费米分布及玻耳兹曼分布
波色统计和费米统计

A为常数,著名的斯特藩-玻尔兹曼定律
b
11
物理意义: 单位体积的辐射能只与温度有关, 与温度的四次方成正比。
b
12
适用量子分布的理想气体称之为简并气体。
1.费米分布 (适用自旋为1/2的电子系统)
FFD
1 e( )/kT
1
常记为 f ,称为费米能级
b
2
费米分布的性质
别:
b
3
费米能级的具体表示:
其中:n N 表示单位体积的自由电子数 V
b
4
f
f
0
1
2
8
Tc
2 2
mk
(N 2.612V
)2/3
玻色子的质量和粒子数密度决定。
b
7
物理意义:
超导体的正常态转化到超导态可用玻色凝聚解释
b
8
光子气体
平衡系统特点: 高频光子和低频光子总在不停地转换,因而光子数 量也在不断变化,系统中光子数不守恒。
b
9
上式称之为普朗克辐射公式。
b
10
上式为著名的维恩位移定律。 该定律可以用于确定很多星体表面的温度。
第十一章 玻色统计和费米统计
单
粒 子
经典分布 玻尔兹曼分布
态
上
的
三
费米分布
种 分 布
量子分布 玻色分布
经典分布考虑了微观粒子的测不准关系和能量量
子化的影响。但是却没有考虑粒子的全同性以及
泡利不相容原理。
b
1
粒子全同性的微观解释: 微观粒子具有波动性,它们在运动时无轨道可言, 因而无法用编号的方法追踪它们的运动,它们是 不可分辨的。 或者说,粒子的互换不产生新的微观态。
玻尔兹曼分布与费米狄拉克分布的统一

p 2 c2
+
m
2 e
c4.
为了简化,
把所有的能量以
m e c2
为单位, 动量以 m e c为单位, 上式化为
ne = 8KP3e Q]1
1+
E E2 - 1 exp [ (E - Le - 1)
/kT ]
dE,
( 7)
Ke = h /m e c为电子的 Com pton波长.
如果要计算电子处在 E 1和 E 2之间的几率 f2, 则需要
0. 3109 0. 1230 2. 5286 0. 5722 0. 0347 16. 4914
0. 3109 0. 1707 1. 8217 0. 5722 0. 0483 11. 8537
2
0. 3109 0. 2353 1. 3215 0. 5722 0. 0716 7. 9958
1
0. 3109 0. 2829 1. 0991 0. 5722 0. 0983 5. 8221
后左右调一点但是值不变就是它合理的上限.
3 数值结果和分析 [ 4- 8]
表 1给出了在不同温度和化学势下玻尔兹曼分布和 费米 ) 狄拉克分布的比较. 其中左列为温度 kT= 0. 5M eV, 电子动能 0. 5- 1M eV的几率; 右列为 kT = 0. 05M eV, 电子 动能 0. 05- 0. 5M eV 的几率. f1 和 f2 分别代表玻尔兹曼分 布和费米 ) 狄拉克分布的结果. 由于玻尔兹曼分布不受化 学势的影响, 故化学势变化保持恒值; 费米 ) 狄拉克分布 的值随化学势减小而变大. 当温度较高, 如左列, 在化学势 很小时, 它们的分布几率是相差不大的. 但随温度降低, 如 右列, 它们偏离会增加. 随着 kT 值的增大, 物态越接近于 理想气体, 故两种分布几率越接近.
电子工程物理作业.

第四章1. 当E-E F 分别为kT 、4kT 、7kT ,用费米分布和玻尔兹曼分布分别计算分布概率,并对结果进行讨论。
解:电子的费米分布 ()011F F D E E k Tf E e--=+,玻尔兹曼近似为()0F E E k TM B f E e---=(1)E-E F =kT 时 ()10.268941F D f E e-==+ ,()1=0.36788M B f E e --= (2)E-E F =4kT 时 ()410.018321F D f E e-=≈+ ,()40.01799M B f E e --=≈ (3)E-E F =7kT 时 ()710.000911F D f E e-=≈+ ,()70.00091M B f E e --=≈ 当0F E E k Te-远大于1时,就可以用较为简单的玻尔兹曼分布近似代替费米狄拉克分布来计算电子或空穴对能态的占据概率,从本题看出E-E F =4kT 时,两者差别已经很小。
2. 设晶格常数为a 的一维晶格,导带极小值附近的能量Ec(k)和价带极大值附近的能量En(k)分别为()()m k k m k k E c 212223-+= ,()m k m k k E v 2221236 -= 式中m 为电子惯性质量,14.3,/1==a a k πÅ,试求出:(1)禁带宽度(2)导带底电子的有效质量; (3)价带顶电子的有效质量;(4)导带底的电子跃迁到价带顶时准动量的改变量。
解: (1) 令 0)(=∂∂k k E c 即 ()023201202=-+m k k h m k h 得到导带底相应的 143k k =令 0)(=∂∂k k E v 即 0602=m kh 得到价带顶相应的 0=k故禁带宽度()0212210221021641433043m k h k m h k m hk E k k E E v c g -⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==-⎪⎭⎫ ⎝⎛==将k 1=a/2代入,得到022481m a h E g =(2)导带底电子有效质量02C 22nm 83dk E d /h m ==*(3)价带顶空穴有效质量02V 22p m 61dk E d /h m -==* (4)动量变化为a 8h30k 43p 1=⎪⎭⎫ ⎝⎛-=∆3. 一块补偿硅材料,已知掺入受主杂质浓度N A =1⨯1015cm -3, 室温下测得其费米能级位置恰好与施主能级重合,并测得热平衡时电子浓度n 0=5⨯1015cm -3。
玻尔兹曼系统、玻色子系统、费米子系统的区别及统计规律

玻尔兹曼系统、玻色子系统、费米子系统的区别及统计规律当描述粒子行为时,玻尔兹曼系统、玻色子系统和费米子系统有着不同的特点和统计规律。
下面对它们进行详细说明:玻尔兹曼系统:描述:玻尔兹曼系统适用于经典粒子,如分子和原子等。
这些粒子之间可以相互交换位置和能量,且粒子可以具有任意能量。
玻尔兹曼系统假设粒子之间是无差别可区分的。
统计规律:玻尔兹曼系统中的粒子遵循玻尔兹曼分布。
玻尔兹曼分布描述了粒子在可分辨的能级上的分布情况,其表达式为:P(E) ∝exp(-E/kT),其中P(E)表示具有能量E的粒子的概率,k是玻尔兹曼常数,T是系统的温度。
玻色子系统:描述:玻色子是具有整数自旋的粒子,如光子和声子等。
玻色子系统中的粒子可以占据相同的量子态,即多个粒子可以处于同一个量子态。
这种行为被称为玻色统计。
统计规律:玻色子系统中的粒子遵循玻色-爱因斯坦统计。
根据玻色-爱因斯坦分布,粒子的分布可以是任意整数,不受限制。
这意味着在低温条件下,大量玻色子可以集中在系统的最低能级,形成所谓的玻色-爱因斯坦凝聚。
费米子系统:描述:费米子是具有半整数自旋的粒子,如电子和中子等。
费米子系统中的粒子由于遵循泡利不相容原理,每个量子态只能被一个粒子占据。
这意味着费米子之间无法处于同一个量子态,也无法彼此交换位置。
统计规律:费米子系统中的粒子遵循费米-狄拉克统计。
根据费米-狄拉克分布,每个量子态最多只能被一个粒子占据。
在多粒子费米子系统中,由于每个量子态只能占据一个粒子,系统的能级填充依次递增,满足所谓的泡利不相容原理。
总结:玻尔兹曼系统适用于经典粒子,粒子之间无限制;玻色子系统适用于具有整数自旋的粒子,允许多个粒子占据同一个量子态;费米子系统适用于具有半整数自旋的粒子,每个量子态最多只能有一个粒子占据。
玻尔兹曼系统服从玻尔兹曼分布,玻色子系统服从玻色-爱因斯坦统计,费米子系统服从费米-狄拉克统计。
这些统计规律决定了粒子在不同系统中的分布特征和行为方式。
第九章第1讲 玻尔兹曼统计

•单原子分子:无内部结构的质点(没有转动等自由度)。
•理想气体:分子之间没有相互作用。
•考虑无外场,因此分子运动看作是在容器内的自由运动
ε=
p2 = 2m
1 2m
(
px2
+
py2
+
pz2 )
∫ ∫ = Z1 = e−βε dΩ
e−
β
1 2m
(
px2
+
p
2 y
+
pz2
)
dxdydzdpxdpydpz
h3
2kT m
方均根速率:
∫ ∫ vs=2 v=2
f (v)v2d=v
4
−
πAe
m 2kT
v2
v
4
d=v
3kT
m
= vs = v2
using: 1+ x + x2 + ... = (1− x)−1
每个单粒子态上的平均粒子数为
N
= − ∂ ln ξ ∂α
= eα +β1ε −1
= e(ε −µ )1/kT
−1
f BE
(ε
)
=
e(ε
1
−µ )/kT
-1
∈ (0,
+ ∞)
上式称为玻色分布函数,其意义是:玻色系统处于平衡态时, 各单粒子态(能量为ε)上的平均占据数无限制。
1
≈
1
exp[(ε − µ) kT ] ±1 exp[(ε − µ) kT ]
= exp[(µ − ε ) kT ] = fB (ε )
fB (ε=) exp(−α − βε=) exp[(µ − ε ) kT ] 1
半导体物理-11

庞智勇
山东大学物理学院
本幻灯片参照刘恩科等所编著教材《半导体物理学》编写
半导体物理 Semiconductor Physics
前面几节中我们都假定费米能级位于离开带边较 远的禁带之中,但是在有些情形下,费米能级可以 接近带边甚至进入带内,这种情形称为简并。
在费米能级位于离开带边较远的禁带之中情况下, 费米分布可由玻尔兹曼分布近似。在简并情形下, 由于占有几率f(E)一般有较大的值,玻尔兹曼分布和 费米分布之间的区别将变得显著,由玻尔兹曼分布 得到的占有几率将大于由费米分布得到的,所以不 能再用玻尔兹曼近似,而必须用费米分布。
积分,得到导带电子浓度
n0
Ec' Ec
4
(2mn* )3/ 2 h3
exp(
E EF k0T
)(E
Ec )1/ 2dE
对于简并半导体
Ec - EF >> k0T 的条件不满足,这时导带电子浓度必须用 费米分布函数计算,于是简并半导体的电子浓度n0为
n0
4
(2mn* )3/ 2 h3
对掺磷的n型硅,ED =0.044 eV,mn* 1.08m0 ,
计算可得 ND 2.31023 cm3
当杂质浓度超过一定数量后,载流子开始简并化的现 象称为重掺杂,这种半导体即称为简并半导体。
半导体物理 Semiconductor Physics
简并时杂质没有充分电离
注意这是一个结论,而不是当没有充分电离时怎样计算
dN fB (E)gv (E)dE
4V
(2mn* )3/ 2 h3
exp(
E EF k0T
)(E
玻尔兹曼分布与费米—狄拉克分布的统一

如果要计算电子处在 和 之间 的几率 , 则需要
先算 出 E 到 的积分 , 出之间的粒子数密度 , 得 再除 以 ቤተ መጻሕፍቲ ባይዱ
总的 数密度 , 即
.
F
E
一1
-
— —
J Z
, I
—
-
- Ie
—
:
—
( t )k x [ E- e 1 / r] p" i ,—一 —— _ = ; —
e 璃4 一 T d r 口
统计、 玻色统计和费米一狄拉克统计. 尔兹曼统计主要 玻
研究定 域系统 和满足 经典 极 限条 件 的近 独立 粒 子 系统 的
() 1 式其实就是麦克斯韦速率分布, 以有时将玻尔兹曼 所
能 量分布 又叫麦玻 能量 分布. 了更 清楚 的看 到玻 尔兹 曼 为
玻尔兹曼根据平衡时各态概率均等原理和概率归一 化条件, 运用经典力学的观点把能量看成是可连续变化的
・
能) 是 Bhm n 常数. , oz an 如果现在我们将其在 0~∞区域 进行积分 , 3 式变为 () 。
收稿 日期 :0 0— 5—2 21 0 8
基金项 目: 国家 自 然科 学基金 资助 项 目(0779 ; 1781) 四川省教 育厅青 年基金资助 项 目(9 B8 , 7 B8 ) 西华师 范 0Z 07 0 Z09 ;
第2 0卷 5期
Vo . O No 5 12 .
四川 文理 学院学 报
Sc u n Unv ri fArs a d S in e J u n l ih a ie st o t n ce c o r a y
21 0 0 0年 9月
S p. 0 0 e 2 1
说明玻尔兹曼系统玻色子系统费米子系统的区别

说明玻尔兹曼系统玻色子系统费米子系统的区别玻尔兹曼系统和玻色子系统以及费米子系统是统计力学中的三种重要模型。
它们描述了微观粒子在宏观尺度上的行为。
本文将逐步阐述玻尔兹曼系统、玻色子系统和费米子系统的区别。
1.玻尔兹曼系统:玻尔兹曼系统是一种描述粒子统计行为的模型。
在玻尔兹曼系统中,粒子可以以任意数量存在于相同的量子态。
这意味着多个粒子可以处于相同的能量状态,也就是说,它们之间没有排斥效应。
玻尔兹曼系统中的粒子是无标识的,它们之间是可以交换的。
2.玻色子系统:玻色子系统描述了玻色子的统计行为。
玻色子是一类具有整数自旋的粒子,例如光子、声子等。
玻色子系统中,多个粒子可以同时处于相同的能量状态,它们之间没有排斥效应。
这种行为被称为玻色-爱因斯坦统计。
玻色子系统的一个重要特点是它们会聚集到基态,即粒子会尽可能地集中在能量最低的状态。
3.费米子系统:费米子系统描述了费米子的统计行为。
费米子是一类具有半整数自旋的粒子,例如电子、质子等。
费米子系统中,根据泡利不相容原理,每个能级只能有一个粒子占据,它们之间存在排斥效应。
这种行为被称为费米-狄拉克统计。
费米子系统的一个重要特点是它们填充能级从低到高,直到达到所谓的费米能级。
根据以上的描述,可以总结出玻尔兹曼系统、玻色子系统和费米子系统的区别:1.统计行为:玻尔兹曼系统中粒子之间无排斥效应,玻色子系统中多个粒子可以处于相同的能级,费米子系统中每个能级只能有一个粒子占据。
2.粒子类型:玻尔兹曼系统中的粒子是无标识的,玻色子系统中的粒子具有整数自旋,费米子系统中的粒子具有半整数自旋。
3.基态分布:玻色子系统会聚集到能量最低的状态,费米子系统填充能级从低到高。
4.波尔茨曼系统、玻色子系统和费米子系统在实际应用中有着不同的物理特性和行为模式。
综上所述,玻尔兹曼系统、玻色子系统和费米子系统在统计行为、粒子类型、基态分布等方面存在着明显的区别。
这些模型在研究微观粒子的统计性质和宏观行为时提供了重要的理论基础和工具,对于理解物质的性质和行为具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
物理与光电工程学院
3.1.1 费米分布
空穴的费米分布函数:
f
V
(E)
1-f
E
1+exp
EF k0T
E
-1
fV(E)与1-f(E)是关于EF是对称的,即为电子-空穴几率对称性。
10
物理与光电工程学院
3.1.2 玻耳兹曼分布函数 1. 电子的玻耳兹曼分布函数
E EF kT时, exp [(E-EF )/kT] 1
第3章 半导体中载流子的统计分布
Chapter 3 Statistical Distribution of Carriers in Semiconductors
1
物理与光电工程学院
本章要点
理解费米分布和玻尔兹曼分布的前提条件,及费米函数的性质。 熟悉导带电子和价带空穴浓度的分析推导过程。 掌握杂质半导体费米能级随杂质浓度和温度的变化关系。 掌握本征、杂质半导体中载流子浓度的计算。 简并半导体的简并化条件及简并情况下载流子浓度的计算。 热平衡态下半导体中载流子浓度满足关系式。
此时,空穴的费米分布函数近似为
-1
f
V F
E
1+exp
EF k
T
E
exp(- EF - E ) kT
这时空穴的费米分布函数转化为空穴的玻耳兹曼分布:
f
V B
E
exp
EF k0T
E
12
物理与光电工程学院
3.1.2 玻耳兹曼分布函数
意义:当粒子系统中的微粒子非常稀少时,粒子必须遵守的泡 利不相容原理自动失去意义。即系统中每一个量子态不存在多 于一个粒子占据的可能性。
2
物理与光电工程学院
引言
热平衡状态: 在一定的温度下,给定的半导体中载 流子的产生和复合同时存在,最后达到一动态平 衡。
热平衡载流子浓度 : 当半导体处于热平衡状态时, 半导体导带电子浓度和价带空穴浓度都保持恒定 的值,这时的电子或空穴的浓度称为热平衡载流 子浓度。
3
物理与光电工程学院
3.1 费米分布及玻耳兹曼分布
此时,电子的费米分布函数近似为
f F E
1+exp
E
EF kT
-1
exp(- E - EF kT
)
即这时电子的费米分布函数转化为电子的玻耳兹曼分布函数
fBE
exp
E EF k0T
11
物理与光电工程学院
3.1.2 玻耳兹曼分布函数
2.空穴的玻耳兹曼分布函数
类似地,若 EF E kT时, exp [(EF-E)/kT] 1
除去在EF附近的几个kT处的量子态 外,在 E EF kT 处,量子态为 电子占据的几率很小。即在 E EF kT 的条件下,泡里不相容原理失去作 用,费米分布和波耳兹曼分布这两 种统计的结果是相同的。
E EF 5kT时, f (E) 0.007 E EF 5kT时, f (E) 0.993
费米分布:
f
E
1+exp
E EF k0T
-1
5
物理与光电工程学院
3.1.1 费米分布
说明1:它描述了在热平衡状态下,在一个 费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。
T=0K: 若E<EF,则 f(E)=1; 若E>EF,则 f(E)=0。
T>0K: 若E= EF , 则f(E) =1/2 ; 若E< EF , 则f(E) >1/2 ; 若E> EF , 则f(E) <1/2 ;
f B E
exp
E EF k0T
不难证明:
f
V B
E
Hale Waihona Puke exp EF k0T
E
f
V B
E
f
B
E
exp
EF E k0T
exp
E EF k0T
1
上述结果是否正确?
15
物理与光电工程学院
3.1.2 玻耳兹曼分布函数
低掺杂半导体中, 载流子统计分布通 常遵顺玻耳兹曼统 计分布。这种电子 系统称为非简并性 系统。
A:0k, B:300k, C:1000k, D:1500k 图3-1 费米分布函数与温度的关系
6
物理与光电工程学院
3.1.1 费米分布
温度升高,能量比EF高的量子态被电子占据的概率上升。
E EF 5kT时, f (E) 0.007 E EF 5kT时, f (E) 0.993
可见,温度主要影响费米能级附近的电子状态。
f (Ei) N
i
EF与温度、半导体材料等有关。
8
物理与光电工程学院
3.1.1 费米分布 费米能级在能带中的位置:
对于金属晶体,价电子只能部分填满最外的导带,费米能级位 置在导带中。
对于半导体晶体,价电子填满了价带,最外的导带是空的,费 米能级位置在禁带内,且随其中的杂质种类、杂质浓度以及温度 的不同而改变。
13
物理与光电工程学院
3.1.2 玻耳兹曼分布函数
除去在EF附近的几个kT处的量子态外,在 EF E kT 处, 量子态被空穴占据的几率很小。即在 EF E 的k条T 件下, 空穴费米分布和空穴波耳兹曼分布这两种统计的结果是相 同的。
14
物理与光电工程学院
3.1.2 玻耳兹曼分布函数 因为:
4
物理与光电工程学院
3.1.1 费米分布
量子态:一个微观粒子允许的状态。对费米子来说,一个量子 态只能容纳一个粒子。
量子统计理论指出:对于一个包含有众多粒子的微观粒子系统, 如果系统满足量子力学的粒子全同性原理和泡里不相容原理, 则没有必要追究个别粒子落在哪个量子态,而是考究在给定能 量E的量子态中有粒子或没有粒子的概率即可。
说明2:它描述了在热平衡状态下,在一个费米粒子系统(如电子 系统)中属于能量E的一个量子态上的电子数。
f (Ei) N
i
式中求和包括每一能量值所包含的每个量子态。
7
物理与光电工程学院
3.1.1 费米分布 说明3:费米能级EF: 电子占据几率为1/2的量子态所对应的能级
费米能级的意义:反映能级被电子填充水平的高低。 费米能级的确定:用系统包含的电子总数N来决定,即
高掺杂半导体,载 流子服从费米统计, 这样的电子系统称 为简并性系统。
16
物理与光电工程学院
3.2 半导体载流子的统计
17
物理与光电工程学院
电子在允许的量 子态中如何分布?
载流子的 统计分布: 载流子按 能量的分
布
允许的量子态按能量 如何分布?
18
物理与光电工程学院
3.2.1 k空间量子态密度
kz
(1). 一个量子态在k空间所占的体积
电子在晶体中的能量状态用k标志,根据周期 性的边界条件,电子的波矢只能取分立的值: