

QR系列坩埚熔化电阻炉如图6-9、6-10所示。

图6-9 QR系列坩埚熔化电阻炉外形图其炉体外壳由型钢及钢板焊接成圆筒结构,其有各种耐火材料砖砌成的加热室。

在加热室与炉壳之间砌有保温砖及填满保温粉以减少热损失。

由高电阻合金加工成螺旋状的电热元件布置在加热室周围的搁砖上,通过引出棒与外线路的电源接通。

耐热材料制成的坩埚工作室放在加热室。

在电炉后端装有保护罩壳,罩壳是加热元件接线装置。

通过蜗轮减速机,可将装置在炉架上的炉体在90度围倾斜浇铸,也可手动操作。

炉面板上装有两个半圆形的炉盖,炉盖合并盖好后留有一热电偶测量孔。

电路配置一支热电偶,通过补偿导线与控制柜上的仪表相连接,可控制工作温度。

6.5.3 铝合金坩埚电阻炉熔炼的特点及工艺过程1.铝合金熔炼的特点由于铝合金的熔点低,熔炼时极易氧化、吸气,合金中的低沸点元素(如镁、锌等)极易蒸发烧损。

故铝合金的熔炼应在与燃料和燃气隔离的状态下进行。

铝合金熔炼工艺控制较为复杂。

铝合金的牌号较多,使用元素也较多,某一元素对一种合金是有益的,但对另一种合金可能是有害的,同一炉不要熔化成分相差1—炉壳 2—炉衬 3—加热元件 4—炉盖 5—坩埚 6—倾斜机构 7—支架图6-10 QR系列坩埚熔化电阻炉结构图较大的合金,熔炼时配料应精确计算:熔化铝合金的炉料包括金属炉料(新料、中间合金、旧炉料),溶剂(覆盖剂、精炼剂、变质剂)和辅助材料(指坩埚及熔炼浇注工具表面上涂的涂料)。

配料计算主要是如何搭配金属材料,以满足合金质量要求。

一方面是保证合乎要求的化学成分,另一方面是在保证质量的前提下多使用旧炉料,以降低成本。

2.熔炼的工艺过程(1)炉料处理炉料使用前应清理炉料,以去除表面的锈蚀、油脂等污物。

放置时间不长,表面较干净的铝合金锭及金属型回炉料可以不经吹砂处理,但应消除混在炉料的铁质过滤网及镶嵌件等,所有的炉料在入炉前均应预热,以去除表面附的水分,缩短熔炼时间在3小时以上。

(2)坩埚及熔炼工具的准备新坩埚使用前应清理干净及仔细检查有无穿透性缺陷,使用前均应吹砂,并预热至暗红色(500--600度)保温2小时以上,以烧除附着在坩埚壁的水分及可燃物质,待冷到300度以下时,仔细清理坩埚壁,在温度不低于200度时喷涂料。

坩埚要烘干、烘透才能使用。

压瓢、搅拌勺、浇包等熔炼工具使用前必须除尽残余金属及氧化皮等污物,经过200℃~300℃预热并涂以防护涂料。

以免与铝合金直接接触,污染铝合金。

涂料一般采用氧化锌和水或水玻璃调合。

涂完涂料后的模具及熔炼工具使用前再经200℃~300℃预热烘干。

(3)熔炼温度的控制熔炼温度过低,不利于合金元素的溶解及气体、夹杂物的排出,增加形成偏析、冷隔、欠铸的倾向,还会因冒口热量不足,使铸件得不到合理的补缩,有资料指出,所有铝合金的熔炼温度至少要达705度并应进行搅拌。

熔炼温度过高不仅浪费能源,更严重的是因为温度愈高,吸氢愈多,晶粒亦愈粗大,铝的氧化愈严重,一些合金元素的烧损也愈严重,从而导致合金的机械性能的下降,铸造性能和机械加工性能恶化,变质处理的效果削弱,铸件的气密性降低。

生产实践证明,把合金液快速升温至较高的温度,进行合理的搅拌,以促进所有合金元素的溶解(特别是难熔金属元素),扒除浮渣后降至浇注温度,这样,偏析程度最小,熔解的氢亦少,有利于获得均匀致密、机械性能高的合金。

因为铝熔体的温度是难以用肉眼来判断的,所以不论使用何种类型的熔化炉,都应该用测温仪表控制温度。

测温仪表应定期校核和维修。

热电偶套管应周期的用金属刷刷干净,涂以防护性涂料,以保证测温结果的准确性及延长使用寿命。

(4)熔炼时间的控制为了减少铝熔体的氧化、吸气和铁的溶解,应尽量缩短铝熔体在炉的停留时间,快速熔炼。

从熔化开始至浇注完毕,砂型铸造不超过4小时,金属型铸造不超过6小时,压铸不超过8小时。

为加速熔炼过程,应首先加入中等块度、熔点较低的回炉料及铝硅中间合金,以便在坩埚底部尽快形成熔池,然后再加块度较大的回炉料及纯铝锭,使它们能徐徐浸入逐渐扩大的熔池,很快熔化。

在炉料主要部分熔化后,再加熔点较高、数量不多的中间合金,升温、搅拌以加速熔化。

最后降温,压入易氧化的合金元素,以减少损失。

(5)精炼处理铝合金在熔炼时,极易氧化生成AL2O3,其氧化物比重和合金液比重相近,如靠它自己上浮或下沉是难以去除的,很容易使铸件形成夹渣。

还有铝合金在高温时吸收氢气,如不去除,也将会使铸件形成气孔。

因此,上述炉料等准备工作很重要。

融化后,还要进行精炼处理,首先将旧渣扒去,用复盖剂复盖,用量为铝液中的0.2%~0.5%,做俩次加入,在除气前加入其重量的1/2~1/3。

再以钟罩压入预热好的精炼剂,用量为铝液重的0.4%~0.5%,精炼处理温度为730~750℃。

分两次加入,第一次压入量为1/2略多些,处理时间为4~5min。

在除气后扒去熔渣加入其重量的1/2~2/3的复盖剂,静止2~3min后,即可扒渣进行浇注,浇注温度为700~740℃。

3.熔体的转送和浇注尽管固态氧化铝的密度近似于铝熔体的密度,在进入铝熔体部后,经过足够长的时间才会沉至坩埚底部。

而铝熔体被氧化后形成的氧化铝膜,却仅与铝熔体接触的一面是致密的,与空气接触的一面疏松且有大量的小孔,其表面积大,吸附性强,极易吸附水汽,反有上浮的倾向。

因此,在这种氧化膜与铝熔体的比重差小,将其混入熔体中,浮沉速度很慢,难以从熔体中排除,在铸件中形成气孔、夹杂。

所以,转送铝熔体中关键是尽量减少熔融金属的搅拌,尽量减少熔体与空气的接触。

采用倾转式坩埚浇注熔体时,为避免熔体与空气的混合,应将浇包尽量靠近炉咀,并倾斜放置,使熔体沿着浇包的侧壁下流,不致直接冲击包底,发生搅动、飞溅等。

采用正确合理的浇注方法,是获得优质铸件的重要条件之一。

生产实践证明,注意下列事项,对防止、减少铸件缺陷是很有效的。

(1)浇注前应仔细检查熔体出炉温度、浇包容量及其表面涂料层的干燥程度,其他工具的准备是否合乎要求。

(2)不能在有“过堂风”的场合下浇注,以及熔体强烈氧化,燃烧,使铸件产生氧化夹杂等缺陷。

(3)由坩埚获取熔体时,应先用包底轻轻拨开熔体表面的氧化皮或熔剂层,缓慢地将浇包浸入熔体,用浇包的宽口舀取熔体,然后平稳的提起浇包。

(4)端包时步子要稳,浇包不宜提得过高,浇包金属液面必须保持平稳,不受拢动。

(5)即将浇注时,应扒净浇包的渣子,以免在浇注中将熔渣、氧化皮等带入铸型中。

(6)在浇注中,熔体流要保持平稳,不能中断,不能直冲口杯的底孔。

浇口杯自始至终应充满,液面不得翻动,浇注速度要控制得当。

通常,浇注开始时速度稍慢些,使熔体充填平稳,然后速度稍快,并基本保持浇注速度不变。

(7)在浇注过程中,浇包咀与浇口的距离要尽可能靠近,以不超过50毫米为限,以免熔液过多地氧化。

(8)距坩埚底部60毫米以下的熔体不宜浇注铸件。

4.浇注安全◇清理浇注场地并使其通畅,不准有积水。

◇参加浇注的人员必须按要求穿戴好防护用品。

◇浇包不能装得太满,以免抬运时溢出飞溅伤人。

◇不准用冷铁棒插入高温液体中去扒渣、挡渣。

◇抬运金属液时,步伐要稳,步调一致,听从指挥。

◇剩余液体要倒在指定位置。

整个熔铸过程概括如下:首先检查电器设备是否正常——送电——原材料准备——预热坩埚至发红——加入小块炉料、熔点较低的回炉料尽快形成熔池——加块度较大的回炉料及铝锭——升温之750℃~760℃待铝合金全部熔化——加覆盖剂——熔毕后充分搅拌——扒渣——精炼除气——扒渣——再加覆盖剂——静置——扒渣——出炉——浇铸。

6.6常见铸件缺陷分析1.氧化夹渣缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。

断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现(如图6-11)。

产生原因:图6-11 含氧化夹杂缺陷的铸件实物产生原因:(1)炉料不清洁,回炉料使用量过多(2)浇注系统设计不良(3)合金液中的熔渣未清除干净(4)浇注操作不当,带入夹渣(5)精炼变质处理后静置时间不够防止方法:(1)炉料应经过吹砂,回炉料的使用量适当降低(2)改进浇注系统设计,提高其挡渣能力(3)采用适当的熔剂去渣(4)浇注时应当平稳并应注意挡渣(5)精炼后浇注前合金液应静置一定时间2. 气孔气泡缺陷特征:铸件壁气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。

表面气孔、气泡可通过喷砂发现,部气孔、气泡可通过X光透视或机械加工发现(如图6-12)。

相关文档
最新文档