测量参数

合集下载

测量仪器参数

测量仪器参数

测量仪器参数一、GNSS:1、天宝:静态和快速静态GPS测量水平±5 mm + 0 5 ppm RMS垂直±5 mm + 1 ppm RMS动态测量水平±10 mm + 1 ppm RMS垂直±20 mm + 1 ppm RMS初始化时间一般少于10秒初始化可靠性>99 9%发送功率0 5 W发送距离:一般3-5公里,最佳可达10公里2、中海达:静态精度:平面:±(2.5mm+1×10-6D)高程:±(5mm+1×10-6D)快速静态精度:平面:±(5mm+1×10-6D)高程:±(10mm+1×10-6D)RTK定位精度:平面:±(10mm+1×10-6D) 高程:±(20mm+1×10-6D)3、华测静态和快速静态水平精度±(5 + 1×10-6×D) mm垂直精度±(10 + 2×10-6×D) mm作用距离(VHF)0-20km二、全站仪:1、莱卡TS09:有棱镜模式测距精度±1mm无棱镜模式测程>1000米测程3500mm标准:1mm + 1.5×10-6D / 2.4s ,快速:3mm + 2×10-6D / 0.8s,跟踪:3mm + 2×10-6D / <0.15s2、中海达GTS-102N测角精度:±2”/5”,绝对法测角,无需过零检验测距精度:±(2mm+2ppm*D)测程:2km/单棱镜高速测距:精测1.2秒,粗测0.7秒,跟踪0.4秒三、测深仪国产品牌测深范围:高频(0.3m~600m),低频(1m~3000m)测深精度:±2cm+0.1%分辨率:1cm吃水调整范围:0.0m~9.0m声速调整范围:1300~1700m/s四、水准仪1、型号:ZH7854每公里往返测量标准偏差:± 2.5mm放大倍率:24×最短视距:0.7m补偿工作范围:± 14′补偿安平精度:±0.5″2、型号DSZ2+FS1每公里往返测量标准偏差:± 1.5mm(普通标尺)放大倍率:32×最短视距:1.6m补偿工作范围:± 14′补偿安平精度:≤±0.3″。

电路参数测量实验报告

电路参数测量实验报告

一、实验目的1. 掌握使用万用表、示波器等常用仪器测量电路参数的方法。

2. 理解电路参数(如电阻、电容、电感、电压、电流等)在电路中的作用。

3. 培养实验操作能力和数据分析能力。

二、实验原理本实验主要测量电路中的电阻、电容、电感等参数。

以下为各参数的测量原理:1. 电阻测量:利用万用表测量电路中某段导线的电阻值。

根据欧姆定律,电阻值等于电压与电流的比值。

2. 电容测量:利用交流信号源和示波器测量电路中电容的充放电过程,根据电容的充放电公式计算电容值。

3. 电感测量:利用交流信号源和示波器测量电路中电感的自感电压,根据自感电压与电流的关系计算电感值。

4. 电压测量:利用万用表测量电路中某点的电压值。

5. 电流测量:利用万用表测量电路中某段导线的电流值。

三、实验仪器与器材1. 万用表2. 示波器3. 交流信号源4. 电阻、电容、电感等电子元件5. 电路连接线6. 电路实验板四、实验步骤1. 搭建电路:根据实验要求,将电阻、电容、电感等元件按照电路图连接在电路实验板上。

2. 电阻测量:使用万用表测量电路中某段导线的电阻值。

3. 电容测量:a. 将电容与电阻串联,接入交流信号源。

b. 用示波器观察电容的充放电波形。

c. 根据电容的充放电公式计算电容值。

4. 电感测量:a. 将电感与电阻串联,接入交流信号源。

b. 用示波器观察电感的自感电压波形。

c. 根据自感电压与电流的关系计算电感值。

5. 电压测量:使用万用表测量电路中某点的电压值。

6. 电流测量:使用万用表测量电路中某段导线的电流值。

五、实验数据记录与分析1. 电阻测量:记录万用表读数,计算电阻值。

2. 电容测量:记录示波器显示的电容充放电波形,计算电容值。

3. 电感测量:记录示波器显示的电感自感电压波形,计算电感值。

4. 电压测量:记录万用表读数,计算电压值。

5. 电流测量:记录万用表读数,计算电流值。

六、实验结果与讨论1. 通过实验,我们成功测量了电路中的电阻、电容、电感等参数。

三表法测量交流参数实验报告总结

三表法测量交流参数实验报告总结

三表法测量交流参数实验报告总结
本次实验是以三表法测量交流参数,主要是通过使用电压表、电流表和功率表来测量交流电路中的电压、电流和功率等参数。

通过实验,我们可以更加深入地了解交流电路的基本参数和特性,为今后的学习和实践打下坚实的基础。

在实验中,我们首先需要了解三表法的基本原理和操作方法。

三表法是一种常用的测量交流电路参数的方法,它可以同时测量电压、电流和功率等参数,具有简单、准确、可靠等优点。

在实验中,我们需要将电压表、电流表和功率表依次接入电路中,通过读取表盘上的数值来测量电路中的各项参数。

在实验过程中,我们需要注意一些细节问题。

首先,需要选择合适的电压表、电流表和功率表,以保证测量的准确性和可靠性。

其次,需要正确接线,避免接错或接反导致测量结果出现误差。

最后,需要注意安全问题,避免触电等危险情况的发生。

通过本次实验,我们不仅学习了三表法测量交流参数的基本原理和操作方法,还深入了解了交流电路的基本参数和特性。

同时,我们也发现了一些问题和不足之处,需要在今后的学习和实践中加以改进和完善。

总之,本次实验对我们的学习和实践都具有重要的意义和价值。

电机测量参数简介

电机测量参数简介

电机测量参数简介打开功率分析仪电机测量参数界面,看到电机极数、各种上下限、每转脉冲数、线性表、同步源等配置参数,是不是有点晕,这和我们要测的电机都有些什么关系呢?下面我们来一起了解下。

电机测量,离不开传感器,而传感器常见的有两类:脉冲型和模拟型。

脉冲型传感器,其固定时间内的输出脉冲数(或频率)与转速(或扭矩)成比例,通过测量脉冲数(频率),即可间接计算出转速或扭矩。

模拟型传感器,其输出的是与转速或扭矩成一定关系的模拟信号,通过测量该模拟信号的幅值,也可以计算出转速或扭矩。

脉冲型传感器1、量程转速/扭矩传感器输出的脉冲信号幅值范围,具体可查阅传感器手册。

2、量程上/下限如果被测电机实际转速和扭矩范围分别是120rpm~180rpm、-18Nm~18Nm,那么量程上/下限应设为100rpm~200rpm,-20Nm~20Nm,保证实际转速和扭矩在可测量范围内。

3、每转脉冲数转速=每分钟来自传感器的输入脉冲数/ 每转的脉冲数* 缩放比例系数。

4、缩放比例系数、扭矩最大/最小值、扭矩最大/最小值对应的传感器信号频率Torque=Scale*[(Tmax-Tmin)/(Fmax-Fmin)*(Fx-Fmin)+ Tmin]Scale:缩放系数Tmax、Tmin:扭矩最大、最小值Fmax、Fmin:扭矩最大、最小值对应的信号频率(即仪器界面上的额定频率上、下限)Fx:实测信号频率图1 脉冲型转速传感器设置界面模拟型传感器1、量程转速/扭矩传感器输出的模拟信号幅值范围,具体可查阅传感器手册。

2、缩放系数、线性表(A、B)扭矩=缩放系数* ( A * 实测信号幅值+ B ),其中缩放系数、A、B均由用户输入。

图2 模拟型扭矩仪设置界面同步转速测量转速通道中的Z接口用来测量电相角以及分发给其他板卡作为同步源使用。

其中测量电相角是测量Z信号与同步转速测量源的相位角。

通过测量两个信号上升沿的时间差,得到以同步转速测量源为基准的相位角。

常见测量参数基本概念

常见测量参数基本概念

常见测量参数基本概念1.长度:长度是一个基本的测量参数,用来描述物体的大小或距离。

长度的单位通常用米(m)来表示,常见的例如厘米(cm)、毫米(mm)等。

测量长度的工具有尺子、游标卡尺等。

2.质量:质量是物体所固有的一种性质,用来描述物体的惯性和重力特征。

质量的单位通常用千克(kg)来表示。

测量质量的工具有天平和电子磅等。

3.时间:时间用来描述事件的先后顺序和持续的时间长度。

时间的单位常用秒(s)、分钟(min)、小时(h)等。

测量时间的工具有钟表和计时器等。

4.温度:温度是物体分子热运动的程度,用来描述物体的热量状态。

温度的单位常用摄氏度(℃)、华氏度(℉)、开尔文(K)等。

测量温度的工具有温度计和热电偶等。

5.电流:电流是电荷的流动,用来描述电路中电荷的数量和速度。

电流的单位常用安培(A)来表示。

测量电流的工具有电流表和电阻等。

6.电压:电压是电势差,用来描述电路中电荷的能量差。

电压的单位常用伏特(V)来表示。

测量电压的工具有电压表和电池等。

7.功率:功率是单位时间内所做的功,用来描述物体的能量转换速率。

功率的单位常用瓦特(W)来表示。

测量功率的工具有功率表和电动机等。

8.频率:频率是周期性事件发生的次数,用来描述事件的重复率。

频率的单位常用赫兹(Hz)来表示。

测量频率的工具有频率计和波形发生器等。

9.压力:压力是一个表征物体受力性质的物理量,用来描述物体对单位面积上施加的力。

压力的单位常用帕斯卡(Pa)来表示。

测量压力的工具有压力计和压力传感器等。

10.湿度:湿度是空气中水蒸气含量的度量,用于描述空气中的湿润程度。

湿度的单位通常用百分比(%)来表示。

测量湿度的工具有湿度计和水分仪等。

总结起来,上述是常见的一些测量参数的基本概念。

在各个领域的科学研究和工程实践中,对于这些参数的准确测量是非常重要的,它们为科学研究和工程设计提供了基本的数据和依据。

超声骨密度检测仪参数

超声骨密度检测仪参数

超声骨密度检测仪参数1、测量部位:梳骨、胫骨2、测量方式:双发双收3、测量参数:轴向骨传播声速(SOS)M/S4、分析数据:T值、Z值、同龄百分比、成人百分比、骨强度指数、骨龄、预期发生骨质疏松的年龄(EOA的相对骨折风险(RRF),BMI指数。

5、测量精度误差:≤03%6、测量重复性误差:≤0.3%7、测量时间:三周期成人测量<15秒8、测量结果自动判断9、文字模板具有自动寻址功能,方便报告编辑10、具有病例统计功能11、探头频率:1.20MHz-1.50MHz12、温度质控:有机玻璃试样,温度指示13、探头测量导航:能够实时显示探头与骨骼平面轴向夹角、水平角度、方向角度,实时显示角度数值的变化。

14、晶体状态显示:测量时,能够显示探头四个晶体工作状态、超声波接收信号强度。

15、日常校准:开机检验,简单方便16、默认中国人群,可测量5100岁人群17、温度显示校准块:校验器可显示当前温度以及当前温度下标准声速值,出厂标准配备有机玻璃模块18、报告版式:能够提供A4、16K、B5等多种尺寸报告单及横竖合理排版方式。

19、系统运行平台:计算机,四核、4G、500G、20口寸高清显示器20、标配高性能喷墨打印机21、行业标准符合:YY077-2010要求人体成分分析仪参数1、测量原理:多频率生物电阻抗测试法(BIA)。

2、测量时间:50秒内完成全部测量3、测量系统:多频8-电极4、测量频率:6个不同的频率5、测量电流:≤200PA6、电极料:脚:不锈钢/把手:电镀材料7、测量部位:全身/右上肢/左上肢/右下肢/左下肢8、测量范围:75.0-1500.00Ω(0.1。

单位)9、体重:0~300kg10、脂肪率:1.0〜75.0%(0.1%单位)脂肪率分析:5个部位11、脂肪量、肌肉量标准体重、体内水分:细胞内液、细胞外液、细胞内外液率12、四肢及躯干脂肪量13、基础代谢14、肥胖标准分析15、身高:90.0〜249.9cm(可切换0.1cm和1cm)评估脂肪量/评分:kg∕±4(全身/局部)评估肌肉量/评分:kg∕±4(全身/局部)可显示局部脂肪/肌肉的具体重量,并根据相应标准进行评分16、内脏脂肪等级:1〜5917、输出值:体重、体脂肪率、体脂肪量、除脂体重、肌肉量、体水分率、体水分量、推定骨量、细胞内外液、细胞内外液比、身体质量指数、基础代谢量、基础代谢年龄、内脏脂肪等级、节段肌肉量,节段脂肪量。

常见测量参数基本概念

常见测量参数基本概念

误差
(1)按性质分为
随机误差、系统误差
(2)按时间特性分
静态误差、动态误差
(3)按误差间关系分
独立误差、非独立误差
灵敏度和分辨率
灵敏度:输出值的增量÷输入值的增量(斜率)
分辨率:能识别的最小输入量(受噪声影响大,能分辨,但数值不准,一般取仪器精度的1/3~1/10)
注:
1)分辨率对灵敏度有足够的依赖性,有足够灵敏度的前提下,才能实现较高的分辨率
2)灵敏度反映测量仪器被测量(输入)变化引起仪器示值(输出)变化的程度。

它用输出量(响应)的增量与相应输入量(激励)的微小增量之比来表示。

如被测量变化很小,而引起的示值(输出量)改变很大,则该测量仪器的灵敏度就高。

动态范围和相对精度
动态范围:同一精度下的测量范围
相对精度:测量精度/测量范围(单位ppm part per million)
重复性和复现性
重复性:相同条件下多次使用相同仪器(短时间)
复现性:同时变化多个条件去重复试验。

原件参数测量实验报告(3篇)

原件参数测量实验报告(3篇)

第1篇一、实验目的1. 掌握常用电子元件的识别与参数测量方法。

2. 学习使用万用表等仪器进行电子元件参数的测量。

3. 了解不同类型电子元件的特性和应用。

二、实验内容本次实验主要测量以下电子元件的参数:1. 电阻2. 电容3. 二极管4. 三极管三、实验原理1. 电阻测量:通过万用表的电阻测量功能,根据欧姆定律(U=IR)计算出电阻值。

2. 电容测量:通过万用表的电容测量功能,根据电容的充放电原理和RC时间常数计算出电容值。

3. 二极管测量:通过万用表的二极管测试功能,测量二极管的正向压降和反向电阻,判断其极性和性能好坏。

4. 三极管测量:通过万用表的hFE测试功能,测量三极管的电流放大倍数,判断其类型和三个管脚(e、b、c)。

四、实验仪器与设备1. 数字万用表2. 电阻3. 电容4. 稳压二极管5. 整流二极管6. 发光二极管7. 三极管五、实验步骤1. 电阻测量:- 将万用表调至电阻测量挡位。

- 将红表笔和黑表笔分别接触到电阻的两端。

- 读取万用表显示的电阻值。

2. 电容测量:- 将万用表调至电容测量挡位。

- 将红表笔和黑表笔分别接触到电容的两端。

- 读取万用表显示的电容值。

3. 二极管测量:- 将万用表调至二极管测试挡位。

- 将红表笔和黑表笔分别接触到二极管的正负极。

- 读取万用表显示的正向压降和反向电阻值,判断二极管的极性和性能好坏。

4. 三极管测量:- 将万用表调至hFE测试挡位。

- 将红表笔和黑表笔分别接触到三极管的e、b、c三个管脚。

- 读取万用表显示的电流放大倍数,判断三极管的类型。

六、实验结果与分析1. 电阻测量:- 测量结果与标称值基本一致,说明电阻参数测量准确。

2. 电容测量:- 测量结果与标称值基本一致,说明电容参数测量准确。

3. 二极管测量:- 正向压降和反向电阻值符合二极管特性,说明二极管性能良好。

4. 三极管测量:- 电流放大倍数符合三极管类型,说明三极管性能良好。

七、实验结论1. 通过本次实验,掌握了常用电子元件的识别与参数测量方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.电压
电压,也称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。

其大小等于单位正电荷因受电场力作用从A点移动到B点所作的功,电压的方向规定为从高电位指向低电位的方向。

电压的国际单位制为伏特(V),常用的单位还有毫伏(mV)、微伏(μV)、千伏(kV)等。

此概念与水位高低所造成的“水压”相似。

需要指出的是,“电压”一词一般只用于电路当中,“电势差”和“电位差”则普遍应用于一切电现象当中。

如果电压的大小及方向都不随时间变化,则称之为稳恒电压或恒定电压,简称为直流电压,用大写字母U表示。

如果电压的大小及方向随时间变化,则称为变动电压。

对电路分析来说,一种最为重要的变动电压是正弦交流电压(简称交流电压),其大小及方向均随时间按正弦规律作周期性变化。

2.电流
电流,是指电荷的定向移动。

电源的电动势形成了电压,继而产生了电场力,在电场力的作用下,处于电场内的电荷发生定向移动,形成了电流。

电流的大小称为电流强度(简称电流,符号为I),是指单位时间内通过导线某一截面的电荷量,每秒通过1库仑的电量称为1「安培」(A)。

安培是国际单位制中所有电性的基本单位。

除了A,常用的单位有毫安(mA)、微安(μA) 。

1A=1000mA=1000000μA电学上规定:正电荷流动的方向为电流方向。

电流微观表达式I=nesv,n为单位时间内通过导体横截面的电荷数,e为电子的电荷量,s为导体横截面积,v为电荷速度。

3.电阻
电阻(Resistance,通常用“R”表示),在物理学中表示导体对电流阻碍作用的大小。

导体的电阻越大,表示导体对电流的阻碍作用越大。

不同的导体,电阻一般不同,电阻是导体本身的一种特性。

电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。

4.电感
电感(inductance of an ideal inductor)是闭合回路的一种属性。

当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。

这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”。

5.电容
电容(Capacitance)亦称作“电容量”,是指在给定电位差下的电荷储藏量,记为C,国际单位是法拉(F)。

一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上,造成电荷的累积储存,储存的电荷量则称为电容。

因电容是电子设备中大量使用的电子元件之一,所以广泛应用于隔直、耦合、旁路、滤波、调谐回路、能量转换、控制电路等方面。

6.功率
有功功率
P有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。

比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒;各种照明设备将电能转换为光能,供人们生活和工作照明。

有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW)。

无功功率
Q无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中
建立和维持磁场的电功率。

它不对外作功,而是转变为其他形式的能量。

凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。

比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。

由于它不对外做功,才被称之为“无功”。

无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。

视在功率
S在电工技术中,将单口网络端钮电压和电流有效值的乘积,称为视在功率(apparent power),记为S=UI。

显然,只有单口网络完全由电阻混联而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也就是说,视在功率不是单口网络实际所消耗的功率。

为以示区别,视在功率不用瓦特(W)为单位,而用伏安(VA)或千伏安(KVA)为单位。

视在功率是指发电机发出的总功率,其中可以分为有功部分和无功部分
视在功率的平方=有功功率的平方+无功功率的平方
7.功率因数
Cosφ
功率因数=负载的有功功率/视在功率
8.电能
电能是指在一定的时间内电路元件或设备吸收或发出的电能量.
电能的单位是“度”,它的学名叫做千瓦时,符号是kW·h。

在物理学中,更常用的能量单位(也就是主单位,有时也叫国际单位)是焦耳,简称焦,符号是J。

它们的关系是:1kW·h=3.6×10^6J
电能公式:W=UIt=Pt
根据欧姆定律(I=U/R)可以进一步推出:W=I^2Rt=U^2t/R。

相关文档
最新文档