2018年云南省中考数学试卷及答案
云南省2018年中考数学试卷(解析版)

数据 8 出现了三次最多为众数, 7 处在第 4 位为中位数; (2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7. 【点睛】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的 那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或 中间两数的平均数)叫做中位数.平均数=总数÷个数. 18. 某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已 知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的 绿化面积? 【答案】乙工程队每小时能完成 50 平方米的绿化面积. 【解析】【分析】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿化 面积,根据工作时间=总工作量÷工作效率结合甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平 方米的绿化面积少用 3 小时,即可得出关于 x 的分式方程,解之经检验后即可得出结论. 【详解】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿 化面积,
【答案】C 【解析】【分析】观察字母 a 的系数、次数的规律即可写出第 n 个单项式. 【详解】观察可知次数序号是一样的,奇数位置时系数为 1,偶数位置时系数为-1,则有
a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•an. 故选 C. 【点睛】本题考查了规律题——单项式、数字的变化类,注意字母 a 的系数为奇数时,符号为正; 系数字母 a 的系数为偶数时,符号为负. 11. 下列图形既是轴对称图形,又是中心对称图形的是( ) A. 三角形 B. 菱形 C. 角 D. 平行四边形 【答案】B 【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可. 【详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误; B、菱形既是轴对称图形又是中心对称图形,故本选项正确; C、角是轴对称图形但不一定是中心对称图形,故本选项错误; D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误, 故选 B. 【点睛】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称 轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转 180 度后与 原图重合. 12. 在 Rt△ABC 中,∠C=90°,AC=1,BC=3,则∠A 的正切值为( )
【精校】2018年云南省中考真题数学

2018年云南省中考真题数学一、填空题(共6小题,每小题3分,满分18分)1. -1的绝对值是_____.解析:第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号. 答案:1.2.已知点P(a,b)在反比例函数y=2x的图象上,则ab=_____.解析:接把点P(a,b)代入反比例函数y=2x即可得出结论.答案:2.3.某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为_____.解析:3451=3.451×103.答案:3.451×103.4.分解因式:x2-4=_____.解析:直接利用平方差公式进行因式分解即可.答案:(x+2)(x-2).5.如图,已知AB∥CD,若14ABCD,则OAOC=_____.解析:利用相似三角形的性质即可解决问题.答案:14.6.在△ABC中,AC=5,若BC边上的高等于3,则BC边的长为_____.解析:△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD-CD代入可得结论.答案:9或1.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.函数x的取值范围为( )A.x≤0B.x≤1C.x≥0D.x≥1解析:∵1-x≥0,∴x≤1,即函数x的取值范围是x≤1.答案:B.8.下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A.三棱柱B.三棱锥C.圆柱D.圆锥解析:由三视图及题设条件知,此几何体为一个的圆锥.答案:D.9.一个五边形的内角和为( )A.540°B.450°C.360°D.180°解析:根据正多边形内角和公式:180°×(5-2)=540°,答:一个五边形的内角和是540°.答案:A.10.按一定规律排列的单项式:a,-a2,a3,-a4,a5,-a6,……,第n个单项式是( )A.a nB.-a nC.(-1)n+1a nD.(-1)n a n解析:观察字母a的系数、次数的规律即可写出第n个单项式.答案:C.11.下列图形既是轴对称图形,又是中心对称图形的是( )A.三角形B.菱形C.角D.平行四边形解析:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误.答案:B.12.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为( )A.3B.1 3C.10D.10解析:根据锐角三角函数的定义求出即可. 答案:A.13. 2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是( )A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人解析:利用图中信息一一判断即可解决问题.答案:D.14.已知x+1x=6,则221xx=( )A.38B.36C.34D.32解析:把x+1x=6两边平方,利用完全平方公式化简,即可求出所求.答案:C.三、解答题(共9小题,满分70分)15.°-(13)-1-(π-1)0.解析:本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.答案:原式-2-4.16.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.解析:根据角平分线的定义得到∠BAC=∠DAC ,利用SAS 定理判断即可. 答案:∵AC 平分∠BAD , ∴∠BAC=∠DAC , 在△ABC 和△ADC 中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADC.17.某同学参加了学校举行的“五好小公民·红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:(1)直接写出该同学所得分数的众数与中位数; (2)计算该同学所得分数的平均数解析:(1)根据众数与中位数的定义求解即可; (2)根据平均数的定义求解即可.答案:(1)从小到大排列此数据为:5,6,7,7,8,8,8, 数据8出现了三次最多为众数, 7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.18.某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?解析:设乙工程队每小时能完成x 平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.答案:设乙工程队每小时能完成x 平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积, 根据题意得:3003002x x-=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.19.将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x ,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x ,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.解析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果; (2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案. 答案:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2); (2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果, ∴取出的两张卡片上的数字之和为偶数的概率P=2163=.20.已知二次函数y=-316x 2+bx+c 的图象经过A(0,3),B(-4,-92)两点. (1)求b ,c 的值. (2)二次函数y=-316x 2+bx+c 的图象与x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.解析:(1)把点A 、B 的坐标分别代入函数解析式求得b 、c 的值;(2)利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程-316x 2+98x+3=0,通过解该方程求得x 的值即为抛物线与x 轴交点横坐标. 答案:(1)把A(0,3),B(-4,-92)分别代入y=-316x 2+bx+c ,得 339164162c b c =⎧⎪⎨-⨯-+=-⎪⎩,解得983b c ⎧=⎪⎨⎪=⎩;(2)由(1)可得,该抛物线解析式为:y=-316x 2+98x+3. △=(98)2-4×(-316)×3=22564>0, 所以二次函数y=-316x 2+bx+c 的图象与x 轴有公共点.∵-316x 2+98x+3=0的解为:x 1=-2,x 2=8∴公共点的坐标是(-2,0)或(8,0).21.某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A ,B 两种商品,为科学决策,他们试生产A 、B 两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A 商品,1千克B 商品所需要的甲、乙两种原料及生产成本如下表所示.设生产A 种商品x 千克,生产A 、B 两种商品共100千克的总成本为y 元,根据上述信息,解答下列问题:(1)求y 与x 的函数解析式(也称关系式),并直接写出x 的取值范围; (2)x 取何值时,总成本y 最小?解析:(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.答案:(1)由题意可得:y=120x+200(100-x)=-80x+20000,()()3 2.51002932 3.5100314x x x x +-≤⎧⎪⎨+-≤⎪⎩, 解得:72≤x ≤86; (2)∵y=-80x+20000, ∴y 随x 的增大而减小, ∴x=86时,y 最小,则y=-80×86+20000=13120(元).22.如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC.(1)求证:CD 是⊙O 的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.解析:(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线 (2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:OAC 的面积以及扇形OAC 的面积即可求出影响部分面积答案:(1)连接OC ,∵OA=OC ,∴∠BAC=∠OCA , ∵∠BCD=∠BAC , ∴∠BCD=∠OCA , ∵AB 是直径, ∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90° ∴∠OCD=90° ∵OC 是半径, ∴CD 是⊙O 的切线 (2)设⊙O 的半径为r , ∴AB=2r ,∵∠D=30°,∠OCD=90°, ∴OD=2r ,∠COB=60° ∴r+2=2r ,∴r=2,∠AOC=120° ∴BC=2,∴由勾股定理可知:易求S △AOC =112⨯= S 扇形OAC =120443603ππ⨯=∴阴影部分面积为43π-23.如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF=AD+FC ,平行四边形ABCD 的面积为S ,由A 、E 、F 三点确定的圆的周长为t.(1)若△ABE 的面积为30,直接写出S 的值; (2)求证:AE 平分∠DAF ;(3)若AE=BE ,AB=4,AD=5,求t 的值. 解析:(1)作EG ⊥AB 于点G ,由S △ABE =12×AB ×EG=30得AB ·EG=60,即可得出答案; (2)延长AE 交BC 延长线于点H ,先证△ADE ≌△HCE 得AD=HC 、AE=HE 及AD+FC=HC+FC ,结合AF=AD+FC 得∠FAE=∠CHE ,根据∠DAE=∠CHE 即可得证;(3)先证∠ABF=90°得出AF 2=AB 2+BF 2=16+(5-FC)2=(FC+CH)2=(FC+5)2,据此求得FC 的长,从而得出AF 的长度,再由AE=HE 、AF=FH 知FE ⊥AH ,即AF 是△AEF 的外接圆直径,从而得出答案.答案:(1)如图,作EG ⊥AB 于点G ,则S △ABE =12×AB ×EG=30,则AB ·EG=60, ∴平行四边形ABCD 的面积为60; (2)延长AE 交BC 延长线于点H ,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠ADE=∠HCE ,∠DAE=∠CHE , ∵E 为CD 的中点, ∴CE=ED ,∴△ADE ≌△HCE ,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5-FC)2=(FC+CH)2=(FC+5)2,解得:FC=45,∴AF=FC+CH=295,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=295π.考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。
2018云南省中考数学试卷及答案解析

2018云南省中考数学试卷及答案解析2018年云南的中考试卷已经整理好了,数学试卷的答案解析大家需要吗?下面由店铺为大家提供关于2018云南省中考数学试卷及答案解析,希望对大家有帮助!2018云南省中考数学试卷一、选择题(本大题共6个小题,每题3分,共18分)1.2的相反数是﹣2 .【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7 .【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.3.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,= ,则 = .【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴ = = .故答案为: .4.使有意义的x的取值范围为x≤9.【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x≥0.【解答】解:依题意得:9﹣x≥0.解得x≤9.故答案是:x≤9.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为2π+4.【考点】MC:切线的性质;LE:正方形的性质;MO:扇形面积的计算.【分析】连接HO,延长HO交CD于点P,证四边形AHPD为矩形知HF为⊙O的直径,同理得EG为⊙O的直径,再证四边形BGOH、四边形OGCF、四边形OFDE、四边形OEAH均为正方形得出圆的半径及△HGF为等腰直角三角形,根据阴影部分面积= S⊙O+S△HGF可得答案.【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF= =2则阴影部分面积= S⊙O+S△HGF= •π•22+ ×2 ×2=2π+4,故答案为:2π+4.6.已知点A(a,b)在双曲线y= 上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣ x+1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A(a,b)在双曲线y= 上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得,解得,∴y=﹣5x+5;②当a=5,b=1时,由题意,得,解得,∴y=﹣ x+1.则所求解析式为y=﹣5x+5或y=﹣ x+1.故答案为y=﹣5x+5或y=﹣ x+1.2018云南省中考数学试卷二、填空题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为( )A.6.7×105B.6.7×106C.0.67×107D.67×108【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.8.下面长方体的主视图(主视图也称正视图)是( )A. B. C. D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.9.下列计算正确的是( )A.2a×3a=5aB.(﹣2a)3=﹣6a3C.6a÷2a=3aD.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)10.已知一个多边形的内角和是900°,则这个多边形是( )A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.11.sin60°的值为( )A. B. C. D.【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°= .故选B.12.下列说法正确的是( )A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次可能有一次中奖,故本选项错误.故选A.13.正如我们小学学过的圆锥体积公式V= πr2h(π表示圆周率,r 表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9 π,则这个圆锥的高等于( )A. B. C. D.【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h= r,∵圆锥的体积等于9 π∴9 π= πr2h,∴r=3,∴h=3故选(D)14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC 的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB= =70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.2018云南省中考数学试卷三、解答题(共9个小题,满分70分)15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【考点】KD:全等三角形的判定与性质.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF16.观察下列各个等式的规律:第一个等式: =1,第二个等式: =2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是: ;(2)第n个等式是:,证明:∵====n,∴第n个等式是: .17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比= 计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:( +2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,( +2)×2x=2400。
2018年云南昆明市中考数学试卷(含解析)

2018年云南省昆明市初中毕业、升学考试数学(满分120分,考试时间120分钟)一、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上.1.(2018云南省昆明市,1,3分)在实数-3,0,1中,最大的数是.【答案】1.【解析】∵负数<0<正数,∴-3,0,1中最大的数是1.【知识点】实数比较大小2.(2018云南省昆明市,2,3分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240 000辆,数字240 000用科学记数法表示为.【答案】2.4×105.【解析】240 000是一个整数数位有6位的数,科学记数法表示一个数,就是把一个数写成a×10n的形式(其中1≤|a|<10,n为整数),故在用科学记数法表示时,a=2.4,n=6-1=5,即240 000=2.4×105.【知识点】科学记数法3.(2018云南省昆明市,3,3分)如图,过直线AB上一点O作射线OC,∠BOC=29°18',则∠AOC的度数为.【答案】150°42'.【解析】∵∠BOC+∠AOC=180°,∠BOC=29°18',∴∠AOC=180°-29°18'=150°42'.【知识点】平角的定义;角的计算4.(2018云南省昆明市,4,3分)若13mm+=,则与122mm+=.【答案】7.【解析】由13mm+=可得,2213mm+=⎛⎫⎪⎝⎭,展开得,112292m mmm++⋅=,即12922mm+=-,故122mm+=7.【知识点】完全平方公式5.(2018云南省昆明市,5,3分)如图,点A的坐标为(4,2),将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A'、则过点A'的正比例函数的解析式为.【答案】y=-43x或y=-4x.【解析】如下图(1),①若点A绕坐标原点O逆时针旋转90°,可得到点B,再向左平移1个单位长度得到点A'的坐标为(-3,4),设过点A'的正比例函数的解析式为y=kx,将点A'(-3,4)代入得,4=-3k,解得k=-43,∴y=-43x;②若点A绕坐标原点O顺时针旋转90°,可得到点C,再向左平移1个单位长度得到点A '的坐标为(2,-4),设过点A '的正比例函数的解析式为y =kx ,将点A '(1,-4)代入得,-4=k ,解得k =-4,∴y =-4x .【知识点】旋转;正比例函数关系式 6.(2018云南省昆明市,6,3分)如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).【答案】3323π-.【思路分析】S 阴影=S 正六边形ABCDEF -S 扇形BAF ,求出正六边形ABCDEF 的面积和扇形BAF 的面积即可. 【解题过程】如图,设正六边形ABCDEF 的中心为点O ,则∠CDE =∠BAF =()621806-⨯=120°,过点O 作OG ⊥DE 于G ,则在Rt △ODG 中,∵∠ODG =12∠CDE =60°,DG =12DE =12,∴OG =11260332DGCOS ==︒=33,∴S △ODG =12DG ·OG =12×12×33=312,∴S 阴影=S 正六边形ABCDEF -S 扇形BAF=12S △ODG -S 扇形BAF =12×312-21201360π⨯=3323π-.【知识点】多边形内角和公式;扇形面积公式;三角形面积公式;特殊角的三角函数值的应用二、选择题:本大题共8小题,每小题4分,共32分.不需写出解答过程,请把最后结果填在题后括号内. 7.(2018云南省昆明市,7,4分)下列几何体的左视图为长方形的是( )【答案】C.【解析】从左面看A选项为圆,B选项为梯形,C选项为长方形,D选项为等腰三角形.故选C.【知识点】视图与投影;三视图8.(2018云南省昆明市,8,4分)关于x的一元二次方程2230x x m-+=有两个不相等的实数根,则实数m 的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥3【答案】A.【思路分析】若一元二次方程有两个不相等的实数根,则判别式b2-4ac>0.【解题过程】解:由题意得,2230x x m-+=有两个不相等的实数根,则该一元二次方程的根的判别式b2-4ac=(-23)2-4×1·m=12-4m>0,解得m<3,故选A.【知识点】一元二次方程的应用;根的判别式9.(2018云南省昆明市,9,4分)黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面.请你估算5-1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【答案】B.【解析】∵2<5<3,∵2.2 2=4.84,2.32=5.29,∴2.2<5<2.3,∴2.2-1<5-1<2.3-1,即1.2<5-1<1.3,故选B.【知识点】无理数;估算10.(2018云南省昆明市,10,4分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4 000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4 000C.在“童心向党,阳光成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.5 9.6 9.7 9.8 9.9参赛队个数9 8 6 4 3则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么这个问题中“至少有两名同学出生在同一个月属于必然事件【答案】D.【解析】方差越小,数据越稳定,故乙组同学的身高较为整齐,故A选项错误;由于从中抽取100名学生的数学成绩进行调查,因此B选项中的样本容量为100,故B选项错误;C选项中30个数据,中位数为第15个和第16个的平均数,故C 选项中的中位数为()19.69.62⨯+=9.6;因为1年由12个月,故D 选项正确,故选择D .【知识点】方差;中位数;样本容量;必然事件 11.(2018云南省昆明市,11,4分)在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( )A . 90°B . 95°C . 100°D .120° 【答案】B .【解析】由量角器的摆放可知,∠BOA =70°,∠COA =130°,又∵OC =OA ,∴∠A =∠C =12(180°-130°)=25°,∵∠BOA =70°,∠COA =130°,∴∠COD =∠COA -∠BOA =130°-70°=60°,∴∠CDO =180°-∠COD -∠C =180°-60°-25°=95°,故选B . 【知识点】三角形的外角;等腰三角形的性质 12.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 03201881--=- C . 32326(0)a a a a -⋅=≠ D . 18126-= 【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项0320188--=1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D 选项181232222-=-=,故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式13.(2018云南省昆明市,13,4分)甲、乙两船从相距300km 的A 、B 两地同时出发相向而行.甲船从A 地顺流航行180km 时与B 地逆流航行的乙船相遇,谁留的速度为6km /h ,若甲、乙两船在静水中的速度均为x km /h ,则求两船在静水中的速度可列方程为( ) A .18012066x x =+- B . 18012066x x =-+ C . 1801206x x =+ D . 1801206x x =- 【答案】A . 【思路分析】(1)根据公式“路程=速度×时间” ,“顺流航行的速度=水流速度+静水中航行的速度,逆流航行的速度=静水中航行的速度-水流速度”,列出分式方程,也可以根据3行4列的表格列出分式方程. 【解题过程】解:由题意可列如下的表格: 速度 时间 路程顺流航行x +610000x180逆流航行x -6220004x +300-180=120则18012066x x =+-,故选A .【知识点】分式方程的应用14.(2018云南省昆明市,14,4分)如图,点A 在双曲线(0)k y x x=>上,过点A 作AB ⊥x 轴,垂足为B ,分别以点O 和点A 为圆心,大于12OA 的长为半径作弧,两弧相交于D 、E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC ,若AC =1,则k 的值为( )A .2B .3225C .435D .2525+【答案】B .【思路分析】由题意可知,DE 是OA 的垂直平分线,设CF 与OA 相交于点G ,则AC =OC =1,且CF ⊥OA ,利用等面积法即可求出OG 的长以及cos ∠AOB 的值,从而求出点A 的坐标,将点A 的坐标代入反比例函数关系式即可求得得k 的值.【解题过程】解:由题意可知,DE 是OA 的垂直平分线,则AC =OC =1,且CF ⊥OA ,又∵OF =2,∴CF =2221+=5,设CF 与OA 相交于点G ,则AG =OG ,S △COF =12OC ·OF =12CF ·OG ,故OG =OC OF CF⋅=125⨯=255,∴AO =2OG =455,在Rt △OCG 中,cos ∠GOC =2551OG OC==255,则在Rt △AOB 中,cos∠AOB =OB OA =255,即455OB =255,解得则OB =85,故AB =22458225545AO BO -=-=⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,点A 的坐标为(85,45),将点A 的坐标(85,45)代入k y x =得k =85×45=3225.故选B .【知识点】反比例函数关系式;特殊角的三角函数值的应用;勾股定理;等面积法三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 15.(2018云南省昆明市,15,6分)如图,在△ABC 中,AB =AD ,∠B =∠D ,∠1=∠2. 求证:BC =DE .【思路分析】根据已知条件,利用ASA定理,证明△ABC≌△ADE即可.【解题过程】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,则在△ABC和△ADE中,∵B DAB ADBAC DAE∠∠=∠∠⎧⎪⎨⎪⎩==,∴△ABC≌△ADE(ASA),∴BC=DE.【知识点】全等三角形的性质和判定16.(2018云南省昆明市,16,7分)先化简,再求值:2111236aa a-+÷--⎛⎫⎪⎝⎭,其中tan601a=︒--.【思路分析】按照先乘除后加减的运算顺序,利用约分法则,先算乘法,在利用同分母的分式加减法则通分,化到最简后,再求出a的值,代入求值即可.【解题过程】()()23211136111223622(1)1113aa a aa a a a a a aa----+÷=+⋅=⋅=----+-+-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,且tan60131a=︒--=-,当31a=-时,原式=3333113==-+.【知识点】分式的混合运算;分式的加减;分式约分;特殊角的三角函数值;绝对值;代数式求值17.(2018云南省昆明市,17,7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名购买者?(2)将补全条形统计;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1 600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【思路分析】(1)由频数÷频率=总数,先求出总人数,即可求出用A、D种支付方式的购买者,以及A种支付方式所对应的圆心角度数;(2)由频率×总数=频数,可求出用D种支付方式的购买者人数,从而求出用A 种支付方式的购买者人数,以及扇形统计图中A种支付方式所对应的圆心角的度数;(3)用A、B两种支付方式所占的比例即可估计出购买者人数.【解题过程】解:(1)本次一共调查购买者的总人数为56÷28%=200(人);(2)用D种支付方式的购买者有:200×20%=40(人),则用A种支付方式的购买者有:200―56―44―40=60(人),故扇形统计图中A种支付方式所对应的圆心角为360°×60200=108°;补充的统计图见下图:(3)若该超市这一周内有1 600名购买者,则使用A和B两种支付方式的购买者共约有1 600×6056200+=928(名).【知识点】统计与概率;频数;频率;统计图18.(2018云南省昆明市,18,6分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动.现从A、B、C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.【思路分析】(1)用画树状图法可表示出抽到的两支球队的所有可能结果;(2)根据树状图即可求出抽到B队和C队参加交流活动的概率.【解题过程】【解题过程】解:(1)用树状图表示如下:(2)抽到B队和C队参加交流活动的概率为P(抽到B队和C队参加交流活动)=21 233=⨯.【知识点】统计与概率;概率;树状图19.(2018云南省昆明市,19,7分)小婷在放学路上,看到隧道上方有一块宣传“中国——南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D 在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长.(结果保留小数点后1位)(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)【思路分析】(如上图(1),连接CB ,过点A 作AE ⊥BD 于E ,在Rt △ACE 中,利用特殊角的三角函数值求出CE 的长,再在在Rt △ADE 中,求出DE 的长,即可求得CD 的长度. 【解题过程】解:如上图(1),连接CB ,过点A 作AE ⊥BD 于E ,则在Rt △ACE 中,∵∠EAB =30°,AB =10m ,∴AE =AB ·cos30°=10×32=53,BE =AB ·sin30°=10×12=5,又∵BC =6.5m ,∴CE =BC -BE=CE =6.5-5=1.5,在Rt △ADE 中,∵∠EAD =42°,AE =53,∴DE =AE ·tan42°=53×0.9≈5×1.73×0.9=7.785,∴CD =DE -CE ≈7.785-1.5=6.285≈6.3(m ).【知识点】解直角三角形;勾股定理,三角函数;相似三角形的判定和性质;一元二次方程的解法;矩形的判定和性质 20.(2018云南省昆明市,20,8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基础水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方数的基本水价和每立方米的污水处理费各是多少元?(2)如果用户7月份生活水水费计划不超过64元,该用户7月份最多可用水多少立方米? 【思路分析】(1)根据等量关系列出二元一次方程组求解即可;(2)由题意列出一元一次不等式组即可得到该用户7月份最多可用水量. 【解题过程】解:(1)设每立方数的基本水价和每立方米的污水处理费各是x 元、y 元,有题意可得8827.610(1210)(1100%)1246.3x y x x y +=+-⨯++=⎧⎨⎩,解得 2.451x y ==⎧⎨⎩, 答:每立方数的基本水价和每立方米的污水处理费各是2.45元、1元; (2)设该用户7月份用水z 立方米,∵64>10×(1+2.45),∴z >10.由题意得10×2.45+(z -10)×2.45×(1+100%)+z ≤64,解得z ≤15,∴10<z ≤15, 答:设该用户7月份最多可用水15立方米.【知识点】二元一次方程组的实际应用;一元一次不等式组 21.(2018云南省昆明市,21,8分) 如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,AC 平分∠BAD ,连接BF . (1)求证:AD ⊥ED ;(2)若CD =4,AF =2,求⊙O 的半径.【思路分析】(1)由OA=OC,且AC平分∠BAD,证得OC∥AD,再由ED切⊙O于点C,即可证得AD⊥ED;(2)由∠P AB=∠ADB,tan∠ADB=34,可解得BF=185,再由BF∥OA可证得△BEC∽△CF A,求得PB的值;(3)由AB是⊙O的直径,可得四边形GFDC是矩形,再证明△BOG∽△BAF,可得12BG BOBF BA==,再利用勾股定理即可求出AB的长度.【解题过程】(1)证明:∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAD,∴∠CAD=∠OAC,∴∠OCA=∠CAD,∴OC∥AD,∴∠D+∠OCD=180°,∵ED切⊙O于点C,∴∠OCD=90°,∴∠D=180°-∠OCD=90°,∴AD⊥ED;(2)∵AB是⊙O的直径,∴∠AFB=90°,又∵∠AFB=∠D=∠DCG=90°,∴四边形GFDC是矩形,∴GF=CD=4,∵OC∥AD,∴△BOG∽△BAF,又∵OA=OB,∴12BG BOBF BA==,∴BG=FG=4,∴BF=2FG=8,则在Rt△BAF中,AF2+BF2=AB2,∴AB=2228+=217.【知识点】切线的性质;等腰三角形的性质;勾股定理;相似三角形的性质和判定;矩形的性质和判定;圆周角定理22.(2018云南省昆明市,22,9分)如图,抛物线2y ax bx=+过点A(1,-3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当P A⊥AB时,求△P AB的面积.【思路分析】(1)将B (1,-3) 代入2y ax bx=+,再由由对称轴是直线x=2,即可求出二次函数关系式,再由函数图象可知,当y≤0时,自变量x的取值范围;(2)如上图(1),过点B作BC⊥x轴于点C,过点P作PD ⊥x轴于点D,则可证得△ABC是等腰直角三角形,故△ADP是等腰直角三角形,得出PD=AD,从而求出点P 的坐标,进而求出△P AB的面积.【解题过程】解:(1)将点A(1,-3)代入2y ax bx=+得,3a b+=-,由对称轴是直线x=2,得22ba-=,联立得322a bba+=--=⎧⎪⎨⎪⎩,解得14ab==-⎧⎨⎩,∴抛物线的解析式为24y x x=-,当y=0时,x2-4x=0,解得x=0或x=4,故点A的坐标为(4,0),则由函数图象可知,当0≤x≤4时,y≤0;(2)如上图(1),过点B作BC⊥x轴于点C,过点P作PD⊥x轴于点D,∵A(4,0),B(1,-3),∴AC=4―1=3,BC=3,∴AC=BC,又∵BC⊥x轴,即∠ACB=90°,P A⊥AB,∴∠BAC=∠AOP=45°,∴PD=AD,设点P的坐标为(m,24m m-),则点D的坐标为(m,0),∴PD=24m m-,AD=4-m,∴24m m-=4-m,(m-4)(m+1)=0,解得m=4或m=-1,当x=4时,y=x2-4x=0,与点A重合,舍去,当x=-1时,y=x2-4x=5,∴点P的坐标为(-1,5);∵A(4,0),B(1,-3),P(-1,5),∴AB=22(14)(30)-+--=32,AP=22(14)(50)--+-=52,∴S△CDE=12P A·AB=12×32×52=15.【知识点】二次函数关系式;两点间距离公式;等腰直角三角形的性质和判定;勾股定理;三角形面积公式23.(2018云南省昆明市,23,12分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°,将△ADP沿AP翻折得到△AD'P,P D'的延长线交AB边于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP·PC;(2)判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若DPAD=12,求EFAE的值.【思路分析】(1)根据四边形ABCD是矩形,可证得AD=BC,然后证明∠DAP=∠BPC,即可证得△ADP∽△P CB;(2)先证明四边形PMBN是平行四边形,然后由△ADP沿AP翻折得到△AD'P,可证得∠APM=∠P AM,再根据∠APB=90°,可证明∠PBA=∠BPM,即可得证;(3)设DP=a,可根据DPAD=12,AD2=DP·PC,求得PC=4a,AB=5a,PM=BM=52a,然后证明△CFP∽△AFB,求得CFAC的值,再证明△AEM∽△CEP,求出EFAC的值,从而求出EFAE的值.【解题过程】(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠D=∠B CD=90°,又∵∠APB=90°,∴∠DAP+∠APD=90°,∠APD+∠BPC=90°,∴∠DAP=∠BPC,又∵∠D=∠B CP=90°,∴△ADP∽△P CB,∴AD DPPC CB=,又∵AD=BC,∴AD DPPC AD=,AD2=DP·PC;(2)∵四边形ABCD是矩形,∴AB∥DC,即PN∥BM,又∵BN∥MP,∴四边形PMBN是平行四边形,∵△ADP沿AP翻折得到△AD'P,∴∠APD=∠AP D',又∵AB∥DC,∴∠APD=∠APM=∠P AM,又∵∠APB=90°,∴∠APM+∠PBA=90°,∠APM+∠BPM=90°,∴∠PBA=∠BPM,∴PM=BM,∴平行四边形PMBN是菱形;(3)设DP=a,∵DPAD=12,∴AD=2DP=2 a,又∵AD2=DP·PC,∴(2 a)2=a·PC,解得PC=4 a,∴AB=CD=DP+PC=5a,又∵PM=BM,∴PM=BM=52a,∵AB∥DC,∴∠CPF=∠ABF,又∵∠PFC=∠BF A,∴△CFP∽△AFB,∴4455CF CPAF ABaa===,∴55549CFAC==+,∵AB∥DC,∴∠CPE=∠AME,又∵∠PEC=∠MEA,∴△AEM∽△CEP,∴55248AE AMCE CPaa===,∴5520913117EF AF AEAC AC AC=-=-=,又∵EFEFACAE AEAC=,∴204117599EFAE==.【知识点】矩形的性质;相似三角形的性质和判定;平行线的性质;菱形的判定。
2018年云南中考数学试卷(含解析)

2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________. 【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________.【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310.4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果.5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OA OC=________. 【答案】14. 【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,AB =34,AC =5.若BC 边上的高等于3,则BC 边的长为________.【答案】1或9.【解析】设边BC 上的高为AD .当边BC 上的高AD 在△ABC 的内部时,如答图1所示,在Rt △ABD 中,由勾股定理得BD =22AB AD -=22(34)3-=5,在Rt △ACD 中,由勾股定理得CD =22AC AD -=2253-=4,所以BC =5+4=9.在边BC 上的高AD 在△ABC 的外部时,如答图2所示,同理BD =5,CD =4,所以BC =5-4=1.(第5题图) C DAB O(第6题答图1) CD A B (第6题答图2) CDA B二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数y =1x -的自变量x 取值范围为 ········································ ( )A .x ≤0B .x ≤1C .x ≥0D .x ≥1【答案】B .【解析】函数y =1x -自变量x 满足1x -≥0,解得x ≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。
2018年云南中考数学试卷(含解析)

2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________. 【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________.【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310.4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果.5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OA OC=________. 【答案】14. 【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,AB =34,AC =5.若BC 边上的高等于3,则BC 边的长为________.【答案】1或9.【解析】设边BC 上的高为AD .当边BC 上的高AD 在△ABC 的内部时,如答图1所示,在Rt △ABD 中,由勾股定理得BD =22AB AD -=22(34)3-=5,在Rt △ACD 中,由勾股定理得CD =22AC AD -=2253-=4,所以BC =5+4=9.在边BC 上的高AD 在△ABC 的外部时,如答图2所示,同理BD =5,CD =4,所以BC =5-4=1.(第5题图) C DAB O(第6题答图1) CD A B (第6题答图2) CDA B二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数y =1x -的自变量x 取值范围为 ········································ ( )A .x ≤0B .x ≤1C .x ≥0D .x ≥1【答案】B .【解析】函数y =1x -自变量x 满足1x -≥0,解得x ≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。
(完整版)2018年云南省中考数学试卷及答案.doc
机密★2018 年云南省学业水平考试试题卷数学一、填空(共 6 小,每小 3 分,分 18 分)1.(3 分) 1 的是.2.(3 分)已知点 P(a,b)在反比例函数 y= 的象上, ab= .3.(3 分)某地主“不忘初心,牢使命”的告会,参加会的人3451 人,将3451 用科学数法表示.4.(3 分)分解因式: x 2 4= .5.(3 分)如,已知 AB∥ CD,若= ,= .6.(3 分)在△ ABC中,AB= ,AC=5,若 BC上的高等于 3, BC的.二、(共8 小,每小 4 分,分 32 分 . 每小只有一个正确)7.(4 分)函数 y= 的自量 x 的取范()A. x≤ 0 B .x≤1C. x≥ 0 D .x≥18.(4 分)下列形是某几何体的三(其中主也称正,左也称),个几何体是()A.三棱柱 B .三棱C.柱 D .9.(4 分)一个五形的内角和()A.540° B .450°C.360° D .180°10.(4 分)按一定律排列的式:a, a2,a3, a4, a5,6个式是()a ,⋯⋯,第 nA. a n B . a nC.( 1)n+1a n D .( 1)n a n11.(4 分)下列形既是称形,又是中心称形的是()A.三角形 B. 菱形C.角 D .平行四形12.(4 分)在 Rt△ ABC中,∠ C=90°, AC=1,BC=3,∠ A 的正切()A. 3 B .C. D .13.(4 分) 2017 年 12 月 8 日,以“ [ 数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海” 主的2017 一一路数学科技文化?玉溪第 10 届全国三数字化新大(称“全国 3D大”)决在玉溪幕.某学校了解学生次大的了解程度,在全校 1300 名学生中随机抽取部分学生行了一次卷,并根据收集到的信息行了,制了下面两幅.下列四个的是()A .抽取的学生人数为 50 人B.“非常了解”的人数占抽取的学生人数的 12%C.a=72°2+ =(D.全校“不了解”的人数估计有 428 人.(分)已知x+ ,则)14 4 =6xA .38 B. 36 C. 34 D. 32三、解答题(共9 小题,满分70 分)15.(6 分)计算:﹣2cos45 °﹣()﹣1 0 ﹣(π﹣1)16.(6 分)如图,已知 AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .17.(8 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A (0,3), B(﹣ 4,﹣)两点.(2)二次函数 y=﹣ x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品100 千克进行深入研究,已知现有甲种原料 293 千克,乙种原料 314 千克,生产 1 千克 A 商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千生产成本(单位:元)克)A 商品 3 2 120B 商品 2.5 3.5 200设生产 A 种商品 x 千克,生产 A 、 B 两种商品共 100 千克的总成本为 y 元,根据上述信息,解答下列问题:(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?22.( 9 分)如图,已知 AB 是⊙ O 上的点,C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD= ∠BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.23.(12 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点,AF=AD +FC,平行四边形 ABCD 的面积为 S,由 A 、E、F 三点确定的圆的周长为 t.(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.2018 年云南省中考数学试卷参考答案与试题解析一、填空题(共 6 小题,每小题 3 分,满分 18 分)1.(3.00 分)﹣ 1 的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵ | ﹣ 1| =1,∴﹣ 1 的绝对值是 1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.2.( 3.00 分)已知点 P(a,b)在反比例函数y=的图象上,则ab= 2.【分析】接把点 P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点 P( a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为: 2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00 分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451 人,将3451 用科学记数法表示为 3.451×103 .【分析】科学记数法的表示形式为 a× 10n的形式,其中 1≤ | a| <10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】解: 3451=3.451×103,故答案为: 3.451×103.a×10n的形式,其中 1 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为≤| a| <10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3.00 分)分解因式: x 2﹣ 4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解: x2﹣4=( x+2)( x﹣ 2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00 分)如图,已知 AB ∥ CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵ AB ∥CD ,∴△ AOB ∽△ COD,∴= = ,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00 分)在△ ABC 中, AB=,AC=5,若BC边上的高等于3,则 BC 边的长为9 或1 .【分析】△ABC 中,∠ ACB 分锐角和钝角两种:①如图 1,∠ ACB 是锐角时,根据勾股定理计算BD 和 CD 的长可得 BC 的值;②如图 2,∠ ACB 是钝角时,同理得: CD=4, BD=5,根据 BC=BD ﹣ CD 代入可得结论.【解答】解:有两种情况:①如图 1,∵ AD 是△ ABC 的高,∴∠ ADB= ∠ADC=90°,由勾股定理得: BD===5,CD===4,∴BC=BD +CD=5+4=9;②如图 2,同理得: CD=4, BD=5,∴BC=BD ﹣ CD=5﹣4=1,综上所述, BC 的长为 9 或 1;故答案为: 9 或 1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8 小题,每小题 4 分,满分 32 分.每小题只有一个正确选项)7.(4.00 分)函数 y=的自变量x的取值范围为()A .x ≤0B. x≤ 1C. x≥ 0D. x≥ 1【分析】根据被开方数大于等于0 列式计算即可得解.【解答】解:∵ 1﹣ x≥0,∴x≤1,即函数 y= 的自变量 x 的取值范围是 x ≤1,故选: B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式 ,被开方数非 .8.(4.00 分)下列 形是某几何体的三 (其中主 也称正 ,左 也称 ) ,个几何体是( )A .三棱柱B .三棱C . 柱D . 【分析】 由三 及 条件知,此几何体 一个的 . 【解答】 解:此几何体是一个 , 故 : D .【点 】 考 三 的理解与 用,主要考 三 与 物 之 的关系,三 的投影是: “主 、俯 正;主 、左 高平 ,左 、俯相等 ”.9.(4.00 分)一个五 形的内角和 ( ) A .540° B . 450° C . 360° D . 180° 【分析】 直接利用多 形的内角和公式 行 算即可. 【解答】 解:解:根据正多 形内角和公式: 180°×( 5 2)=540°,答:一个五 形的内角和是 540 度,故 : A . 【点 】 此 主要考 了正多 形内角和,关 是掌握内角和的 算公 式..( 分)按一定 律排列的 式:2, a 3 , a 4, a 5, a 6,⋯⋯ ,第 n 个 10 4.00 a , a式是( ) A .a n B . a n C .( 1)n +1a n D .( 1)n a n 【分析】 察字母 a 的系数、次数的 律即可写出第 n 个 式.2 3 4 56,⋯⋯ ,( 1) n +1 n.【解答】 解: a , a ,a , a ,a , a?a故 : C .a 的系数 奇数 ,符号 正;系数字母【点 】 考 了 式,数字的 化 ,注意字母 a 的系数 偶数 ,符号 .11.(4.00 分)下列 形既是 称 形,又是中心 称 形的是()A .三角形B .菱形C .角D .平行四 形 【分析】 根据 称 形与中心 称 形的概念求解.【解答】 解: A 、三角形不一定是 称 形和中心 称 形,故本 ;B 、菱形既是 称 形又是中心 称 形,故本 正确;C 、角不一定是 称 形和中心 称 形,故本 ;D 、平行四 形不一定是 称 形和中心 称 形,故本 ;故 : B .【点 】 此 主要考 了中心 称 形与 称 形的概念:判断 称 形的关 是 找 称 , 形两部分沿 称 折叠后可重合; 判断中心 称 形是要 找 称中心,旋 180度后与原图重合.12.(4.00 分)在 Rt △ABC 中,∠ C=90°,AC=1, BC=3,则∠ A 的正切值为()A .3B .C .D .【分析】 根据锐角三角函数的定义求出即可.【解答】 解:∵在 Rt △ABC 中,∠ C=90°, AC=1,BC=3,∴∠ A 的正切值为= =3,故选: A .【点评】 本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00 分) 2017 年 12 月 8 日,以 “[数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海 ”为主题的 2017 一带一路数学科技文化节 ?玉溪暨第 10 届全国三维数字化创新设计大赛(简称 “全国 3D 大赛 ”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 1300 名 学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下 面两幅统计图.下列四个选项错误的是( )A .抽取的学生人数为 50 人B . “非常了解 ”的人数占抽取的学生人数的 12%C .a=72°D .全校 “不了解 ”的人数估计有 428 人【分析】 利用图中信息一一判断即可解决问题;【解答】 解:抽取的总人数为 6+10+16+18=50(人),故 A 正确,“非常了解 ”的人数占抽取的学生人数的 =12%,故 B 正确,α =360×° =72°,故正确,全校 “不了解 ”的人数估计有1300× =468(人),故 D 错误,故选: D .【点评】 本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型..( 4.00 分)已知x+ =6,则 x 2+ =( )14A .38B .36C .34D . 32【分析】 把 x+ =6 两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把 x+ =6 两边平方得:( x+)2=x2++2=36,则x2+ =34,故选: C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共 9 小题,满分70 分)15.(6.00 分)计算:﹣ 2cos45 °﹣()﹣1 0 ﹣(π﹣ 1)【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式 =3 ﹣2×﹣ 3﹣ 1=2 ﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00 分)如图,已知AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .【分析】根据角平分线的定义得到∠BAC= ∠DAC ,利用 SAS 定理判断即可.【解答】证明:∵ AC 平分∠ BAD ,∴∠ BAC= ∠DAC ,在△ ABC 和△ ADC 中,,∴△ ABC ≌△ ADC .【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的 SAS 定理是解题的关键.17.(8.00 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】( 1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为: 5, 6, 7,7,8,8,8,数据 8 出现了三次最多为众数,7 处在第 4 位为中位数;(2)该同学所得分数的平均数为(5+6+7× 2+8×3)÷ 7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数 =总数÷个数.18.(6.00 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据工作时间 =总工作量÷工作效率结合甲工程队完成300 平方米的绿化面积比乙工程队完成300 平方米的绿化面积少用 3 小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿化面积,根据题意得:﹣=3,解得: x=50,经检验, x=50 是分式方程的解.答:乙工程队每小时能完成50 平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】( 1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由( 1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有 6 种等可能的结果:( 1,2)、( 1, 3)、( 2, 1)、(2,3)、(3,1)、( 3,2);(2)∵共有 6 种等可能结果,其中数字之和为偶数的有 2 种结果,∴取出的两张卡片上的数字之和为偶数的概率P= =.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率 =所求情况数与总情况数之比.20.(8.00 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A ( 0, 3),B(﹣ 4,﹣)两点.(1)求 b, c 的值.(2)二次函数 y=﹣x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】( 1)把点 A 、 B 的坐标分别代入函数解析式求得b、 c 的值;( 2 )利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程﹣x2 + x+3=0,通过解该方程求得 x 的值即为抛物线与 x 轴交点横坐标.【解答】解:(1)把 A (0,3), B(﹣ 4,﹣)分别代入 y=﹣x2+bx+c,得,解得;(2)由( 1)可得,该抛物线解析式为:y=﹣x2+ x+3.△=()2﹣4×(﹣)× 3=>0,所以二次函数 y=﹣x2+bx+c 的图象与 x 轴有公共点.∵﹣x2+ x +3=0 的解为: x1=﹣2,x2=8∴公共点的坐标是(﹣ 2, 0)或( 8,0).【点评】考查了抛物线与 x 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品 100 千克进行深入研究,已知现有甲种原料293 千克,乙种原料314 千克,生产 1 千克A商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品B商品设生产 A 种商品解答下列问题:3 2 1202.53.5 200x 千克,生产 A 、 B 两种商品共100 千克的总成本为 y 元,根据上述信息,(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?【分析】( 1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;【解答】解:(1)由题意可得: y=120x+200(100﹣x)=﹣80x+20000,,解得: 72≤x ≤86;(2)∵ y=﹣80x+20000,∴y 随 x 的增大而减小,∴x=86 时, y 最小,则y=﹣80× 86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00 分)如图,已知 AB 是⊙ O 上的点, C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD=∠ BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.【分析】( 1)连接 OC,易证∠ BCD= ∠ OCA,由于 AB 是直径,所以∠ ACB=90°,所以∠OCA+OCB=∠ BCD+∠ OCB=90°,CD 是⊙ O 的切线(2)设⊙ O 的半径为 r,AB=2r,由于∠ D=30°,∠OCD=90°,所以可求出 r=2,∠AOC=120°,BC=2,由勾股定理可知: AC=2 ,分别计算△ OAC 的面积以及扇形 OAC 的面积即可求出影响部分面积【解答】解:(1)连接 OC,∵OA=OC ,∴∠ BAC= ∠OCA ,∵∠ BCD= ∠ BAC ,∴∠ BCD= ∠OCA ,∵AB 是直径,∴∠ ACB=90°,∴∠ OCA+OCB=∠ BCD+∠OCB=90°∴∠ OCD=90°∵OC 是半径,∴CD 是⊙ O 的切线(2)设⊙ O 的半径为 r ,∴AB=2r ,∵∠ D=30°,∠ OCD=90°,∴OD=2r,∠ COB=60°∴r+2=2r,∴r=2,∠ AOC=120°∴B C=2,∴由勾股定理可知: AC=2易求 S △ AOC = ×2× 1=S 扇形 OAC = =∴阴影部分面积为 ﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含 30 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点, AF=AD +FC ,平行四边形 ABCD 的面积为 S ,由 A 、E 、F 三点确定的圆的周长为 t .(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.【分析】( 1)作 EG ⊥AB 于点 G ,由 S △ ABE = ×AB × EG=30 得 AB?EG=60,即可得出答案; ( 2 )延长 AE 交 BC 延长线于点 H ,先证△ ADE ≌△ HCE 得 AD=HC 、 AE=HE 及 AD +FC=HC+FC ,结合 AF=AD +FC 得∠ FAE=∠CHE ,根据∠ DAE= ∠CHE 即可得证;(3)先证∠ ABF=90°得出 AF 22+BF 2 ( ﹣ )2 = ( FC+CH )2 ( ) 2,据此求 =AB =16+ 5 FC= FC+5 得 FC 的长,从而得出 AF 的长度,再由 AE=HE 、AF=FH 知 FE ⊥AH ,即 AF 是△ AEF 的外 接圆直径,从而得出答案.【解答】 解:(1)如图,作 EG ⊥ AB 于点 G ,则 S △ ABE = × AB × EG=30,则 AB?EG=60,∴平行四边形 ABCD 的面积为 60;(2)延长 AE 交 BC 延长线于点 H ,∵四边形 ABCD 是平行四边形,∴AD ∥BC ,∴∠ ADE= ∠HCE ,∠ DAE= ∠CHE ,∵E 为 CD 的中点,∴CE=ED,∴△ ADE ≌△ HCE,∴AD=HC 、 AE=HE ,∴AD +FC=HC+FC,由AF=AD +FC 和 FH=HC+FC 得AF=FH ,∴∠ FAE=∠ CHE,又∵∠ DAE= ∠CHE,∴∠ DAE= ∠FAE,∴AE 平分∠ DAF ;(3)连接 EF,∵AE=BE 、AE=HE ,∴AE=BE=HE ,∴∠ BAE= ∠ ABE ,∠ HBE= ∠BHE,∵∠ DAE= ∠CHE,∴∠BAE +∠DAE= ∠ABE +∠HBE ,即∠DAB= ∠CBA ,由四边形ABCD 是平行四边形得∠DAB+∠CBA=180°,∴∠ CBA=90°,∴AF 2=AB 2+BF2 =16+( 5﹣ FC)2=(FC+CH)2=(FC+5)2,解得: FC= ,∴AF=FC +CH=,∵AE=HE 、AF=FH ,∴FE⊥ AH ,∴AF 是△ AEF 的外接圆直径,∴△ AEF 的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。
2018年云南省中考数学
2018年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是.2.(3.00分)已知点P(a,b)在反比例函数y=2x的图象上,则ab=.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3.00分)分解因式:x2﹣4=.5.(3.00分)如图,已知AB∥CD,若ABCD=14,则OAOC=.6.(3.00分)在△ABC中,AB=√34,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=√1−x的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥18.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.√1010D.3√101013.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A .抽取的学生人数为50人B .“非常了解”的人数占抽取的学生人数的12%C .a=72°D .全校“不了解”的人数估计有428人14.(4.00分)已知x +1x =6,则x 2+1x=( )A .38B .36C .34D .32三、解答题(共9小题,满分70分)15.(6.00分)计算:√18﹣2cos45°﹣(13)﹣1﹣(π﹣1)016.(6.00分)如图,已知AC 平分∠BAD ,AB=AD .求证:△ABC ≌△ADC .17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表: 评委 评委1 评委2 评委3 评委4 评委5 评委6 评委7 打分6878578(1)直接写出该同学所得分数的众数与中位数; (2)计算该同学所得分数的平均数18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8.00分)已知二次函数y=﹣316x2+bx+c的图象经过A(0,3),B(﹣4,﹣92)两点.(1)求b,c的值.(2)二次函数y=﹣316x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品32120B商品 2.5 3.5200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2018年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是1.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.2.(3.00分)已知点P(a,b)在反比例函数y=2x的图象上,则ab=2.【解答】解:∵点P(a,b)在反比例函数y=2x的图象上,∴b=2a,∴ab=2.故答案为:23.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【解答】解:3451=3.451×103,故答案为:3.451×103.4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).5.(3.00分)如图,已知AB∥CD,若ABCD=14,则OAOC=14.【解答】解:∵AB ∥CD , ∴△AOB ∽△COD ,∴OA OC =AB CD =14, 故答案为14.6.(3.00分)在△ABC 中,AB=√34,AC=5,若BC 边上的高等于3,则BC 边的长为 9或1 .【解答】解:有两种情况: ①如图1,∵AD 是△ABC 的高, ∴∠ADB=∠ADC=90°,由勾股定理得:BD=√AB 2−AD 2=√(√34)2−32=5, CD=√AC 2−AD 2=√52−32=4, ∴BC=BD +CD=5+4=9;②如图2,同理得:CD=4,BD=5, ∴BC=BD ﹣CD=5﹣4=1, 综上所述,BC 的长为9或1; 故答案为:9或1.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=√1−x的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1【解答】解:∵1﹣x≥0,∴x≤1,即函数y=√1−x的自变量x的取值范围是x≤1,故选:B.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【解答】解:此几何体是一个圆锥,故选:D.9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.√1010D.3√1010【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为BCAC=31=3,故选:A.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A .抽取的学生人数为50人B .“非常了解”的人数占抽取的学生人数的12%C .a=72°D .全校“不了解”的人数估计有428人【解答】解:抽取的总人数为6+10+16+18=50(人),故A 正确, “非常了解”的人数占抽取的学生人数的650=12%,故B 正确, α=360°×1050=72°,故正确,全校“不了解”的人数估计有1300×1850=468(人),故D 错误,故选:D .14.(4.00分)已知x +1x =6,则x 2+1x=( )A .38B .36C .34D .32【解答】解:把x +1x =6两边平方得:(x +1x)2=x 2+1x 2+2=36,则x 2+1x 2=34, 故选:C .三、解答题(共9小题,满分70分)15.(6.00分)计算:√18﹣2cos45°﹣(13)﹣1﹣(π﹣1)0【解答】解:原式=3√2﹣2×√22﹣3﹣1=2√2﹣416.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,{AB=AD∠BAC=∠DAC AC=AC,∴△ABC≌△ADC.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【解答】解:设乙工程队每小时能完成x 平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据题意得:300x ﹣3002x=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x ,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y .(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x ,y )所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P . 【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P=26=13.20.(8.00分)已知二次函数y=﹣316x 2+bx +c 的图象经过A (0,3),B (﹣4,﹣92)两点.(1)求b,c的值.(2)二次函数y=﹣316x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【解答】解:(1)把A(0,3),B(﹣4,﹣92)分别代入y=﹣316x2+bx+c,得{c=3−316×16−4b+c=−92,解得{b=9 8c=3;(2)由(1)可得,该抛物线解析式为:y=﹣316x2+98x+3.△=(98)2﹣4×(﹣316)×3=22564>0,所以二次函数y=﹣316x2+bx+c的图象与x轴有公共点.∵﹣316x2+98x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品32120B商品 2.5 3.5200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,{3x+2.5(100−x)≤293 2x+3.5(100−x)≤314,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD 是⊙O 的切线 (2)设⊙O 的半径为r , ∴AB=2r ,∵∠D=30°,∠OCD=90°, ∴OD=2r ,∠COB=60° ∴r +2=2r ,∴r=2,∠AOC=120° ∴BC=2,∴由勾股定理可知:AC=2√3易求S △AOC =12×2√3×1=√3S 扇形OAC =120π×4360=4π3∴阴影部分面积为43π﹣√323.(12.00分)如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF=AD +FC ,平行四边形ABCD 的面积为S ,由A 、E 、F 三点确定的圆的周长为t .(1)若△ABE 的面积为30,直接写出S 的值; (2)求证:AE 平分∠DAF ;(3)若AE=BE ,AB=4,AD=5,求t 的值.【解答】解:(1)如图,作EG ⊥AB 于点G ,则S△ABE =12×AB×EG=30,则AB•EG=60,∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF 2=AB 2+BF 2=16+(5﹣FC )2=(FC +CH )2=(FC +5)2,解得:FC=45,∴AF=FC +CH=295,∵AE=HE 、AF=FH , ∴FE ⊥AH ,∴AF 是△AEF 的外接圆直径,∴△AEF 的外接圆的周长t=295π.。
2018年云南省中考数学试卷及答案
2018年云南省中考数学试卷及答案(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟) 一,填空(本大起共6小题,每小题3分,18分) 1.–1的绝对值是_______.2.已知点P (a ,b )在反比例函数y=x2的图象上,则ab =_______. 5.某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人 员有3451人,将3451,用科学记数法表示为_______. 4.分解因式:x 2–4=_______. 5.如图,己知AB ∥CD ,若=CD AB 41.则=OC OA_______. 6.在△ABC 中,AB =34,AC =5,若BC 边上的高等于3,则BC 边的长为_______.二、选择(本大题共8小题,每小题只有一个正确,每小题4分,共32分) 7.函数y =x -1的自变量x 的取值范围为A .x ≤0B .x ≤1C .x ≥0D .x ≥18.下列图形是某几何体的三视图(其中主视图也称正视图,左视图也侧视图),则这个几何体是A .三棱柱B .三棱锥C .圆柱D .圆锥 9.一个五边形的内角和为A .540°B .450°C .360°D .180° 10.按一定观律排列的单项式:a ,–a 2,a 3,–a 4,a 5,–a 6,……,第n 个单项式是A .a nB .–a nC .(–1) n+1 a nD .(–1) n a n 11.下列图形既是轴对称图形,又是中心对称图形的是A .三角形B .菱形C .角D .平行四边形12.在R t △ABC 中,∠C =90°,AC =1,BC =3,则∠A 的正切值为A .3B .31C .1010D .1010313.2017年12月8日,以“「数字工匠」玉汝于成,「数字工坊」溪达四海”为主题题的2017一带一路 数字科技文化节・玉溪及第10届全国三维数字化 创新设计大赛(简称“全国3D 大赛”)总决赛在 玉溪圆满闭幕.某校为了解学生对这次大赛的了解 程度,在全校1300名学生中随机抽取部分学生进 行了一次问卷参调查,并根据收集到的信息进行了 统计,绘制了下面两幅统计图.BA DCO主视图左视图俯视图下列四个选项,错误的是A .抽取的学生人数为50人B .“非常了解”的人数占抽取的学生人的12%C .α=72°D .全校“不了解”的人数估计有428人 14.已知x +x 1=6,则x 2+21x= A .38 B .36 C .34 D .32三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算:18–2cos45°+(31)–1–(1-π)°16.(本小题满分6分)如图,已知AC 平分∠BAD ,AB =AD ,求证:△ABC ≌△ADC .17.(本小题满分8分)某同学参加了学校行的“五好小公民・红旗飘飘”演讲比赛,7位评委给该同学的打((2)计算该同学所得分数的平均数. 18.(本小题满分6分)某社区积极响应正在开展的“创文活动”,组织甲、乙时个志愿工程队对社区的一些区域 进行绿化改造.已知甲工程每小时能完成的绿化面积是乙工程每小时能完成的绿化面积 的2倍,并且甲工程队完成300平方米的绿化面积比乙工程纵完成300平方米的绿化面积少 用3小时.乙工程队每小时能完成多少平方米的绿化面积?BA D C19.(本小题满分7分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x ;再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y .(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x ,y )所有可能出现的结果; (2)求取出的两张卡片上的数字之和为偶数的概率P .20.(本小题满分8分) 已知二次函数y =–163x 2+bx +c 的图象经过A (0,3)、B (–4,–29)两点.(1)求b 、c 的值; (2)二次函致y =–163x 2+bx +c 的图象与x 轴是否有公共点?若有,求公共点的坐标; 若没有,请说明理由.21.(本小题满分8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地盛产的甲、乙两种原料开发A 、B 两种商品.为科学决策,他们试生产A 、B 两种商品共100千克进行深入研充.已知现有甲种原料293千克,乙种原料314千克.生产1千克A 商品,1千克B 商品所需要的甲、乙两设生产A 种商品x 千克,生产A 、B 可种商品共100千克的成本为y 元,根据上述信息,解答下列问题:(1)求y 与x 的函数解析式(也称关系式),并直接写出x 的取值范围; (2)x 取何值时,总成本y 最小?22.(本小题满分9分)如图,已知AB 是⊙O 的直径,C 是⊙O 上的点,点D 在AB 的延长上,∠BCD=∠BAC . (1)求证:CD 是⊙O 的切线;(2)∠D =30°,BP =2,求图中阴部分的面积.23.(本小题满分12分)如图,在□ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF =AD +FC . □ABCD 的面积为S ,由A 、E 、F 三点确定的圆的周长为l . (1)若△ABE 的面积为30,直按写出S 的值; (2)求证:AE 平分∠DAF ;(3)若AE =BE ,AB =4,AD =5,求l 的值.BA DCO BAF。
云南省中考数学试卷及答案
2018年云南省中考数学试卷及答案(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟) 一,填空(本大起共6小题,每小题3分,18分) 1.–1的绝对值是_______. 2.已知点P (a ,b )在反比例函数y=x2的图象上,则ab =_______. 5.某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人 员有3451人,将3451,用科学记数法表示为_______.4.分解因式:x 2–4=_______. 5.如图,己知AB ∥CD ,若=CD AB 41.则=OC OA_______. 6.在△ABC 中,AB =34,AC =5,若BC 边上的高等于3,则BC 边的长为_______.二、选择(本大题共8小题,每小题只有一个正确,每小题4分,共32分) 7.函数y =x -1的自变量x 的取值范围为A .x ≤0B .x ≤1C .x ≥0D .x ≥18.下列图形是某几何体的三视图(其中主视图也称正视图,左视图也侧视图),则这个几何体是A .三棱柱B .三棱锥C .圆柱D .圆锥 9.一个五边形的内角和为A .540°B .450°C .360°D .180° 10.按一定观律排列的单项式:a ,–a 2,a 3,–a 4,a 5,–a 6,……,第n 个单项式是A .a nB .–a nC .(–1) n+1 a nD .(–1) n a n11.下列图形既是轴对称图形,又是中心对称图形的是A .三角形B .菱形C .角D .平行四边形12.在R t △ABC 中,∠C =90°,AC =1,BC =3,则∠A 的正切值为A .3B .31C .1010D .1010313.2017年12月8日,以“「数字工匠」玉汝于成,「数字工坊」溪达四海”为主题题的2017一带一路 数字科技文化节?玉溪及第10届全国三维数字化 创新设计大赛(简称“全国3D 大赛”)总决赛在 玉溪圆满闭幕.某校为了解学生对这次大赛的了解 程度,在全校1300名学生中随机抽取部分学生进 行了一次问卷参调查,并根据收集到的信息进行了 统计,绘制了下面两幅统计图. 下列四个选项,错误的是A .抽取的学生人数为50人B .“非常了解”的人数占抽取的学生人的12%BA O左视图俯视图C .α=72°D .全校“不了解”的人数估计有428人 14.已知x +x 1=6,则x 2+21x= A .38 B .36 C .34 D .32三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算:18–2cos45°+(31)–1–(1-π)°1617((2)计算该同学所得分数的平均数. 18.(本小题满分6分)某社区积极响应正在开展的“创文活动”,组织甲、乙时个志愿工程队对社区的一些区域 进行绿化改造.已知甲工程每小时能完成的绿化面积是乙工程每小时能完成的绿化面积 的2倍,并且甲工程队完成300平方米的绿化面积比乙工程纵完成300平方米的绿化面积少 用3小时.乙工程队每小时能完成多少平方米的绿化面积? 19.(本小题满分7分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x ;再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y .(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x ,y )所有可能出现的结果; (2)求取出的两张卡片上的数字之和为偶数的概率P . 20.(本小题满分8分) 已知二次函数y =–163x 2+bx +c 的图象经过A (0,3)、B (–4,–29)两点.(1)求b 、c 的值; (2)二次函致y =–163x 2+bx +c 的图象与x 轴是否有公共点?若有,求公共点的坐标; 若没有,请说明理由. 21.(本小题满分8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地盛产的甲、乙两种原料开发A 、B 两种商品.为科学决策,他们试生产A 、B 两种商品共100千克进行深入研充.已知现有甲种原料293千克,乙种原料314千克.生产1千克A 商品,1千克B 商品所需要的甲、乙两 甲种原料(单位:千克) 乙种原料(单位:千克) 生产成本(单位:元) A 商品 3 2 120 B 商品2.53.5200设生产A 种商品千克,生产A 、B 可种商品共100千克的成本为y 元,根据上述信 息,解答下列问题:(1)求y 与x 的函数解析式(也称关系式),并直接写出x 的取值范围; (2)x 取何值时,总成本y 最小 22.(本小题满分9分)如图,已知AB 是⊙O 的直径,C 是⊙O 上的点,点D 在AB 的延长上,∠BCD=∠BAC . (1)求证:CD 是⊙O 的切线;(2)∠D =30°,BP =2,求图中阴部分的面积. 23.(本小题满分12分)如图,在□ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF =AD +FC□ABCD 的面积为S ,由A 、E 、F 三点确定的圆的周长为l .(1)若△ABE 的面积为30,直按写出S 的值;(2)求证:AE 平分∠DAF ;(3)若AE =BE ,AB =4,AD =5,求l 的值.BA DCO B AF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机密★2018年云南省学业水平考试试题卷数学一、填空题(共 小题,每小题 分,满分 分).( 分)﹣ 的绝对值是 ..( 分)已知点 ( , )在反比例函数 的图象上,则 ..( 分)某地举办主题为 不忘初心,牢记使命 的报告会,参加会议的人员 人,将 用科学记数法表示为..( 分)分解因式: ﹣ ..( 分)如图,已知 ∥ ,若 ,则 ..( 分)在△ 中, , ,若 边上的高等于 ,则 边的长为 .二、选择题(共 小题,每小题 分,满分 分 每小题只有一个正确选项) .( 分)函数 的自变量 的取值范围为(). ≤ . ≤. ≥ . ≥.( 分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是().三棱柱 .三棱锥.圆柱 .圆锥.( 分)一个五边形的内角和为(). .. ..( 分)按一定规律排列的单项式: ,﹣ , ,﹣ , ,﹣ , ,第 个单项式是(). .﹣.(﹣ ) .(﹣ ).( 分)下列图形既是轴对称图形,又是中心对称图形的是().三角形 菱形.角 .平行四边形.( 分)在 △ 中,∠ , , ,则∠ 的正切值为() . .. ..( 分) 年 月 日,以 数字工匠 玉汝于成, 数字工坊 溪达四海 为主题的 一带一路数学科技文化节 玉溪暨第 届全国三维数字化创新设计大赛(简称 全国 大赛 )总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是().抽取的学生人数为 人 . 非常了解 的人数占抽取的学生人数的 . .全校 不了解 的人数估计有 人.( 分)已知 ,则 (). . . .三、解答题(共 小题,满分 分).( 分)计算:﹣ ﹣()﹣ ﹣( ﹣ ).(分)如图,已知 平分∠ , .求证:△ ≌△ ..( 分)某同学参加了学校举行的 五好小公民 红旗飘飘 演讲比赛, 名评委给该同学的打分(单位:分)情况如下表:评委评委评委评委评委评委评委评委打分( )直接写出该同学所得分数的众数与中位数;( )计算该同学所得分数的平均数.( 分)某社区积极响应正在开展的 创文活动 ,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 倍,并且甲工程队完成 平方米的绿化面积比乙工程队完成 平方米的绿化面积少用 小时,乙工程队每小时能完成多少平方米的绿化面积?.( 分)将正面分别写着数字 , , 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 ,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 .( )用列表法或树状图法(树状图也称树形图)中的一种方法,写出( , )所有可能出现的结果.( )求取出的两张卡片上的数字之和为偶数的概率 ..( 分)已知二次函数 ﹣ 的图象经过 ( , ), (﹣ ,﹣)两点.( )求 , 的值.( )二次函数 ﹣ 的图象与 轴是否有公共点,求公共点的坐标;若没有,请说明情况..( 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 , 两种商品,为科学决策,他们试生产 、 两种商品 千克进行深入研究,已知现有甲种原料 千克,乙种原料 千克,生产 千克 商品, 千克 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)商品商品设生产 种商品 千克,生产 、 两种商品共 千克的总成本为 元,根据上述信息,解答下列问题:( )求 与 的函数解析式(也称关系式),并直接写出 的取值范围;( ) 取何值时,总成本 最小?.( 分)如图,已知 是⊙ 上的点, 是⊙ 上的点,点 在 的延长线上,∠ ∠ .( )求证: 是⊙ 的切线;( )若∠ , ,求图中阴影部分的面积..( 分)如图,在平行四边形 中,点 是 的中点,点 是 边上的点, ,平行四边形 的面积为 ,由 、 、 三点确定的圆的周长为 .( )若△ 的面积为 ,直接写出 的值;( )求证: 平分∠ ;( )若 , , ,求 的值.年云南省中考数学试卷参考答案与试题解析一、填空题(共 小题,每小题 分,满分 分).( 分)﹣ 的绝对值是 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵ ﹣ ,∴﹣ 的绝对值是 .【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 的绝对值是 ..( 分)已知点 ( , )在反比例函数 的图象上,则 .【分析】接把点 ( , )代入反比例函数 即可得出结论.【解答】解:∵点 ( , )在反比例函数 的图象上,∴ ,∴ .故答案为:【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键..( 分)某地举办主题为 不忘初心,牢记使命 的报告会,参加会议的人员 人,将 用科学记数法表示为 × .【分析】科学记数法的表示形式为 × 的形式,其中 ≤ < , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值大于 时, 是正数;当原数的绝对值小于 时, 是负数.【解答】解: × ,故答案为: × .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 × 的形式,其中 ≤ < , 为整数,表示时关键要正确确定 的值以及 的值..( 分)分解因式: ﹣ ( )( ﹣ ).【分析】直接利用平方差公式进行因式分解即可.【解答】解: ﹣ ( )( ﹣ ).故答案为:( )( ﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..( 分)如图,已知 ∥ ,若 ,则.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵ ∥ ,∴△ ∽△ ,∴ ,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型..( 分)在△ 中, , ,若 边上的高等于 ,则 边的长为 或 .【分析】△ 中,∠ 分锐角和钝角两种:①如图 ,∠ 是锐角时,根据勾股定理计算 和 的长可得 的值;②如图 ,∠ 是钝角时,同理得: , ,根据 ﹣ 代入可得结论.【解答】解:有两种情况:①如图 ,∵ 是△ 的高,∴∠ ∠ ,由勾股定理得: ,,∴ ;②如图 ,同理得: , ,∴ ﹣ ﹣ ,综上所述, 的长为 或 ;故答案为: 或 .【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共 小题,每小题 分,满分 分 每小题只有一个正确选项).( 分)函数 的自变量 的取值范围为(). ≤ . ≤ . ≥ . ≥【分析】根据被开方数大于等于 列式计算即可得解.【解答】解:∵ ﹣ ≥ ,∴ ≤ ,即函数 的自变量 的取值范围是 ≤ ,故选: .【点评】本题考查了函数自变量的范围,一般从三个方面考虑:( )当函数表达式是整式时,自变量可取全体实数;( )当函数表达式是分式时,考虑分式的分母不能为 ;( )当函数表达式是二次根式时,被开方数非负..( 分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是().三棱柱 .三棱锥 .圆柱 .圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选: .【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是: 主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等 ..( 分)一个五边形的内角和为(). . . .【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式: ×( ﹣ ) ,答:一个五边形的内角和是 度,故选: .【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式..( 分)按一定规律排列的单项式: ,﹣ , ,﹣ , ,﹣ , ,第 个单项式是(). .﹣ .(﹣ ) .(﹣ )【分析】观察字母 的系数、次数的规律即可写出第 个单项式.【解答】解: ,﹣ , ,﹣ , ,﹣ , ,(﹣ ) .故选: .【点评】考查了单项式,数字的变化类,注意字母 的系数为奇数时,符号为正;系数字母 的系数为偶数时,符号为负..( 分)下列图形既是轴对称图形,又是中心对称图形的是().三角形 .菱形 .角 .平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解: 、三角形不一定是轴对称图形和中心对称图形,故本选项错误;、菱形既是轴对称图形又是中心对称图形,故本选项正确;、角不一定是轴对称图形和中心对称图形,故本选项错误;、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选: .【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转 度后与原图重合..( 分)在 △ 中,∠ , , ,则∠ 的正切值为(). . . .【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在 △ 中,∠ , , ,∴∠ 的正切值为 ,故选: .【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键..( 分) 年 月 日,以 数字工匠 玉汝于成, 数字工坊 溪达四海 为主题的 一带一路数学科技文化节 玉溪暨第 届全国三维数字化创新设计大赛(简称 全国 大赛 )总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是().抽取的学生人数为 人. 非常了解 的人数占抽取的学生人数的..全校 不了解 的人数估计有 人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为 (人),故 正确,非常了解 的人数占抽取的学生人数的 ,故 正确,× ,故正确,全校 不了解 的人数估计有 × (人),故 错误,故选: .【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型..( 分)已知 ,则 (). . . .【分析】把 两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把 两边平方得:( ) ,则 ,故选: .【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共 小题,满分 分).( 分)计算:﹣ ﹣()﹣ ﹣( ﹣ )【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式 ﹣ ×﹣ ﹣﹣【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点..( 分)如图,已知 平分∠ , .求证:△ ≌△ .【分析】根据角平分线的定义得到∠ ∠ ,利用 定理判断即可.【解答】证明:∵ 平分∠ ,∴∠ ∠ ,在△ 和△ 中,,∴△ ≌△ .【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的 定理是解题的关键..( 分)某同学参加了学校举行的 五好小公民 红旗飘飘 演讲比赛, 名评委给该同学的打分(单位:分)情况如下表:评委评委评委评委评委评委评委评委打分( )直接写出该同学所得分数的众数与中位数;( )计算该同学所得分数的平均数【分析】( )根据众数与中位数的定义求解即可;( )根据平均数的定义求解即可.【解答】解:( )从小到大排列此数据为: , , , , , , ,数据 出现了三次最多为众数,处在第 位为中位数;( )该同学所得分数的平均数为( × × )÷ .【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数 总数÷个数..( 分)某社区积极响应正在开展的 创文活动 ,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 倍,并且甲工程队完成 平方米的绿化面积比乙工程队完成 平方米的绿化面积少用 小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成 平方米的绿化面积,则甲工程队每小时能完成 平方米的绿化面积,根据工作时间 总工作量÷工作效率结合甲工程队完成 平方米的绿化面积比乙工程队完成 平方米的绿化面积少用 小时,即可得出关于 的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成 平方米的绿化面积,则甲工程队每小时能完成 平方米的绿化面积,根据题意得:﹣ ,解得: ,经检验, 是分式方程的解.答:乙工程队每小时能完成 平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. .( 分)将正面分别写着数字 , , 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 ,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 .( )用列表法或树状图法(树状图也称树形图)中的一种方法,写出( , )所有可能出现的结果.( )求取出的两张卡片上的数字之和为偶数的概率 .【分析】( )首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;( )由( )中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:( )画树状图得:由树状图知共有 种等可能的结果:( , )、( , )、( , )、( , )、( , )、( , );( )∵共有 种等可能结果,其中数字之和为偶数的有 种结果,∴取出的两张卡片上的数字之和为偶数的概率 .【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率 所求情况数与总情况数之比..( 分)已知二次函数 ﹣ 的图象经过 ( , ), (﹣,﹣)两点.( )求 , 的值. ( )二次函数 ﹣ 的图象与 轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】( )把点 、 的坐标分别代入函数解析式求得 、 的值;( )利用根的判别式进行判断该函数图象是否与 轴有交点,由题意得到方程﹣ ,通过解该方程求得 的值即为抛物线与 轴交点横坐标. 【解答】解:( )把 ( , ), (﹣ ,﹣)分别代入 ﹣,得,解得;( )由( )可得,该抛物线解析式为: ﹣ .△ () ﹣ ×(﹣)×> ,所以二次函数 ﹣ 的图象与 轴有公共点.∵﹣的解为: ﹣ ,∴公共点的坐标是(﹣ , )或( , ).【点评】考查了抛物线与 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系..( 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 , 两种商品,为科学决策,他们试生产 、 两种商品 千克进行深入研究,已知现有甲种原料 千克,乙种原料 千克,生产 千克 商品, 千克 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)商品商品设生产 种商品 千克,生产 、 两种商品共 千克的总成本为 元,根据上述信息,解答下列问题:( )求 与 的函数解析式(也称关系式),并直接写出 的取值范围;( ) 取何值时,总成本 最小?【分析】( )根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;( )利用一次函数增减性进而得出答案.【解答】解:( )由题意可得: ( ﹣ ) ﹣ ,,解得: ≤ ≤ ;( )∵ ﹣ ,∴ 随 的增大而减小,∴ 时, 最小,则 ﹣ × (元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键..( 分)如图,已知 是⊙ 上的点, 是⊙ 上的点,点 在 的延长线上,∠ ∠ .( )求证: 是⊙ 的切线;( )若∠ , ,求图中阴影部分的面积.【分析】( )连接 ,易证∠ ∠ ,由于 是直径,所以∠ ,所以∠ ∠ ∠ , 是⊙ 的切线( )设⊙ 的半径为 , ,由于∠ ,∠ ,所以可求出 ,∠ , ,由勾股定理可知: ,分别计算△ 的面积以及扇形 的面积即可求出影响部分面积【解答】解:( )连接 ,∵ ,∴∠ ∠ ,∵∠ ∠ ,∴∠ ∠ ,∵ 是直径,∴∠ ,∴∠ ∠ ∠∴∠∵ 是半径,∴ 是⊙ 的切线( )设⊙ 的半径为 ,∴ ,∵∠ ,∠ ,∴ ,∠∴ ,∴ ,∠∴ ,∴由勾股定理可知:× ×易求△扇形∴阴影部分面积为﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识..( 分)如图,在平行四边形 中,点 是 的中点,点 是 边上的点, ,平行四边形 的面积为 ,由 、 、 三点确定的圆的周长为 .( )若△ 的面积为 ,直接写出 的值;( )求证: 平分∠ ;( )若 , , ,求 的值.× × 得 ,即可得【分析】( )作 ⊥ 于点 ,由△出答案;( )延长 交 延长线于点 ,先证△ ≌△ 得 、 及 ,结合 得∠ ∠ ,根据∠ ∠ 即可得证;( )先证∠ 得出 ( ﹣ ) ( ) ( ) ,据此求得 的长,从而得出 的长度,再由 、 知 ⊥ ,即 是△ 的外接圆直径,从而得出答案.【解答】解:( )如图,作 ⊥ 于点 ,× × ,则 ,则△∴平行四边形 的面积为 ;( )延长 交 延长线于点 ,∵四边形 是平行四边形,∴ ∥ ,∴∠ ∠ ,∠ ∠ ,∵ 为 的中点,∴ ,∴△ ≌△ ,∴ 、 ,∴ ,由 和 得 ,∴∠ ∠ ,又∵∠ ∠ ,∴∠ ∠ ,∴ 平分∠ ;高三地理期末试题( )连接 ,∵ 、 ,∴ ,∴∠ ∠ ,∠ ∠ ,∵∠ ∠ ,∴∠ ∠ ∠ ∠ ,即∠ ∠ ,由四边形 是平行四边形得∠ ∠ ,∴∠ ,∴ ( ﹣ ) ( ) ( ) ,解得: ,∴ ,∵ 、 ,∴ ⊥ ,∴ 是△ 的外接圆直径,∴△ 的外接圆的周长 .【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。