高一数学必修2-第一章空间几何体知识点

合集下载

高中数学 必修二-第一章 立体几何初步 知识点整理

高中数学 必修二-第一章  立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

高中数学必修二知识点梳理

高中数学必修二知识点梳理

高中数学必修二知识点梳理第一章空间几何体的表面积和体积公式总结1.表面积(1).棱柱S = 2 S底+ S侧(2).棱锥S = S底+ S侧(3).棱台S = S上底+ S下底+ S侧(4).圆柱S= 2 πr 2 +2πr l =2πr ( r + l )(5).圆锥S = S底+ S侧=πr 2 +πr l =πr ( r + l )(6).圆台S = S上底+ S下底+ S侧=π(r2 + r´2 + rl +r´l) (7).球 S= 4πR22.体积(1).柱体V = S h(2).锥体V = S h/3(3).台体V =( S + √S ´S + S´) h/3(4).球V = 4/3πR3第二章点直线平面之间位置关系的判定,性质及其推论1.直线与平面平行的判定平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行2.平面与平面平行的判定一个平面内的两条相交直线与另一个平面平行,则这两个平面平行推论如果一个平面内有两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行3.直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行4.平面与平面平行的性质如果两个平面平行,两个平面同时和第三个平面相交,那么它们的交线平行推论夹在两个平行平面间的平行线段相等5.直线与平面垂直的判定一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直6.平面与平面垂直的判定一个平面过另一平面的垂线,则这两个平面垂直7.直线与平面垂直的性质垂直与同一平面的两条直线平行8.平面与平面垂直的性质两个平面垂直,则一个平面内垂直与交线的直线与另外一个平面垂直推论如果两个平面相互垂直,那么经过第一个平面的一点且垂直于第二个平面的直线在第一个平面内一.直线方程(一).两条直线1.l1∥l2 => k1 = k2或k1 k2不存在2. k1 = k2 => l1∥l2或l1 l2重合3.A,B,C三点共线 k AB = k AC(k存在)4. l1⊥l2 => k1 · k2 = -1 或k1 k2有一不存在,有一为05. k1 · k2 = -1 => l1⊥l2(二).直线方程1.点斜式方程: y–y0 =k (x–x0)2.两点式方程:(y–y1)/(y2–y1)=(x–x1)/(x2–x1)3.截距式方程:x/a +y/b = 14 .斜截式方程:y= k x + b5.一般式方程: Ax + By + C = 0二.距离公式1.两点之间距离公式:d = √【(x2 –x1)2 + (y2–y1)2】2.点到直线的距离公式:d = ∣Ax0 + By0 + C∣/√(A2 + B2)3.两条平行线间的距离公式: d =∣C2– C1∣/√(A2 + B2)]一.圆的方程1.圆的标准方程(x - a)2 +(y - b)2 = r2 (圆心坐标(a ,b),半径为r)2.圆的一般方程x2 + y2 + Dx +Ey +F = 0 => (x+D/2)2+(y+E/2)2 = (D2+E2-4F)/4(1). D2+E2-4F > 0 ,圆心(-D/2 ,- E/2)半径√(D2+E2-4F)/2(2). D2+E2-4F = 0 表示一点(3). D2+E2-4F < 0 不表示任何图形二.直线,圆位置关系1.直线与圆的位置关系(1).直线与圆无公共点⇔ d > r ⇔相离⇔联立方程无解(2).直线与圆只有一个公共点⇔ d = r ⇔相切⇔联立方程有一解(3).直线与圆有两个公共点⇔ d < r ⇔相交⇔联立方程有两解2.圆与圆的位置关系(1).外离⇔ d>R+r(2).外切⇔ d = R+r(3).相交⇔∣R-r∣ < d < R+r(4).内切⇔ d =∣R-r∣(5).内含⇔ d<∣R-r∣。

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

(完整word版)人教A版高中数学必修2知识点

(完整word版)人教A版高中数学必修2知识点

必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。

几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征

必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征
棱锥的性质:
侧面、对角面都是三角形;平行于底面的截面 与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
想一想:
用一个平行于棱锥底面的平面去截棱 锥,得到怎样的两个几何体?
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
侧棱
F A
ED
B
侧面
C
顶点
的公共边叫侧棱,侧面与底面
的公共顶点叫棱柱的顶点。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
D’
GG’
C’
A’
F’
F
B’
HH ’
D
E E’
C
A
B
答:都是棱柱.
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一对可以作为棱 柱的底面. 棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
用一个平行于棱锥底面 的平面去截棱锥,底面与截 面之间的部分是棱台。
D’
D A’
C’
B’
C
A
B
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱 台,分别叫做三棱台,四棱台,五棱台…
棱台的表示方法:

数学必修二第一章空间几何体知识点与习题

数学必修二第一章空间几何体知识点与习题

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”练习3.有一个几何体的三视图如下图所示,这个几何体应是一个A.棱台B. 棱锥C. 棱柱D..块木块堆成第一章空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:常见的旋转体有:(2)简单组合体的构成形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成练习1.下图是由哪个平面图形旋转得到的( )2、柱、锥、台、球的结构特征(1)棱柱:定义:分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDE A'B'C'D'E'或用对角线的端点字母,如五棱柱AD'几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥:定义:分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P A'B'C'D'E'几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似。

(3 )棱台:定义:分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A'B'C'D'E'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点练习2 •一个棱柱至少有 ___________ 个面,面数最少的一个棱锥有____________________ 个顶点,顶点最少的一个棱台有__________________条侧棱。

3. 空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

高一数学必修二第一章“空间几何体”知识点总结

高一数学必修二第一章“空间几何体”知识点总结

数学必修2第一章空间几何体知识点1. 多面体的面积和体积公式
名称侧面积(S侧)全面积(S全)体积(V)
棱柱棱柱直截面周长×l
S侧+2S底
S底·h=S直截面·h 直棱柱Ch S底·h
棱锥棱锥各侧面面积之和
S侧+S底
S底·h 正棱锥
ch′
棱台棱台各侧面面积之和
S侧+S上底+S下

h(S上底+S下底
+)
正棱台
(c+c′)h′
表中S表示面积,c′、c分别表示上、下底面周长,h表示高,h′表示斜高,l表示侧棱长。

2. 旋转体的面积和体积公式
名称圆柱圆锥圆台球
S侧2πrl πrl π(r1+r2)l
S全2πr(l+r)πr(l+r)π(r1+r2)l+π
(r21+r22)
4πR2
V πr2h(即πr2l)
πr2h πh(r21+r1r2+r22)πR3
表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。

1。

必修二立体几何知识点

必修二立体几何知识点

高中数学必修2知识点第一章空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EDCBAP-几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。

(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。

(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。

(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。

3.棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。

正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。

(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。

②正棱锥的高,斜高和斜高在底面上的射影组成一个直角三角形,正棱锥的高,侧棱,侧棱在底面内的射影也组成一个直角三角形。

③正棱锥的侧棱与底面所成的角都相等。

④正棱锥的侧面与底面所成的二面角都相等。

4. 圆柱与圆锥:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.在圆柱中,旋转的轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线. 5. 棱台与圆台:(1)用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.(2)棱台的性质:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.(3)圆台的性质:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.(4)棱台与圆台统称为台体. 6.球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体,简称球.在球中,半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径. 7. 简单组合体:由简单几何体(如柱、锥、台、球等)组合而成的几何体叫简单组合体. 【常见题型】1.如下四个命题:①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个共同的公共点;③多面体至少有四个面;④棱台的侧棱所在直线均相交于同一点.其中正确的命题有( D )个 A.1个 ﻩB .2个ﻩ ﻩﻩC.3个ﻩﻩD .4个2.圆锥底面半径为1cm,cm ,其中有一个内接正方体,求这个内接正方体的棱长. 【解】分析:画出轴截面图,设正方体的棱长为x ,利用相似列关系求解. 过圆锥的顶点S 和正方体底面的一条对角线C D作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面C DD 1C 1,如图所示. 设正方体棱长为x ,则C C1=x ,C 1D1. 作S O⊥EF于O ,则SO =OE =1,1~ECC EOS ∆∆, ∴11CC EC SO EO =. ∴2x =,即内接正方体棱长为2cm111.2 空间几何体的三视图和直观图1.中心投影与平行投影:(1)光由一点向外散射形成的投影称为中心投影.(2)在一束平行光线照射下形成的投影,称为平行投影.(3)平行投影按照投射方向是否正对着投影面,可以分为斜投影和正投影两种.2. 柱、锥、台、球的三视图:(1)三视图的定义:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图;俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.(2)三视图的几何作用:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.3. 直观图:“直观图”最常用的画法是斜二测画法,由其规则能画出水平放置的直观图,其实质就是在坐标系中确定点的位置的画法.基本步骤如下:(1)建系:在已知图形中取互相垂直的x轴和y轴,得到直角坐标系xoy,直观图中画成斜坐标系'''x o y,两轴夹角为45 .(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’或y’轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半.注意:1.“视图”是将物体按正投影法向投影面投射时所得到的投影图. 光线自物体的前面向后投影所得的投影图成为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的图形称为“俯视图”.用这三种视图即可刻划空间物体的几何结构,称为“三视图”.2. 画三视图之前,先把几何体的结构弄清楚,确定一个正前方,从几何体的正前方、左侧(和右侧)、正上方三个不同的方向看几何体,画出所得到的三个平面图形,并发挥空间想象能力. 在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分用虚线表示出来.3.三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”.4. 空间几何体的三视图与直观图有密切联系. 三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸).直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象.【常见题型】1.如图,图(1)是常见的六角螺帽,试画出它的三视图.【解】分析:画三视图之前,先把几何体的结构弄清楚,确定一个正前方,从三个不同的角度进行观察. 在绘制三视图时,分界线和可见轮廓线 都用实线画出,被遮挡的部分用虚线表示出来. 图(1)为圆柱和正六棱柱的组合体. 从三个方向观察,得到三个平面图形,绘制的三视图如下图所示.2.画棱长为4cm 的正方体的直观图.【解】分析:按照斜二测画法的步骤画正方体的直观图,先画下底面,再画棱,再画上底面.(1)画法:如图,按如下步骤完成.第一步,在已知的直角三角形AB C中取直角边CB 所在的直线为x轴,与B C垂直的直线为y轴,画出对应的x '轴和y '轴,使45x O y '''∠=. 第二步,在x '轴上取''O C BC =,过'C 作'y 轴的平行线,取1''2C A CA =.第三步,连接''A O ,即得到该直角三角形的直观图. (2)画法:如图,按如下步骤完成.第一步,作水平放置的正方形的直观图AB CD ,使45,BAD ∠=4,2AB cm AD cm ==.第二步,过A 作z '轴,使90BAz '∠=. 分别过点,,B C D 作z '轴的平行线,在z '轴及这组平行线上分别截取4AA BB CC DD cm ''''====.第三步,连接,,,A B B C C D D A '''''''',所得图形就是正方体的直观图.1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积1. 圆柱:侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母线), S 圆柱侧=2rl π,S圆柱表=2()r r l π+,其中为r 圆柱底面半径,l 为母线长;2V Sh r h π==圆柱.2. 圆锥:侧面展开图为一个扇形,半径是圆锥的母线,弧长等于圆锥底面周长,侧面展开图扇形中心角为0360r l θ=⨯,S圆锥侧=rl π, S 圆锥表=()r r l π+,其中为r 圆锥底面半径,l 为母线长.13V Sh =锥 S为底面面积,h 为高)3. 圆台:侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆台下底周长,侧面展开图扇环中心角为0360R r lθ-=⨯,S 圆台侧=()r R l π+,S圆台表=22()r rl Rl R π+++. '1()3V S S h =台 (S ,'S 分别上、下底面积,h为高)→ '2211()()33V S S h r rR R h π==++圆台 (r、R分别为圆台上底、下底半径)4.柱、锥、台的表面积与体积的计算公式的关系S h 底高5.柱、椎、台之间,可以看成一个台体进行变化,当台体的上底面逐渐收缩为一个点时,它就成了锥体;当台体的上底面逐渐扩展到与下底面全等时,它就成了柱体. 因而体积会有以下的关系:13V S h =锥 '0S =←−−−1(')3V S S h =台 'S S=−−−→ V S h =柱. 【常见题型】1.已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长.【解】设圆台的母线长为l ,则,圆台的上底面面积为224S ππ=⋅=上,圆台的上底面面积为2525S ππ=⋅=下,所以圆台的底面面积为29S S S π=+=下上.又圆台的侧面积(25)7S l l ππ=+=侧,于是729l ππ=,即297l =为所求. 2.一个长方体的相交于一个顶点的三个面的面积分别是2,3,6,则长方体的体积是 . 【解】解析:长方体的长宽高分别为,,a b c ,求出,,a b c 的值,再求体积.设长方体的长宽高分别为,,a b c ,则2,3,6ab ac bc ===,三式相乘得2()36abc =. 所以,长方体的体积为61.3.2 球的体积和表面积RA 'C OA 'B 'C 'D 'DCBAO1. 球的体积是对球体所占空间大小的度量,它是球半径的函数,设球的半径为R ,则球的体积343V R π=球2. 球的表面积是对球的表面大小的度量,它也是球半径的函数,设球的半径为R ,则球的表面积为24S R π=球面,它是球的大圆面积的4倍3. 用一个平面去截球,所得到的截面是一个圆. 【常见题型】1.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是 A. 4π B. 8π C. 12π D. 16π【解】如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,PO与平面AB CD 垂直,是棱锥的高,PO =R ,22ABCD S R =,163P ABCD V -=,所以2116233R R ⋅⋅=,解得R =2,则球O 的表面积是16π,选D.2.半球内有一个内接正方体,正方体的一个面在半球的底面圆内,6求球的表面积和体积.【解】分析:作出轴截面,利用勾股定理求解. 作轴截面如图所示,6CC '=2623AC ==设球半径为R ,则222R OC CC '=+226)(3)9=+=∴3R =,∴2436S R ππ==球,34363V R ππ==球.练习题 一、选择题有一个几何体的三视图如下图所示,这个几何体应是一个( )A 棱台B 棱锥C 棱柱D 都不对 棱长都是1的三棱锥的表面积为( )A 3 B 3 C 33 D 43 长方体的一个顶点上三条棱长分别是3,4,5,它的8个顶点都在同一球面上,这个球的表面积是( )A 25πB 50πC 125πD 都不对4 正方体的内切球和外接球的半径之比为( )AB2 C2 D3一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A28cm π B 212cm πC 216cm πD 220cm π6 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A 7B 6C 5D 3 下图是由哪个平面图形旋转得到的( )(2) (3) (4)A (1)B (2)C (3)D (4)在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A23 B 76 C 45D 569 已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则12:V V = ( )A 1:3B 1:1C 2:1D 3:1 10 如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A 8:27B 2:3 C 4:9 D 2:911 有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体表面积及体积为:( )A 224cm π,212cm πB 215cm π,212cm πC 224cm π,236cm π D 以上都不正确12 正方体的全面积为18c m2,则它的体积是( )A 4cm 3; B 8cm 3; C 72112cm 3; D 33cm 3。

相关文档
最新文档