不等式的证明

合集下载

不等式的证明方法

不等式的证明方法

不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。

证明不等式的方法有很多,下面介绍几种常见的方法。

1.数学归纳法数学归纳法是一种常用的证明不等式的方法。

当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。

具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。

2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。

例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。

3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。

例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。

4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。

具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。

5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。

它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。

证明不等式的几种方法

证明不等式的几种方法

证明不等式几种的方法1.1比较法(作差法)[1]在比较两个实数a 和b 的大小时,可借助b a -的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 证明 02)(2222≥-=-+=-+b a ab b a ab b a , 故得ab b a ≥+2. 1.2作商法在证题时,一般在a ,b 均为正数时,借助1>b a 或1<b a 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1).例2 设0>>b a ,求证:a b b a b a b a >.证明 因为 0>>b a ,所以 1>ba ,0>-b a . 而 1>⎪⎭⎫ ⎝⎛=-b a a b b a b a b a b a , 故 a b b a b a b a >.1.3分析法(逆推法)从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.例3 求证:15175+>+.证明 要证15175+>+,即证1521635212+>+,即15235+>,1541935+>,16154<,415<,1615<.由此逆推即得 15175+>+.1.4放缩法[5]在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法.例4 求证:01.0100009999654321<⨯⨯⨯⨯ . 证明 令,100009999654321⨯⨯⨯⨯= p 则 ,10000110001111000099991431211000099996543212222222222222<=-⨯⨯-⨯-<⨯⨯⨯⨯= p所以 01.0<p .1.5函数极值法通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的.例5 设R x ∈,求证:812sin 32cos 4≤+≤-x x . 证明 81243sin 2sin 3sin 21sin 32cos )(22+⎪⎭⎫ ⎝⎛--=+-=+=x x x x x x f 当43sin =x 时, ;812)(m ax =x f 当1sin -=x 时, .4)(m in -=x f故 812sin 32cos 4≤+≤-x x . 1.6单调函数法当x 属于某区间,有0)(≥'x f ,则)(x f 单调上升;若0)(≤'x f ,则)(x f 单调下降.推广之,若证)()(x g x f ≤,只须证)()(a g a f =及)),((),()(b a x x g x f ∈'≤'即可. 例 6 证明不等式x e x +>1,.0≠x证明 设,1)(x e x f x --=则.1)(-='xe xf 故当0>x 时,f x f ,0)(>'严格递增;当f x f x ,0)(,0<'<严格递减.又因为f 在0=x 处连续,则当0≠x 时, ,0)0()(=>f x f从而证得.0,1≠+>x x e x 1.7中值定理法利用中值定理:)(x f 是在区间],[b a 上有定义的连续函数,且可导,则存在ξ,b a <<ξ,满足))(()()(a b f a f b f -'=-ξ来证明某些不等式,达到简便的目的.例7 求证:y x y x -≤-sin sin .证明 设 x x f sin )(=,则ξξcos )(n si )(sin sin y x y x y x -='-=-故 y x y x y x -≤-≤-ξcos )(sin sin .1.8利用拉格朗日函数例 8 证明不等式,)111(331abc cb a ≤++- 其中c b a ,,为任意正实数. 证明 设拉格朗日函数为对).1111(),,,(rz y x xyz z y x L -+++=λλ 对L 求偏导数并令它们都等于0,则有02=-=x yz L x λ, 02=-=y zx L y λ, 02=-=x xy L z λ, .01111=-++=rz y x L λ由方程组的前三式,易的.111μλ====xyz z y x 把它代入第四式,求出.31r =μ从而函数L 的稳定点为.)3(,34r r z y x ====λ 为了判断3)3()3,3,3(r r r r f =是否为所求条件极小值,我们可把条件rz y x 1111=++看作隐函数),(y x z z =(满足隐函数定理条件),并把目标函数),(),(),,(y x F y x xyz z y x f ==看作f 与),(y x z z =的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:,22xz z x -=,22y z z y -= ,2xyz yz F x -=,2y xz xz F y -= ,2,232233xy z x z y z z F xyz F xy xx +--== .233yxz F yy = 当r z y x 3===时,,3,6r F F r F xy yy xx ===.02722>=-r F F F xy yy xx由此可见,所求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式).1111,0,0,0()3(3rz y x z y x r xyz =++>>>≥ 令,,,c z b y a x ===则,)111(1-++=cb a r 代入不等式有 31])111(3[-++≥cb a abc 或 ).0,0,0()111(331>>>≤++-c b a abc c b a。

不等式的证明

不等式的证明

不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。

不等式的常见证明方法

不等式的常见证明方法

不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。

求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。

思维训练:设c b a ,,都是正数。

求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。

解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。

思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。

我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。

不等式的四个公式证明

不等式的四个公式证明

不等式的四个公式证明不等式在数学中可是个很重要的家伙,咱们今天就来好好唠唠不等式的四个公式证明。

先来说说什么是不等式。

想象一下,你有一堆糖果,小明也有一堆糖果,你俩谁的糖果多呢?这比较的过程其实就是在研究不等式。

咱先瞅瞅第一个公式,叫加法法则。

简单说,如果 a > b,那么 a +c > b + c。

这就好比你本来就比小明的零花钱多,然后你俩都得到了同样多的额外零花钱,那你还是比他多嘛。

比如说,你有 10 块钱,小明有 5 块钱,老师又给了你俩每人 3 块,那你就有 13 块,小明 8 块,你还是比他多。

再讲讲乘法法则。

当 a > b 且 c > 0 时,ac > bc。

这个也好理解,就像你跑步速度比小明快,然后在同样的时间里跑,时间越长,你跑的距离就比小明跑的更远。

比如你一分钟能跑 200 米,小明一分钟跑 150 米,要是跑 5 分钟,你能跑 1000 米,小明 750 米,差距就更大啦。

还有个除法法则。

当 a > b 且 c > 0 时,a/c > b/c。

这就好比分苹果,本来你的苹果比小明多,然后平均分给同样多的人,你分给每个人的苹果还是比小明多。

最后说一下传递性。

如果 a > b 且 b > c,那么 a > c。

这就像接力赛,你跑在前面,小明在中间,小李在后面,那你肯定也在小李前面。

我记得之前有一次给学生们讲这个知识点的时候,有个小家伙特别可爱。

我刚讲完加法法则,让大家做几道练习题巩固一下。

结果这小家伙举着手说:“老师,我懂啦,这就像我吃的巧克力比同桌多,我俩又都吃了同样多的棒棒糖,那我还是巧克力多。

”当时全班都笑了,不过通过这个例子,大家对加法法则的理解更深刻了。

总之,不等式的这四个公式在数学里用处可大啦,咱们解题的时候经常能用到。

大家可得把它们牢牢掌握,这样在数学的海洋里就能游得更顺畅啦!。

不等式证明方法大全

不等式证明方法大全

不等式证明方法大全
在数学研究中,证明不等式是一项重要的内容。

目前,关于证明不等式的方法可以分
为几类,下面将详细展开讨论:
一、绝对值的技巧:将不等式中的变量都化为绝对值,这样可以有效地转换原不等式。

二、代数变换法:通过恰当的代数变换,将不等式中变量交换,从而转化为更简单的
不等式。

三、数量不等式法:将相同的不等式进行变形,将其变换为数量不等式,然后继续解决,从而获得结论。

四、角度不等式法:如果不等式涉及到测量角度的变量,我们可以将其转换为角度不
等式,然后判断两个角度的大小关系,从而获得结论。

五、条件不等式法:将不等式的左右两侧都加上某个条件,将其变换为条件不等式,
然后根据条件判断两个式子大小关系。

六、单值不等式变形法:将不等式变为单值不等式,然后将单值不等式中的变量通过
某种方式改变,从而继续解决不等式本身,用这种方法可以得出不等式的正确性。

七、多元不等式的考虑:由于某些不等式涉及多个变量,因此需要考虑这些变量的关系,包括不等式的变换形式,和多个变量的联系在内的其他因素,这样才能正确地证明不
等式的正确性。

以上就是证明不等式的各种方法,正确运用上述方法,可以帮助我们轻松地证明定理,有助于提高科学研究的水平。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。

例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。

例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。

例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。

7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。

例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。

不等式证明方法大全

不等式证明方法大全

不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。

常用的推导法有数学归纳法、递推法、代入法等。

其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。

(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。

(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。

通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。

2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。

常用的数学运算包括加法、减法、乘法、除法等。

在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。

3.几何法:几何法是指通过将不等式转化为几何问题进行证明。

几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。

通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。

4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。

这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。

5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。

通过逐个讨论每种情况,可以得出要证明的不等式的证明。

6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。

反证法常用于证明不等式的唯一性和存在性。

7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。

通过不断进行递推,可以逐步证明不等式的成立。

以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。

在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作商
变形
判定 (与1比较大小)
作商 综合
下结论
分析 综合二
例4 已知a, b是正数, 求证a b a b ,
a b b a
当且仅当a b时, 等号成立.
证明: a b a b
a b b a
a
a b ba
b
a b
ab
(2)作商比较法
根据要证的不等式的特 (交换a , b的位置, 不等式不变 点 ) a a 不妨设a b 0, 则 1, a b 0, b b 当且仅当a b时, -b)(b-c)(c-a)>0. 因此:a2b+b2c+c2a>ab2+bc2+ca2. 比较法证不等式步骤可归纳为: 第一步:作差并化简,其化简目标应是 n 个因式之积或完 全平方式或常数的形式. 第二步:判断差值与零的大小关系,必要时须进行讨论. 第三步:得出结论.
【互动探究】
2 2
证明四(三角变换)
设a sin , b cos , c sin , d cos
, (0, )
| sin sin cos cos || cos( ) | 1
所以 已知a,b,m都是正数,并且a b ,
b m 0, b a 0.

m(b a) 0. b(b m)
am a . 即: bm b
考点 1 比较法 例 1:已知:a>b>c,求证:a2b+b2c+c2a>ab2+bc2+ca2. . 解题思路:左减去右=ab(a-b)+bc(b-c)+a(c-a). 当 a>b>c 时,前两项为正,最后一项为负,如何使得三项 之和为正,成为问题的关键,需采用“拆”的技巧,把第三项 并入前两项中去,于是想到 ca(c-a)=ca[(c-b)+(b-a)]=ca(c -b)+ca(b-a),问题便迎刃而解. 证明:左一右=ab(a-b)+bc(b-c)+ca(c-a) =ab(a-b)+bc(b-c)+ca[(c-b)+(b-a)] =a(a-b)(b-c)+c(b-c)(b-a) =(a-b)(b-c)(a-c).
即证a 5a a 5a 6
2 2
只要证0 6,故原不等式成立.
例2:若a、b、c是不全相等得正数
求证:lga b +lg b c +lg c a >lga+lgb+lgc
2 2 2 ca bc ab 证明: 要证 lg +lg +lg >lga+lgb+lgc 2 2 2 ab bc ca 只需证 lg >lgabc 2 2 2 ab bc ca 只需证 >abc 2 2 2 ∵a、b、c是正数 ab bc ca ∴ ≥ bc >0, ≥ ca >0 ≥ ab >0, 2 2 2 ∵a、b、c不全相等 ab bc ca ∴ > ab • bc • ca =abc 2 2 2 ab ca bc ∴ lg +lg +lg >lga+lgb+lgc 2 2 2
由 因 导 果
2 2
已知条件
定义、公理、 定理、性质
a b (a b )(a ab b )
3 3
推理、论证
(a b )(2ab ab ) (a b )ab a b ab
2 2
命题成立
小结
作商
综合
分析
综合二
例5 已知a, b, c 0, 且不全相等 , 求证a(b c ) b(c a ) c(a b ) 6abc

3+ 7 2 5.
例1已知a 5,求证: . a 5 a 3 a 2 a.
证明:要证原不等式成立只要证: a a 5 a 2 a 3
只要证2a 5 2 a(a 5) 2a 5 2 (a 2)(a 3)
只要证a(a 5) (a 2)(a 3),


(2)作商比较法根据不等式的性质 a>b>0⇔ a 商与1 >1, 通过_________的大小关系, 在分母符 b 号确定的前提下,证明分子与分母的大小关 系.
若a , b都是正数, 且a b, 则a b a b ab
3 3 2
2
证明:(作商比较法) a , b R 且a b a 3 b3 (a b )(a 2 ab b 2 ) a 2 ab b 2 2 2 a b ab ab(a b ) ab 2ab ab ab 1 ab ab b a (a b)2 ab (a b)2 (或 1 2 1 1或 1 1) a b ab ab a 3 b3 a 2b ab2
1.已知 a、b∈R+,且 a+b=1,求证:ax2+by2≥ax+by2.
证明:∵a+b=1, ∴ax2+by2-(ax+by)2 =ax2+by2-a2x2-2abxy-b2y2 =a(1-a)x2+b(1-b)y2-2abxy =abx2+bay2-2abxy =ab(x-y)2. 又 a、b∈R+,∴ab(x-y)2 ≥0. ∴ax2+by2≥(ax+by)2.
由于a , b, c不全相等 所以上述三个式子中至 , 少有一个不 取等号, 把它们相加得 a(b 2 c 2 ) b(c 2 a 2 ) c(a 2 b 2 ) 6abc
2.分析法.在证明过程中____________, “执果索因” 从结论出发找命题成立的______条件,直 充分 到找到明显成立的不等式或已证的不等 式为止,这种证明方法叫做分析法.
一、比较法 (1)作差比较法
例1 求证 x 3 3x
2
证明:∵
x2 3 3x
3 2 3 2 x 3x ( ) ( ) 3 2 2
2
3 2 3 (x ) 2 4
3 0, 4

x 2 3 3x.
1.比较法.比较法是证明不等式的最基本、 最重要的方法之一,它可分为作差法、作商 法. a-b>0 (1)作差比较法根据 a>b⇔___________作差, 差式的符号 对差式因式分解、配方等以判断__________, 根据差式符号证明被减式与减式的大小关 系.
证明 : 2 7和 3 6都是正数, 所以要证 2 7 3 6 , 只需证( 2 7 )2 ( 3 6 )2 , 展开得9 2 14 9 2 18 , 只需证 14 18 , 只需证14 18, 14 18成立, 所以 2 7 3 6成立.
变形的目的是为了能够定号. 常用的技巧有:因式分解、配方、有理化等.
作差
变形
判断 (与0比较大小)
下结论
例3 已知a,b,m都是正数,并且a b ,
am a 求证 . bm b
a m a b(a m ) a(b m ) m(b a ) . 证明: bm b b(b m ) b(b m )
ab
1
a a bb a bba ,当且仅当a b时, 等号成立.
3.综合法.从一个正确的不等式出发,根 据不等式的性质对该不等式作一系列变形, 求证的不等式 直到推演出所________________,也就是 _____________.在用综合法证题时,要注 “由因导果” 意常见不等式的运用.
例2.求证:3 7 2 5.
(分析法)
证:因为 3 7和2 5都是正数,所以为了证明 3 7 <2 5 ,
2 2 只需要证明( 3 7)<(2 5),

10 2 21 20 , 注意分析法的 21 5, 21 25.
格式
2 因为21 25成立,所以( 3+ 7) (2 5) 2
二、综合法与分析法 (1)综合法
在不等式的证明中,我们经常从已知条件和不等式的性 质、基本不等式等出发,通过逻辑推理,推导出所要证明 的结论.这种从已知条件出发,利用定义、公理、定理、 性质等,经过一系列的推理、论证而得出命题成立,这种 证明方法叫做综合法.又叫顺推证法或由因导果法.
用综合法证明不等式的逻辑关系
于是(a b)2 (a b )) 0,即(a 3 b 33 ) ((a bb ab) 0 ( a b )2 (a b 0,即(a 3 b ) a 2 2 ab 2 2 ) 0 于是 所以a 3 b 3 a 2 b ab2 所以a 3 b3 a 2b ab 2
(2)分析法
从要证的结论出发,逐步寻求使它成立的充分条件,直至 所需条件为已知条件或一个明显成立的事实(定义、公 理或已证的定理、性质等),从而得出要证的命题成立, 这种证明方法叫做分析法.这是一种执果索因的思考和 证明方法.
用分析法证明不等式的逻辑关系
B B1 B2 Bn A 结 (步步寻求不等式 已 论 成立的充分条件 ) 知
三角换元: (1) 若0≤x≤1,则可令x = sin ( 或x = sin2 ( 0 ).
2
0 ) 2

(2) 若x2 + y2 = r2,则可令x = rcos, y = rsin (0 < 2).
例: 已知a, b, c, d R, 且a b 1, 2 2 c d 1, 求证 | ac bd | 1.
A B1 B2 Bn B (已知)(逐步推演不等式成立的 必要条件)(结论)
若a , b都是正数, 且a b, 则a b a b ab
3 3 2
2
证明:(综合法) a , b R 且a b a b 0, a b 2ab
2 2
3 3 2 2
3
2
2
相关文档
最新文档