完整版数列基础测试题及参考答案

合集下载

数列测试题及答案

数列测试题及答案

数列测试题及答案一、选择题1. 已知数列\( a_n \)的通项公式为\( a_n = 3n - 1 \),那么第10项的值为:A. 29B. 28C. 27D. 26答案:A2. 若数列\( b_n \)的前n项和为\( S_n \),且\( S_n = n^2 \),求数列\( b_n \)的第3项:A. 5B. 6C. 7D. 8答案:B二、填空题1. 给定等差数列\( c_n \),首项\( c_1 = 5 \),公差\( d = 3 \),其第5项为________。

答案:202. 若数列\( d_n \)是等比数列,且\( d_1 = 2 \),公比\( q = 4 \),求第4项:________。

答案:64三、解答题1. 已知数列\( e_n \)的前n项和为\( S_n \),若\( S_3 = 21 \),\( S_5 = 45 \),求\( e_4 + e_5 \)。

解:由题意得\( e_4 + e_5 = S_5 - S_3 = 45 - 21 = 24 \)。

2. 某等差数列的前5项和为50,且第3项为15,求该数列的首项和公差。

解:设该等差数列的首项为\( a \),公差为\( d \),则有:\[ 5a + 10d = 50 \]\[ a + 2d = 15 \]解得:\( a = 5 \),\( d = 5 \)。

四、证明题1. 证明等差数列中,任意两项的等差中项等于它们的算术平均数。

证明:设等差数列\( f_n \)的首项为\( f_1 \),公差为\( d \),任取两项\( f_m \)和\( f_n \)(\( m < n \)),则它们的等差中项为\( f_{\frac{m+n}{2}} \)。

根据等差数列的性质,有:\[ f_{\frac{m+n}{2}} = f_1 + \left(\frac{m+n}{2} -1\right)d \]而算术平均数为:\[ \frac{f_m + f_n}{2} = \frac{f_1 + (m-1)d + f_1 + (n-1)d}{2} = f_1 + \frac{(m+n-2)d}{2} \]由于\( \frac{m+n}{2} - 1 = \frac{m+n-2}{2} \),所以两者相等,证明了等差中项等于算术平均数。

数列测试题及答案

数列测试题及答案

数列测试题及答案一、选择题1. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,那么a_5的值为:A. 15B. 31C. 63D. 127答案:B2. 数列{a_n}是等差数列,公差为3,且a_3=12,则a_1的值为:A. 3B. 6C. 9D. 12答案:B3. 已知数列{a_n}满足a_1=2,a_{n+1}=3a_n,那么数列的通项公式为:A. a_n = 2 * 3^{n-1}B. a_n = 2 * 3^nC. a_n = 3 * 2^{n-1}D. a_n = 3^n答案:B二、填空题4. 已知数列{a_n}的前n项和S_n=n^2,求a_3的值。

答案:65. 数列{a_n}是等比数列,首项为2,公比为4,求a_5的值。

答案:128三、解答题6. 已知数列{a_n}满足a_1=1,a_{n+1}=a_n+n,求数列的前5项。

答案:a_1 = 1a_2 = a_1 + 1 = 2a_3 = a_2 + 2 = 4a_4 = a_3 + 3 = 7a_5 = a_4 + 4 = 117. 已知数列{a_n}是等差数列,且a_1=5,a_4=14,求数列的通项公式。

答案:a_n = 5 + (n-1) * 3 = 3n + 28. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,求数列的前5项。

答案:a_1 = 2a_2 = 2a_1 + 1 = 5a_3 = 2a_2 + 1 = 11a_4 = 2a_3 + 1 = 23a_5 = 2a_4 + 1 = 479. 已知数列{a_n}是等比数列,首项为3,公比为2,求数列的前5项。

答案:a_1 = 3a_2 = 3 * 2 = 6a_3 = 6 * 2 = 12a_4 = 12 * 2 = 24a_5 = 24 * 2 = 4810. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n-2,求数列的前5项。

数列测试题及答案

数列测试题及答案

数列测试题及答案数列测试题及答案 数列测试题及答案: ⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分. 1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( ) A.6 B.7 C.8 D.9 解析:∵a1+a2+a12+a13=4a7=24,∴a7=6. 答案:A 2.若等差数列{an}的前n项和为Sn,且满⾜S33-S22=1,则数列{an}的公差是( ) A.12 B.1 C.2 D.3 解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代⼊S33-S22=1,得d=2,故选C. 答案:C 3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( ) A.1 B.-4 C.4 D.5 解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,… 故{an}是以6为周期的数列, ∴a2 011=a6×335+1=a1=1. 答案:A 4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( ) A.d<0 B.a7=0 C.S9>S5 D.S6与S7均为Sn的最⼤值 解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0. ⼜S7>S8,∴a8<0. 假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0. ∵a7=0,a8<0,∴a7+a8<0.假设不成⽴,故S9<S5.∴C错误. 答案:C 5.设数列{an}是等⽐数列,其前n项和为Sn,若S3=3a3,则公⽐q的值为( ) A.-12 B.12 C.1或-12 D.-2或12[ 解析:设⾸项为a1,公⽐为q, 则当q=1时,S3=3a1=3a3,适合题意. 当q≠1时,a1(1-q3)1-q=3a1q2, ∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0, 解得q=1(舍去),或q=-12. 综上,q=1,或q=-12. 答案:C 6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最⼤项为第x项,最⼩项为第y 项,则x+y等于( ) A.3 B.4 C.5 D.6 解析:an=5252n-2-425n-1=525n-1-252-45, ∴n=2时,an最⼩;n=1时,an最⼤. 此时x=1,y=2,∴x+y=3. 答案:A 7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( ) A.a21a22 B.a22a23 C.a23a24 D.a24a25 解析:∵3an+1=3an-2, ∴an+1-an=-23,即公差d=-23. ∴an=a1+(n-1)d=15-23(n-1). 令an>0,即15-23(n-1)>0,解得n<23.5. ⼜n∈N*,∴n≤23,∴a23>0,⽽a24<0,∴a23a24<0. 答案:C 8.某⼯⼚去年产值为a,计划今后5年内每年⽐上年产值增加10%,则从今年起到第5年,这个⼚的总产值为( ) A.1.14a B.1.15a C.11×(1.15-1)a D.10×(1.16-1)a 解析:由已知,得每年产值构成等⽐数列a1=a,w an=a(1+10%)n-1(1≤n≤6). ∴总产值为S6-a1=11×(1.15-1)a. 答案:C 9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最⼤值为( ) A.25 B.50 C.1 00 D.不存在 解析:由S20=100,得a1+a20=10. ∴a7+a14=10. ⼜a7>0,a14>0,∴a7a14≤a7+a1422=25. 答案:A 10.设数列{an}是⾸项为m,公⽐为q(q≠0)的等⽐数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( ) A.在直线mx+qy-q=0上 B.在直线qx-my+m=0上 C.在直线qx+my-q=0上 D.不⼀定在⼀条直线上 解析:an=mqn-1=x,①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y,② 由②得qn=y-1,代⼊①得x=mq(y-1),即qx-my+m=0. 答案:B 11.将以2为⾸项的偶数数列,按下列⽅法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的⾸项为( ) A.n2-n B.n2+n+2 C.n2+n D.n2-n+2 解析:因为前n-1组占⽤了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的⾸项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2. 答案:D 12.设m∈N*,log2m的整数部分⽤F(m)表⽰,则F(1)+F(2)+…+F(1 024)的值是( ) A.8 204 B.8 192 C.9 218 D.以上都不对 解析:依题意,F(1)=0, F(2)=F(3)=1,有2 个 F(4)=F(5)=F(6)=F(7)=2,有22个. F(8)=…=F(15)=3,有23个. F(16)=…=F(31)=4,有24个. … F(512)=…=F(1 023)=9,有29个. F(1 024)=10,有1个. 故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10. 令T=1×2+2×22+3×23+…+9×29,① 则2T=1×22+2×23+…+8×29+9×210.② ①-②,得-T=2+22+23+…+29-9×210 = 2(1-29)1-2-9×210=210-2-9×210=-8×210-2, ∴T=8×210+2=8 194, m] ∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204. 答案:A 第Ⅱ卷 (⾮选择共90分) ⼆、填空题:本⼤题共4个⼩题,每⼩题5分,共20分. 13.若数列{an} 满⾜关系a1=2,an+1=3an+2,该数列的通项公式为__________. 解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1), ∴{an+1}是以a1+1=3为⾸项,以3为公⽐的等⽐数列, ∴an+1=33n-1=3n,∴an=3n-1. 答案:an=3n-1 14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的⼤⼩关系是__________. 解析:设{an}的公差为d,则d≠0. M-N=an(an+3d)-[(an+d)(an+2d)] =an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N. 答案:M<N 15.在数列{an}中,a1=6,且对任意⼤于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________. 解析:∵点(an,an-1)在直线x-y=6上, ∴an-an-1=6,即数列{an}为等差数列. ∴an=a1+6(n-1)=6+6(n-1)=6n, ∴an=6n2. ∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1 ∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1. 答案:6nn+1 16.观察下表: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 … 则第__________⾏的各数之和等于2 0092. 解析:设第n⾏的各数之和等于2 0092, 则此⾏是⼀个⾸项a1=n,项数为2n-1,公差为1的等差数列. 故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092,解得n=1 005. 答案:1 005 三、解答题:本⼤题共6⼩题,共70分. 17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2. (1)求证:{bn}是等⽐数列,并求bn; (2)求通项an并求{an}的前n项和Sn. 解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12, ∴{bn}是等⽐数列. ∵b1=a1-2=-32, ∴bn=b1qn-1=-32×12n-1=-32n. (2)an=bn+2=-32n+2, Sn=a1+a2+…+an =-32+2+-322+2+-323+2+…+-32n+2 =-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3. 18.(12分)若数列{an}的`前n项和Sn=2n. (1)求{an}的通项公式; (2)若数列{bn}满⾜b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n 项和Tn. 解析:(1)由题意Sn=2n, 得Sn-1=2n-1(n≥2), 两式相减,得an=2n-2n-1=2n-1(n≥2). 当n=1时,21-1=1≠S1=a1=2. ∴an=2 (n=1),2n-1 (n≥2). (2)∵bn+1=bn+(2n-1), ∴b2-b1=1, b3-b2=3, b4-b3=5, … bn-bn-1=2n-3. 以上各式相加,得 bn-b1=1+3+5+…+(2n-3) =(n-1)(1+2n-3)2=(n-1)2. ∵b1=-1,∴bn=n2-2n, ∴cn=-2 (n=1),(n-2)×2n-1 (n≥2), ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1, ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n. ∴-Tn=2+22+23+…+2n-1-(n-2)×2n =2(1-2n-1)1-2-(n-2)×2n =2n-2-(n-2)×2n =-2-(n-3)×2n. ∴Tn=2+(n-3)×2n. 19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等⽐数列. (1)求数列{an}的通项公式; (2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成⼀个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式. 解析:(1)依题意,得 3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2. ∴an=a1+(n-1)d=3+2(n-1)=2n+1, 即an=2n+1. (2)由已知,得bn=a2n=2×2n+1=2n+1+1, ∴Tn=b1+b2+…+bn =(22+1)+(23+1)+…+(2n+1+1) =4(1-2n)1-2+n=2n+2-4+n. 20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn. (1)证明:当b=2时,{an-n2n-1}是等⽐数列; (2)求通项an. 新课标第⼀⽹ 解析:由题意知,a1=2,且ban-2n=(b-1)Sn, ban+1-2n+1=(b-1)Sn+1, 两式相减,得b(an+1-an)-2n=(b-1)an+1, 即an+1=ban+2n.① (1)当b=2时,由①知,an+1=2an+2n. 于是an+1-(n+1)2n=2an+2n-(n+1)2n =2an-n2n-1. ⼜a1- 120=1≠0, ∴{an-n2n-1}是⾸项为1,公⽐为2的等⽐数列. (2)当b=2时, 由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1 当b≠2时,由①得 an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n =ban-12-b2n, 因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn. 得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2. 21.(12分)某地在抗洪抢险中接到预报,24⼩时后⼜⼀个超历史最⾼⽔位的洪峰到达,为保证万⽆⼀失,抗洪指挥部决定在24⼩时内另筑起⼀道堤作为第⼆道防线.经计算,如果有 20辆⼤型翻⽃车同时作业25⼩时,可以筑起第⼆道防线,但是除了现有的⼀辆车可以⽴即投⼊作业外,其余车辆需从各处紧急抽调,每隔20分钟就有⼀辆车到达并投⼊⼯作.问指挥部⾄少还需组织多少辆车这样陆续⼯作,才能保证24⼩时内完成第⼆道防线,请说明理由. 解析:设从现有这辆车投⼊⼯作算起,各车的⼯作时间依次组成数列{an},则an-an-1=-13. 所以各车的⼯作时间构成⾸项为24,公差为-13的等差数列,由题知,24⼩时内最多可抽调72辆车. 设还需组织(n-1)辆车,则 a1+a2+…+an=24n+n(n-1)2×-13≥20×25. 所以n2-145n+3 000≤0, 解得25≤n≤120,且n≤73. 所以nmin=25,n-1=24. 故⾄少还需组织24辆车陆续⼯作,才能保证在24⼩时内完成第⼆道防线. 22.(12分)已知点集L={(x,y)|y=mn},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*. (1)求数列{an},{bn}的通项公式; (3)设cn=5nan|PnPn+1|(n≥2),求c2+c3+c4+…+cn的值. 解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b), 得y=2x+1,即L:y=2x+1. ∵P1为L的轨迹与y轴的交点, ∴P1(0,1),则a1=0,b1=1. ∵数列{an}为等差数列,且公差为1, ∴an=n-1(n∈N*) . 代⼊y=2x+1,得bn=2n-1(n∈N*). (2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1). =5n2-n-1=5n-1102-2120. ∵n∈N*, (3)当n≥2时,Pn(n-1,2n-1), ∴c2+c3+…+cn =1-12+12-13+…+1n-1-1n=1-1n.。

数列基础题(附答案)

数列基础题(附答案)

数列综合题一、填空题1.各项都是正数的等比数列{an },公比q≠1,a5,a7,a8成等差数列,则公比q=2.已知等差数列{an },公差d≠0,a1,a5,a17成等比数列,则18621751aaaaaa++++=3.已知数列{an }满足Sn=1+na41,则an=4.已知二次函数f(x)=n(n+1)x2-(2n+1)x+1,当n=1,2,…,12时,这些函数的图像在x轴上截得的线段长度之和为5.已知数列{an }的通项公式为an=log(n+1)(n+2),则它的前n项之积为6.数列{(-1)n-1n2}的前n项之和为7.一种堆垛方式,最高一层2个物品,第二层6个物品,第三层12个物品,第四层20个物品,第五层30个物品,…,当堆到第n层时的物品的个数为8.已知数列1,1,2,…,它的各项由一个等比数列与一个首项为0的等差数列的对应项相加而得到,则该数列前10项之和为9.在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为10.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为11.设等差数列{a n}的前n项和是S n,若a5=20-a16,则S20=___________.12.若{a n}是等比数列,a4·a7= -512,a3+ a8=124,且公比q为整数,则a10等于___________.13.在数列{a n}中,a1=1,当n≥2时,a1 a2…a n=n2恒成立,则a3+ a5=___________.14.设{a n}是首项为1的正项数列,且(n+1)21+na-na2n+a n+1 a n=0(n=1,2,3,…),则它的通项公式是a n=___________.二.解答题1.已知数列{an }的通项公式为an=3n+2n+(2n-1),求前n项和。

完整版数列基础练习题及答案

完整版数列基础练习题及答案

A.37,A . 数列专题数列1,3,7,15, 的通项公式a n等于(2n B . 2n1各项不为零的等差数列则b6b8=(2 B已知等差数列44等差数列a n前n项和,则A .C. 110 90 —A 、.2n.2n1a n}中, 22a3- a? + 2a ii = 0,数列{b n}是等比数列,且b7={a n},a6.33的公差dSo的值为(.162,则此数列的前11 项的和S I122 .110 , a120,且a3, a7 , a g成等比数列.S n为a n的90.110已知等比数列{a n}满足a1 a23,64 .81 C .128 D已知an是等比数列, a1 4,a4a2 a3 6,则.2431,则公比2a?q=(已知数列a n 是公差不为0的等差数列,a1 2,且a2, a3, a4 1成等比数列.(1)求数列an的通项公式;(2)设b n2--------- ,求数列bl的前n项和na n 2S n.8.设数列{a n}是首项为1 ,公差为d的等差数列,且印赴1,a3 1是等比数列{b n}的(1)求{a n}的通项公式;(2)求数列{b n}的前n项和T n.9.已知等差数列{a n}满足a3=5, a s- 2a2=3,又等比数列{b n}中,b i=3且公比q=3.(1)求数列{a n}, {b n}的通项公式;(2)若G=a n+b n,求数列{c n}的前n项和S n.10 .设等比数列a n的前n项和为S n,已知a26, 6a1a330,求a n和S n。

11.已知{a n}是公差不为零的等差数列,a i = 1,且a i, a3, a o成等比数列.(I)求数列{a n}的通项;(n)求数列{2an}的前n项和S n.12 .已知等差数列 a n (n N )的前n 项和为S n ,且a 3 5,83 9 . (I)求数列a n 的通项公式;(II)设等比数列 b n (n N ),若b 2 a 2,b 3 85,求数列b n 的前n 项和 公差为-2的等差数列,S n 为{ a n }的前n 项和。

数列测试题及答案解析

数列测试题及答案解析

数列测试题及答案解析一、单项选择题(每题3分,共30分)1. 数列{an}是等差数列,且a1=2,公差d=3,则a5的值为:A. 11B. 14C. 17D. 20答案:B2. 下列数列中,不是等比数列的是:A. 1, 2, 4, 8, ...B. 2, 4, 8, 16, ...C. 1, 1/2, 1/4, 1/8, ...D. 3, 6, 12, 24, ...答案:D3. 数列{bn}的通项公式为bn=2n-1,该数列的前n项和Sn为:A. n^2B. n^2 - 1C. 2^(n+1) - 1D. 2^(n+1) - 2答案:C4. 等差数列{an}中,若a2+a4=10,则a3的值为:A. 2B. 3C. 4D. 5答案:C5. 数列{cn}的前n项和为Tn,若Tn=n^2+n,则c1+c2+c3+...+c10的值为:A. 100B. 110C. 120D. 130答案:B6. 数列{dn}的前n项和为Sn,若Sn=n^2-n,则dn的通项公式为:A. 2n-1B. 2nC. n-1D. n答案:C7. 数列{en}中,e1=1,e2=2,且对于任意的n∈N*,有en+1/en=n+1,则e3的值为:A. 3B. 4C. 5D. 6答案:A8. 数列{fn}是等比数列,且f1=1,f3=8,则f2的值为:A. 2B. 4C. 8D. 16答案:B9. 数列{gn}中,g1=1,g2=3,且对于任意的n∈N*,有gn+1=2gn+1,则g3的值为:A. 7B. 9C. 11D. 13答案:A10. 数列{hn}的前n项和为Tn,若Tn=2^n-1,则hn的通项公式为:A. 2^(n-1)B. 2^nC. 2^(n-1) - 1D. 2^n - 1答案:A二、填空题(每题4分,共20分)11. 等差数列{an}中,若a1=3,d=2,则a10=________。

答案:1512. 数列{bn}的前n项和为Tn,若Tn=n^2+2n,则bn的通项公式为bn=________。

数列基础测试题及答案

数列基础测试题及答案

数列基础测试题及答案一、选择题(每题2分,共10分)1. 等差数列{a_n}的首项为1,公差为2,那么a_5的值为:A. 9B. 10C. 11D. 122. 等比数列{b_n}的首项为2,公比为3,那么b_4的值为:A. 24B. 54C. 72D. 1083. 数列{c_n}满足c_1=1,且c_{n+1}=2c_n+1,那么c_3的值为:A. 5B. 9C. 17D. 334. 已知数列{d_n}是等差数列,且d_1=3,d_3=9,那么d_5的值为:A. 15B. 18C. 21D. 245. 数列{e_n}是等比数列,且e_1=8,e_3=64,那么e_5的值为:A. 512C. 128D. 64二、填空题(每题3分,共15分)6. 等差数列{f_n}的首项为5,公差为-1,那么f_7=________。

7. 等比数列{g_n}的首项为3,公比为-2,那么g_5=________。

8. 数列{h_n}满足h_1=2,且h_{n+1}=3h_n-2,那么h_4=________。

9. 已知数列{i_n}是等差数列,且i_2=7,i_5=16,那么i_8=________。

10. 数列{j_n}是等比数列,且j_2=6,j_4=36,那么j_6=________。

三、解答题(每题10分,共20分)11. 已知数列{k_n}是等差数列,且k_1=2,k_3=10,求k_5的值。

12. 已知数列{l_n}是等比数列,且l_1=4,l_3=36,求l_5的值。

答案:一、选择题1. B2. D3. C4. C5. A二、填空题6. 28. 339. 3110. 576三、解答题11. 等差数列的公差d=k_3-k_1=10-2=8,所以k_5=k_3+2d=10+2*8=26。

12. 等比数列的公比q=l_3/l_1=36/4=9,所以l_5=l_3*q^2=36*9^2=2916。

高中数学 数列基础练习及参考答案

高中数学  数列基础练习及参考答案

基础练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = A. 21 B. 22 C. 2 D.22.已知为等差数列,,则等于 A. -1 B. 1 C. 3 D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于A. 18B. 24C. 60D. 90 .4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A .13B .35C .49D . 635.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =(A )-2 (B )-12 (C )12(D )2 6.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 1909.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m = (A )38 (B )20 (C )10 (D )9 .10.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A .2744n n +B .2533n n +C .2324n n + D .2n n +1.【答案】B 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以q =故212a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B 。

【答案】B 3.答案:C 【解析】由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得 1278a d +=则12,3d a ==-,所以1019010602S a d =+=,.故选C 4.解: 172677()7()7(311)49.222a a a a S +++====故选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯= 所以1777()7(113)49.22a a S ++===故选C. 5.【解析】a 7-2a 4=a 3+4d -2(a 3+d)=2d =-1 ⇒ d =-12【答案】B 6.【答案】B 【解析】设公差为d ,则)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =1007.【答案】B【解析】可分别求得1122⎫+⎪=⎬⎪⎪⎩⎭,1]12=.则等比数列性质易得三者构成等比数列. 8.【答案】C 【解析】由图形可得三角形数构成的数列通项(1)2n n a n =+,同理可得正方形数构成的数列通项2n b n =,则由2n b n =()n N +∈可排除A 、D ,又由(1)2nn a n =+知n a 必为奇数,故选C. 9.【答案】C 【解析】因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m m a a a -++-=,得:2ma -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即(2m -1)×2=38,解得m =10,故选.C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
数列
aadan等于().=是首项2005=1,公差为,则序号=31.{的等差数列,如
果}nn1A.667 B.668
C.669
D.670
aaaaa=()+.中,首项+=3,前三项和为21,则2.在各项都为正数的等比数
列{ }n5413A.33 B.72 C.84 D.189
aaad≠0,则为各项都大于零的等差数列,公差3.如果(),.,…,
812aaaaaaaaaaaaaaaa<B..+<= CA..+>5
xxm的四个根组成一个首项的等差数列,则2)2.已知方等(
1的项和24,.等比数中().
81120168192
>项,则使·6若数是等差数列,首项成200200200200的最
自然数n是().
A.4005
B.4006
C.4007
D.4008
aaaaa=().,若,,则,成等比数列7.已知等差数列{}的公差为2n2413A.-4 B.-6
C.-8
D.-10
aS5nSa=,则=项和,若().8.设是等差数列{}的前59nn aS9351. D A.1 B.-
1
.2 C2aa?aabbb,-4,成等比数列,则,,,-4成等差数列,-1的值,9.已
知数列-1,1231212b2是().
11111.或 D . B .-.- CA42222aaaanSn=().=38,则
0(+{10.在等差数列中,}0≠,-=,若≥2)2a nnnnn1-1+-12n A.38 B.20 C.10 D.9
二、填空题.
精心整理1nffxf(+-)(=-,利用课本中推导等差数列前5)11.设项和公式
的方法,可求得(x2?2f(0)+…+ 4)+…+ff(6)的值为. (5)+a}中, 12.已知
等比数列{n aaaaaaaa=.·=8,则·(1)若····64335542aaaaaa=.+36324,,则
+ (2)若+==652143SSaaaa=+6=,则.
+(3)若+=2,2081741819827之间插入三个数,使这五个数成等比数列,则插入的三
个数的乘积为..在和 12,则此数列13中项之和2(.
1.在等差数11.
=,1.在等差数+…中13(1.设平面内,其中有且仅有两条直线互相平行,任意三条直线不过同条直n
表示点.若=条直线交点的个数,时(4=;
三、解答
成等差数的.项,求证数1(1已知数n111b?cc?aa?b,,也成等差数列,(2)已知,成等差数列,求证. cababc aqaaa成等差数列.,{,}是公比为 ?的等比数列,且18.设n213q的值;求 (1)bqnSnSb与为公差的等差数列,其前≥项和为2(2)设{,当}是以2为首项,时,比较nnnn的大小,并说明理由.
n?2SnanSaa=1,2,=,3…)(19.数列{}的前.项和记为,已知=1nnnn1+1nS}是等比数列.求证:数列{n n aaSnaaa成等21的等比数列,,为其前3项和,20.已知数列{}是首项为,且公比不等于nn417S,差数列,求证:123SSS成等比数列.
-,6126一、选择题
aadan等于().2005,则序号=1,公差为3=的等差数列,如果 {1.是首项}=nn1A.667 B.668
C.669
D.670
aaaaa.+,则,前三项和为=}.在各项都为正数的等比数列2{中,首项321+()=n5431.
精心整理189
. D.84 B.72 CA.33
daaa.,则为各项都大于零的等差数列,公差3.如果(),≠,…,
0821aaaaaaaaaaaaaaaa<>.+B.+.=< D C.A5118848455
511484122nnmxmxxx|0的四个根组成一个首项为-24.已知方程(的等差数列,则|
+-2+-)()=4().等于133. C..A.1 B D824aaaa(). 4项和为},的前=243,则5.等比数列{{}中,9=nn52192
168D..120C.A.81a成项是等差数列,首,则使,6若数200200200200的最(自然4008 4007
4005
4006
(.已知等差数的公差,成等比数.4.6
.8
.10
,.(是等差数的项和,9351 D.2 C B.-1
.A.1 2a?a aabbb,-4,成等比数列,则,-4成等差数列,-1的值,9.已
知数列-1,,,1232112b2是().
11111. C.-或 A. B.- D 42222aaaanSn=().=38,+-,则=0( ≥
2)10.在等差数列{}中,,若≠02a nnnnn11-+12-n A.38 B.20 C.10 D.9
二、填空题
1nffxf(-5),利用课本中推导等差数列前+项和公式的方法,可求得.设11-(()=x2?2f(0)+…++…+ 4)ff(6)的值为+. (5)a}中, 12.已知等比数列{n aaaaaaaa=.····若(1) ··=8,则63452453aaaaaa+36+324+(2)若=,=,
则=.654321.
精心整理
SSaaaa=,则.
++(3)若=2,+=62018178419827之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.和 13.在23aaaaaa)=24,则此数列前++13)+2(项之和为+14.在等差数列{.
}中,3(n1331075aaaaaa=,则+…+中,+=3,.
=-15.在等差数列{2}n105564nn≥3).设平面内有,其中有且仅有两条直线互相平
行,任意三条直线不过同一条直线(16fnn
表示这点.若用)(fnfn)=.时,条直线交点的个数,则 (4)=;当(>4三、解
答题
.成等差数1(1已知数的项,求证数.也成等差数(2已成等差数列,求成等差数列的等比数列,1.是公比的值(1nSb为首项时,比为公差的等差数列,其项和,当(2)是2n的大小,并说明理由
1.数的}项和记,已nS}是等比数列.求证:数列{ n n aaSnaaa成等23{.已知数
列是首项为}的等比数列,且公比不等于1,为其前项和,,20nn417S,12 差数列,
求证:3SSS.
-,成等比数列6126.。

相关文档
最新文档