矩形性质练习题

合集下载

矩形的性质与判定典型例题

矩形的性质与判定典型例题

矩形的证明题目一.选择题(共5小题)1.(2016春•巴南区校级月考)如图矩形都是由大小不等的正方形按照一定规律组成的,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…,则第⑧个矩形的周长为()A.168 B.170 C.178 D.1882.(2016•姜堰区校级模拟)矩形ABCD中,AB=4,BC=8,矩形CEFG上的点G在CD边,EF=a,CE=2a,连接BD、BF、DF,则△BDF的面积是( )A.32 B.16 C.8 D.16+a23.(2016•深圳模拟)如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个 B.2个 C.3个 D.4个4.(2015•十堰一模)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8 C.4D.65.(2015•天台县模拟)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n (其中n为正整数)的长为( )A. B. C. D.二.解答题(共25小题)6.(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.7.(2015•玉林)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.8.(2015•石家庄二模)已知:如图所示,四边形ABCD是矩形,分别以BC、CD为一边作等边△EBC和等边△FCD,点E在矩形上方,点F在矩形内部,连接AE、EF.(1)求∠ECF的度数;(2)求证:AE=FE.9.(2015春•巴南区校级期末)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.10.(2015秋•开江县期末)已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF 上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6。

(完整版)矩形练习题及答案

(完整版)矩形练习题及答案

矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。

矩形的性质练习题及答案

矩形的性质练习题及答案

矩形的性质练习题及答案
练题
1. 矩形是一种特殊的四边形,具有哪些特点?
2. 矩形的四边分别叫什么?
3. 矩形的对角线有什么特点?
4. 如何判断一个四边形是否为矩形?
5. 下列哪个形状不是矩形?
- (A) 正方形
- (B) 长方形
- (C) 梯形
- (D) 菱形
6. 一个矩形的长和宽分别为8cm和6cm,求他的面积和周长。

答案
1. 矩形具有以下特点:
- 四个角都是直角(90°)
- 两对相邻边相等
- 对角线相等
2. 矩形的四边分别叫:
- 上边(或上底)
- 下边(或下底)
- 左边(或左底)
- 右边(或右底)
3. 矩形的对角线有以下特点:
- 对角线长度相等
- 对角线互相垂直(成直角)
4. 判断一个四边形是否为矩形,需满足以下条件:- 四个角都是直角
- 两对相邻边相等
5. 下列哪个形状不是矩形?
- (C) 梯形
6. 长为8cm,宽为6cm的矩形的面积和周长计算如下:
- 面积:8cm × 6cm = 48cm²
- 周长:2 × (8cm + 6cm) = 28cm
注意:矩形的面积单位为平方单位,周长单位为长度单位。

---
以上为矩形的性质练习题及答案。

了解矩形的特点和计算方法能够帮助我们更好地理解和应用矩形的性质。

如果还有其他问题,欢迎继续咨询。

矩形常见练习题

矩形常见练习题

矩形常见练习题矩形常见练习题矩形是我们在数学课上经常遇到的一个几何形状。

它有四条边,两对边相互平行,且相等。

矩形的特点使得它在数学中有着重要的地位,也是我们常常需要进行练习的内容之一。

下面,我们将通过一些常见的矩形练习题来加深对矩形的理解。

1. 计算矩形的周长和面积首先,我们来计算一个矩形的周长和面积。

假设一个矩形的长为6cm,宽为4cm。

根据矩形的定义,我们知道它的周长等于两条长边和两条短边的长度之和。

所以,这个矩形的周长为2 * (6 + 4) = 20cm。

而矩形的面积等于长乘以宽,即6 * 4 = 24cm²。

通过这个简单的计算,我们可以得到矩形的周长和面积。

2. 矩形的对角线长度接下来,我们来计算一个矩形的对角线长度。

假设一个矩形的长为8cm,宽为5cm。

根据勾股定理,我们可以得到矩形的对角线长度。

将矩形的长和宽分别作为直角三角形的两条直角边,对角线作为斜边,我们可以得到勾股定理的形式:长的平方加上宽的平方等于对角线的平方。

所以,这个矩形的对角线长度等于√(8² + 5²) ≈ 9.43cm。

通过这个计算,我们可以得到矩形的对角线长度。

3. 矩形的特殊性质:正方形正方形是一种特殊的矩形,它的四条边相等且相互平行。

正方形的特殊性质使得它在数学中有着重要的地位。

我们来看一个正方形的例子。

假设一个正方形的边长为10cm。

根据正方形的定义,我们知道它的周长等于四条边的长度之和,即4 * 10 = 40cm。

而正方形的面积等于边长的平方,即10² = 100cm²。

通过这个例子,我们可以看到正方形的周长和面积的计算方法与矩形相同,只是因为它的特殊性质,边长的计算更为简单。

4. 矩形的应用:建筑设计矩形在建筑设计中有着广泛的应用。

许多建筑物的地基、墙体和窗户等都是矩形的形状。

在建筑设计中,矩形的特点使得它易于计算和构造,同时也能够满足建筑物的结构需求。

(完整版)22.3矩形的性质常考题(含详细的答案解析)

(完整版)22.3矩形的性质常考题(含详细的答案解析)

22.3矩形的性质常考题一、选择题(共28小题)1、一个长方形在平面直角坐标系中三个顶点的坐标为(- 1,-1) , (- 1, 2), (3, - 1),则第四个顶点的坐标为 ( )A 、(2, 2)B 、(3, 2)C (3, 3)D 、(2, 3)2、( 2007?临沂)如图,矩形ABCD 中,AB=1, AD=2, M 是CD 的中点,点P 在矩形的边上沿 A?B?C?M 运动,则厶APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的()A 、1.6B 2.5C 3D 、3.44、 一次数学课上,老师请同学们在一张长为 18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A 、50B 50 或 40C 50 或 40 或 30D 、50 或 30 或 20 5、 菱形具有而矩形不具有性质是()A 、对角线相等B 、对角线互相平分C 对角线互相垂直D 、对角线平分且相等6、 (2009?绥化)在矩形 ABCD 中,AB=1, AD= 一 _;, AF 平分/ DAB ,过C 点作CE! BD 于E ,延长 AF 、EC 交于点H,3、(2009?济南)如图,矩形 ABCD 中,AB=3, BC=5.过对角线交点 O 作OE 丄AC 交AD 于E ,贝U AE 的长是(下列结论中:①AF=FH ;②BO=BF ;③CA=CH ;④BE=3ED .正确的是()9、(2007?潍坊)如图,矩形 ABCD 的周长为20cm ,两条对角线相交于 O 点,过点O 作AC 的垂线EF,分别交AD , BC 于E ,F 点,连接CE 则厶CDE 的周长为()B 8cm D 、10cm如图,在矩形 ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直A 、6对B 5对C 4对D 、3对11、(2006?宿迁)如图,将矩形 ABCD 沿 AE 折叠,若/ BAD' =30 °则/ AED'等于()C ①②④ 7、(2009?长如图, D 、②③④矩形ABCD 的两条对角线相交于点 O , / AOB=60°, AB=2,则矩形的对角线 AC 的长是( )C 2:,定不相等的是(A 、5cm C 、9cm 10、(2007?陕西)13、 (2006?大兴安岭)如图,在矩形 ABCD 中,EF// AB , GH// BC, EF 、GH 的交点P 在BD 上,图中面积相等的四边D 、55 °如图,在宽为 20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地•根据 )C 60 ° 12、 (2006?恩施州) 的坐标分别是(2,A 、 (1, 1)C (1,- 2) B 45 °D 、75 °矩形ABCD 中的顶点A 、B 、C D 按顺时针方向排列,若在平面直角坐标系内, 0 )、(0, 0),且A 、C 两点关于x 轴对称,则C 点对应的坐标是()B 、(1 , - 1)-.:':)B 、D 两点对应D 、C 75 ° 15、(2005?泸州)图中数据,计算耕地的面积为(A 、600m 2 C 550m 2 16、(2005?福州) ABCD 的面积的(B 、551m 2 D 、500m 2如图,EF 过矩形ABCD 对角线的交点 O ,且分别交AB CD 于E 、F ,那么阴影部分的面积是矩形 )143|17、( 2004?绍兴)如图,一张矩形纸片沿 AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠, 再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形),则/ OCD 等于()/ CED =60。

初三中考数学复习 矩形的性质与判定 专项训练题 含答案

初三中考数学复习  矩形的性质与判定  专项训练题 含答案

初三中考数学复习矩形的性质与判定专项训练题含答案2019 初三中考数学复习 矩形的性质与判定 专项训练题1. 矩形具有而平行四边形不一定具有的性质是( )A .对角相等B .对角线相等C .对边平行D .对边相等2.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为( )A .30°B .60°C .90°D .120°3. 已知直角三角形的周长为14,斜边上的中线长为3,则直角三角形的面积为( )A .5B .6C .7D .84. 如图,在矩形ABCD 中,对角线AC =8cm ,∠AOD =120°,则AB 的长为( ) A.3cm B .2cm C .23cm D .4cm5. 如图,Rt △ABC 中,DC 是斜边AB 上的中线,EF 过点C 且平行于AB.若∠BCF =35°,则∠ACD 的度数是( )A .35°B .45°C .55°D .65°6. 在矩形ABCD 中,AD =2,AB =3,过点A 、C 作相距为2的平行线段AE 、CF ,分别交CD 、AB 于点E 、F ,则DE 的长是( ) A. 5 B.136 C .1 D.567. 如图,在Rt △ABC 中,∠ACB =90°,AB =10,CD 是AB 边上的中线,则CD 的长是 .8. 如图,BE 、CF 分别是△ABC 的高,M 为BC 的中点,EF =5,BC =8,则△EFM 的周长是 .9. 在矩形ABCD 中,AB =3,AD =4,对角线AC 与BD 相交于点O ,EF 是经过点O 分别与AB 、CD 相交于点E 、F 的直线,则图中阴影部分的面积为 .10. 如图,在矩形ABCD 中,AB =3,对角线AC 、BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为______.又N 为BD 的中点,∴MN ⊥BD(三线合一).点拨:遇直角三角形斜边上有中点的,一般可考虑用直角三角形性质.15. 证明:∵四边形ABCD 是矩形,∴∠B =∠C =90°,∵EF ⊥DF ,∴∠EFD =90°,∴∠EFB +∠CFD =90°,∵∠EFB +∠BEF =90°,∴∠BEF =∠CFD ,在△BEF 和△CFD 中,⎩⎪⎨⎪⎧ ∠BEF =∠CFDBE =CF∠B =∠C ,∴△BEF ≌△CFD(ASA),∴BF =CD.。

矩形的性质与判定练习(含答案)

矩形的性质与判定练习(含答案)


17.在四边形 ABCD 中,对角线 AC , BD 交于点 O ,OA OC ,OB OD ,添加一个条件
使四边形 ABCD 是矩形,那么所添加的条件可以是
(写出一个即可).
18.如图,在矩形 ABCD 中,对角线 AC 与 BD 相交于点 O ,CE BD ,垂足为点 E ,CE 5 ,
A.5
B. 5 3
C.10
D.10 3
7.如图,延长矩形 ABCD 的边 BC 至点 E ,使 CE BD ,连接 AE ,如果 ADB 38 ,则 E 的值是 ( )
A. 19
B. 18
C. 20
D. 21
8.如图,在矩形 ABCD 中,对角线 AC 、 BD 交于 O , BC 2 , AE BD ,垂足为 E ,

24.如图,已知 BEFG 是长方形, A 为 EB 延长线上一点, AF 交 BG 于点 C , D 为 AC 上 一点,且 AD BD BF ,若 BFG 60 ,则 AFG 的度数为 .
B.②③
3.下列对矩形的判定中,正确的个数有 (
C.③④ )
D.②④
(1)对角线相等的四边形是矩形;
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(4)有四个角是直角的四边形是矩形;
(5)四个角都相等的四边形是矩形;
(6)对角线相等,且有一个直角的四边形是矩形;
(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;
A. 12 5
B. 24 5
C. 18 5
D.5
11.如图所示,矩形 ABCD 中, AE 平分 BAD 交 BC 于 E ,CAE 15 ,则下面的结论中 正确的有 ( ) ① ODC 是等边三角形; ② BC 2 AB ; ③ AOE 135 ; ④ SAOE SCOE .

矩形的性质和判定典型试题综合训练(含解析)完美打印版

矩形的性质和判定典型试题综合训练(含解析)完美打印版

矩形的性质和判定典型试题综合训练(含解析)一.选择题(共15小题)1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分4.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC5.下列图形是用矩形纸片来折出阴影部分为等腰三角形,其中正确的有()A.1个B.2个C.3个D.4个6.如图,EF过矩形ABCD对角线的交点O,且分别交AD、BC于点E、F已知AB=3,BC=4,则图中阴影部分的面积是()A.3 B.4 C.6 D.127.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S1与矩形QCNK的面积S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.S1=2S28.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S29.如图,矩形ABCD中,AB=12,BC=13,以B为圆心,BA为半径画弧,交BC于点E,以D为圆心,DA 为半径画弧,交BC于点F,则EF的长为()A.3 B.4 C.D.510.如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°11.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对12.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.513.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小14.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.3 C.D.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2二.填空题(共12小题)16.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.17.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是.18.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH 是矩形.19.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.21.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.22.如图矩形ABCD中,AB=8cm,CB=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为cm2.23.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF 的最小值是.24.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为.25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是.26.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中一定成立的结论有(将正确结论的序号填在横线上)27.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=.三.解答题(共7小题)28.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.29.如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.30.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.31.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.32.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.33.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC 的长及四边形AOFE的面积.34.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是.矩形的性质和判定典型试题综合训练参考答案与试题解析一.选择题(共15小题)1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.4.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故选:B.5.下列图形是用矩形纸片来折出阴影部分为等腰三角形,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据等腰三角形的定义,即可一一判断.【解答】解:如图图1中,∵∠1=∠3,∠2=∠3,∴∠1=∠2,∴BA=BC,∴△ABC是等腰三角形.图3中,同法可证∠1=∠2,∴BA=BC,∴△ABC是等腰三角形.图4中,△ABC是等腰直角三角形,故选C.6.如图,EF过矩形ABCD对角线的交点O,且分别交AD、BC于点E、F已知AB=3,BC=4,则图中阴影部分的面积是()A.3 B.4 C.6 D.12【分析】由全等三角形的判定得到△OFB≌△OED,将阴影部分的面积转化为规则的几何图形的面积进行计算.【解答】解:在矩形ABCD中,OB=OD,∠FBO=∠EDO,∴在△OFB与△OED中,∴△FBO≌△EDO,∴S阴影部分=S△ABO=S矩形=×3×4=3.故选A.7.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S1与矩形QCNK的面积S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.S1=2S2【分析】根据矩形的性质,可知△ABD的面积等于△CDB的面积,△MBK的面积等于△QKB的面积,△PKD的面积等于△NDK的面积,再根据等量关系即可求解.【解答】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故选:B.8.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2【分析】由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC,即S1=S2,故选B.9.如图,矩形ABCD中,AB=12,BC=13,以B为圆心,BA为半径画弧,交BC于点E,以D为圆心,DA为半径画弧,交BC于点F,则EF的长为()A.3 B.4 C.D.5【分析】连接DF,在Rt△CDF中,求出CF,再求出CE即可解决问题.【解答】解:连接DF.∵四边形ABCD是矩形,∴AB=CD=BE=12,DA=BC=DF=13,∠C=90°,∴CF===5,∵EC=BC﹣BE=13﹣12=1,∴EF=CF﹣CE=4.故选B.10.如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°【分析】根据三角形内角和定理和等腰三角形两底角相等求出∠MCP,然后求出∠BCP,再根据等腰三角形两底角相等和三角形内角和定理求解即可.【解答】解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=BC,MP=MC,∵∠PMC=110°,∴∠MCP=(180°﹣∠PMC)=(180°﹣110°)=35°,在长方形ABCD中,∠BCD=90°,∴∠BCP=90°﹣∠MCP=90°﹣35°=55°,∴∠BCP=∠BPC=55°.故选C.11.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【分析】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【解答】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.12.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.5【分析】设FC′=x,则FD=9﹣x,根据矩形的性质结合BC=6、点C′为AD的中点,即可得出C′D的长度,在Rt△FC′D中,利用勾股定理即可找出关于x的一元一次方程,解之即可得出结论.【解答】解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选D.13.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小【分析】首先过A作AG⊥BD于G.利用面积法证明PE+PF=AG即可.【解答】解:如图,过A作AG⊥BD于G,则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),∵S△AOD=S△AOP+S△POD,四边形ABCD是矩形,∴OA=OD,∴PE+PF=AG,∴PE+PF的值是定值,故选C.14.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.3 C.D.【分析】连接AP,根据矩形的性质求出AP的长度,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP,问题得解.【解答】解:连接AP,∵矩形ABCD中,AB=DC=4,P是CD边上的中点,∴DP=2,∴AP==2,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP=.故选D.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2【分析】根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.【解答】方法一:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===(cm2).故选:B.二.填空题(共12小题)16.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.17.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是9.【分析】连接EO,延长EO交AB于H.只要证明四边形ADEO是平行四边形,推出OE=AD,再证明OH 是△ADB的中位线,可得OE=AD,延长即可求出EH解决问题.【解答】解:连接EO,延长EO交AB于H.∵DE∥OC,CE∥OD,∴四边形ODEC是平行四边形,∵四边形ABCD是矩形,∴OD=OC,∴四边形ODEC是菱形,∴OE⊥CD,∵AB∥CD,AD⊥CD,∴EH⊥AB,AD∥OE,∵OA∥DE,∴四边形ADEO是平行四边形,∴AD=OE=6,∵OH∥AD,OB=OD,∴BH=AH,∴OH=AD=3,∴EH=OH+OE=3+6=9,故答案为9.18.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证四边形EFGH是矩形.【分析】根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.19.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=5.【分析】首先证明AB=AE=CD=4,在Rt△CED中,根据CE=计算即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,BC=AD=7,∠D=90°,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴AB=AE=CD=4,在Rt△EDC中,CE===5.故答案为520.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是6.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.21.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD 的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.22.如图矩形ABCD中,AB=8cm,CB=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为10cm2.【分析】本题主要考查矩形的性质,找出题里面的等量关系求解即可.【解答】解:AB=8cm,CB=4cm,E是DC的中点,BF=BC,∴CE=4,CF=3.∴四边形DBFE的面积=8×4﹣8×4÷2﹣4×3÷2=10cm2.23.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF 的最小值是 2.4.【分析】根据已知得出四边形CEPF是矩形,得出EF=CP,要使EF最小,只要CP最小即可,根据垂线段最短得出即可.【解答】解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:×4×3=×5×CP,∴CP=2.4,即EF=2.4,故答案为:2.4.24.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为(2,4)或(3,4)或(8,4)或(2.5,4).【分析】分为三种情况:①OP=OD时,②DO=DP时,③OP=PD时,根据点B的坐标,根据勾股定理和等腰三角形的性质即可求出答案.【解答】解:∵B的坐标是(10,4),四边形OCBA是矩形,∴OC=AB=4,∵D为OA中点,∴OD=AD=5,∵P在BC上,∴P点的纵坐标是4,以O为圆心,以OD为半径作弧,交BC于P,如图1所示:此时OP=OD=5,由勾股定理得:CP=3,即P的坐标是(3,4);由勾股定理得:CP=3,即P的坐标是(3,4);以D为圆心,以OD为半径作弧,交BC于P、P′,如图2所示:此时DP=OD=DP′=5,由勾股定理得:DM=DN=3,即P的坐标是(2,4),P′的坐标是(8,4);③作OD的垂直平分线交BC于P,如图3所示:此时OP=DP,P的坐标是(2.5,4);故答案为:(2,4)或(3,4)或(8,4)或(2.5,4).25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.【分析】由把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∠EFB=60°,易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.26.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中一定成立的结论有①③④(将正确结论的序号填在横线上)【分析】①正确.只要证明BO=BC,OF=FO即可解决问题;②错误.可以证明△EOB≌△FCB,由此即可判断;③正确.只要证明△DEF是等边三角形即可.④正确.只要证明S△BCM=S△ACB,S△AOE=S△AOB=S即可;△ABC【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,OA=OC,∴OB=OA=OB,∵∠COB=60°,∴△BOC是等边三角形,∴∠OCB=60°,∴∠DCA=30°,∵FO=FC,BO=BC,∴BF垂直平分OC,故①正确,∴∠FBC=∠OBE=30°,∴∠FOC=∠FCO=30°,∴∠FOB=90°,∵CD∥AB,∴∠FCO=∠EAO,∵∠FOC=∠AOE,OA=OC,∴△FOC≌△EOA,∴OE=OF,∴BF=BE,∵∠BOE=∠BCF=90°,∠EBO=∠CBF,∴△EBO≌△FBC,故②错误,∵DF∥EB,DF=BE,∴四边形DEBF是平行四边形,∴∠EDF=∠FBE=60°,∵∠DFE=180°﹣∠CFO=60°,∴△EDF是等边三角形,∴DE=EF,故③正确,易知CM=AC,AE=CF=BF=BE,∴S△BCM=S△ACB,S△AOE=S△AOB=S△ABC,∴S△AOE:S△BCM=2:3.故④正确,故答案为①③④27.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF﹣∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.【解答】解:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°﹣∠ACG﹣∠AGC=180°﹣2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF﹣∠BAF=120°﹣90°=30°,在Rt△ABC中,AC=2BC=2AD=2,由勾股定理,AB===.故答案为:.三.解答题(共7小题)28.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.【分析】(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.【解答】(1)证明:∵四边形ABDE是平行四边形,∴AB=DE,又∵AB=AC,∴DE=AC.∵AB=AC,D为BC中点,∴∠ADC=90°,又∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形AECD是平行四边形,又∴∠ADC=90°,∴四边形ADCE是矩形.(2)解:∵四边形ADCE是矩形,∴AO=EO,∵∠AOE=60°∴△AOE为等边三角形,∴AO=AE=2,∴AC=2OA=4.29.如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.【分析】(1)利用平行四边形的性质可得AD∥BC,结合条件可先证得四边形ADEC为平行四边形,结合AC⊥BC,可证得结论;(2)由直角三角形的性质可求得AB的长,在Rt△ABC中,由勾股定理可求得BC的长,再利用矩形的性质可求得AD的长,结合AC可求得矩形ADEC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵DE∥AC,∴四边形ADEC是平行四边形.又∵AC⊥BC,∴∠ACE=90°.∴四边形ADEC是矩形;(2)解:∵AC⊥BC,∴∠ACB=90°.∵M是AB的中点,∴AB=2CM=10.∵AC=8,∴BC==6.又∵四边形ABCD是平行四边形,∴BC=AD.又∵四边形ADEC是矩形,∴EC=AD.∴EC=BC=6.∴矩形ADEC的面积=6×8=48.30.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.【分析】(1)可用三角形中位线定理求解,易知DG、EF分别是△ABC和△BOC的中位线,那么DG、EF 都平行且相等于BC,即DG与EF平行且相等,由此可证得四边形DEFG是平行四边形.(2)连接OA,则DE∥OA∥GF;若四边形DEFG是矩形,则DG和DE互相垂直;因此OA和BC也互相垂直,由此可判断出O点所处的位置.【解答】解:(1)四边形DEFG是平行四边形.理由如下:∵D、G分别是AB、AC的中点,∴DG是△ABC的中位线;∴DG∥BC,且DG=BC;同理可证:EF∥BC,且EF=BC;∴DG∥EF,且DG=EF;故四边形DEFG是平行四边形;(2)O在BC边的高上(且不与点A和垂足重合)理由如下:连接OA;∵把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.∴DE∥OA∥GF,EF∥BC,∵O点在BC边的高上,∴AO⊥BC,∴AO⊥EF,∵DE∥OA,∴DE⊥EF,∴四边形DEFG是矩形.31.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.32.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.【分析】(1)证出∠A=90°即可;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL)),∴DQ=PQ,设AQ=x,则DQ=PQ=6﹣x在Rt△APQ中,AQ2+AP2=PQ2 ∴x2+22=(6﹣x)2,解得:x=∴AQ的长是.33.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC 的长及四边形AOFE的面积.【分析】(1)根据平行四边形判定得出平行四边形,再根据矩形判定推出即可;(2)分别求出AE、OH、CE、CF的长,再求出三角形AEC和三角形COF的面积,即可求出答案.【解答】(1)证明:∵CE∥AD且CE=AD,∴四边形ADCE是平行四边形,∵在△ABC中,AB=AC,AD平分∠BAC,∴AD⊥BC(等腰三角形三线合一性质),∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵△ABC是等边三角形,边长为4,∴AC=4,∠DAC=30°,∴∠ACE=30°,AE=2,CE=2,∵四边形ADCE为矩形,∴OC=OA=2,∵CF=CO,∴CF=2,过O作OH⊥CE于H,∴OH=OC=1,∴S四边形AOFE=S△AEC﹣S△COF=×2×2﹣×2×1=2﹣1.34.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=20.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是20≤m<28.【分析】(1)利用勾股定理求出矩形对角线的长度,再利用三角形中位线的性质得出EH=BD,EF=AC,FG=BD,HG=AC,进而求出即可;(2)①利用轴对称图形的性质得出答案即可;②利用两点之间线段最短以及三角形三边关系得出m的取值范围即可.【解答】解:(1)如图2,连接AC,BD,∵在矩形ABCD中,AB=6,BC=8,∴AC=BD==10,∵E、F、G、H分别是AB、BC、CD、DA四边中点,∴EH,EF,FG,HG,分别是△ABD,△ABC,△BCD,△ACD的中位线,∴EH=BD,EF=AC,FG=BD,HG=AC,∴m=EF+FG+GH+HE=AC+BD=10+10=20;(2)①如图3所示(虚线可以不画),②由图形可知,四边形的周长即折线HM的长,由两点之间线段最短可知,折线HM≥20,即周长不小于20;又由题可知,四边形周长小于矩形ABCD的周长,即周长小于28,故20≤m<28.故答案为:20;20≤m<28.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的性质练习
♦随堂检测
1矩形是轴对称图形,它有________ 对称轴.
2、在矩形ABC冲,对角线AC,BD相交于点0,若对角线AC=10cm ?边BC=?8cm ?则厶AB0
的周长为________ .
3、如图1周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD勺面积为().
A.98
B.196
C.280
D.284
4、如图2,根据实际需要,要在矩形实验田里修一条公路(?小路任何地方水平宽度都相等)则剩余实验田的面积为_____________ .
5、如图3,在矩形ABCD中, M是BC的中点,且MALMD ?若矩形ABCD的周长为48cm, ?则
矩形ABCD勺面积为 ______ cm2
6、如图,在矩形ABCD中,已知AB=8cm BC=10cm折叠矩形的一边AD使点D落在BC边的F处,折痕为AE,求CE的长.
♦典例分析
如图,在矩形ABCD中,对角线AC BD交于点O, DE平分/ ADC交BC于E,Z BDE=15,求 / COC与/ COE勺度数.
分析:要求/ COD^Z COE勺度数,根据矩形的性质及已知条件可知△ COD是等边三角形,△
1
CED是等腰直角三角形,故CE=CO 贝UZ COE=2 (180 ° - Z OCE).
•拓展提高
1、矩形的两条对角线的夹角为60°, 一条对角线与短边的和为12,则对角线长为_,短边长为 .
2、在矩形ABC冲,AC与BD相交于点O,作AE L BD垂足为E. ED=3EB贝UZ AOB得度数为
)A.30 ° B.45 ° C.60 ° D.90 °
3、矩形中,对角线把矩形的一个直角分成 1 : 2两部分,则矩形对角线所夹的锐角为()
A.30 °
B.45 °
C.60 °
D. 不确定
4、如图所示,矩形ABCD中, AB=8 BC=6 E、F是AC的三等分点,则△ BEF的面积为()
(2) (3)
5
、已知,如图,矩形 ABCD 的对角线AC BD 相交于点Q E , F 分别是OA 0B 的中点.
(1)求证:△ ADE^A BCF (2)若 AD=4cr p AB=8cr p 求 QF 的长.
6、在矩形ABCD 中/ BAD 的平分线交BC 于点E, Q 为对角线交点,且/ CAE=15 .
(1)A AOB 为等边三角形,说明理由;
(2)求/ AOE 的度数.
体验中考
1、如图,矩形ABCD 中,AB=3, BC =5.过对角线交点0作0E — AC 交AD 于E,则AE 的长 是( )
A. 1.6 B . 2.5 C . 3 D . 3.4
A.8 D.5
B.6
C.4 第电题
第Bffi
2、将矩形纸片ABC 敢如图所示的方式折叠,AE EF 为折痕,/ BAE= 30°,AB^ ' 3,折叠 后,点C 落在AD 边上的C1处,并且点B 落在EC1边上的B1处.则BC 的长为(
).
A. 3
B.2
C.3
D. 23。

相关文档
最新文档