2020届山东省青岛市第一中学高三下学期第五次在线考试数学试题
山东省青岛市2020届高三5月模拟检测数学试题 Word版含解析

山东省青岛市2020年5月高三模拟检测数学试题一、单项选择题1.已知全集U =R ,集合{}2320A x x x =-+≤,{}131x B x -=≥,()U A B =I ð( )A. []1,2B. ()2,+∞C. [)1,+∞D. (),1-∞【答案】B 【解析】 【分析】将集合A ,B 化简,再求出U A ð,根据交集的定义即可得到答案. 【详解】因为{}{}2320=12A x x x x x =-+≤≤≤,{}{}{}1103133=1x x B x x x x --=≥=≥≥,所以(){|1U A B x x ⋂=<ð或}{}{}212x x x x x >⋂≥=>. 故选:B.【点睛】本题主要考查交集、补集的运算,同时考查一元二次不等式的解法及指数不等式的解法,属于基础题.2.若复数z 满足)|i z i -=(其中i 是虚数单位),则复数z 的共轭复数z 的虚部为( ) A.12B.12i C. 12-D. 12i -【答案】C 【解析】 【分析】根据复数模的定义可得)2i z =,从而可得z =,再根据复数的乘除运算即可求出复数z ,再根据共轭复数的定义,求出z 即可得到答案.【详解】由)|i z i -=得)2i z ==,所以)1422i z i ===+,所以12z i =,所以z的虚部为12-. 故选:C.【点睛】本题主要考查复数的模,复数代数形式的乘除运算及共轭复数的概念,属于基础题.3.已知向量()1cos ,2a x =+r ,()sin ,1b x =r ,0,2x π⎛⎫∈ ⎪⎝⎭,若//a b r r ,则sin x =( )A.45B.35C.25D.【答案】A 【解析】 【分析】根据向量平行的坐标表示列出方程可得cos 2sin 1x x =-,代入22sin cos 1x x +=解方程即可求出sin x .【详解】因为//a b r r,所以1cos 2sin 0x x +-=,所以cos 2sin 1x x =-,又因为22sin cos 1x x +=,所以22sin (2sin 1)1x x +-=, 即25sin 4sin 0x x -=,解得4sin 5x =或sin 0x =,又0,2x π⎛⎫∈ ⎪⎝⎭, 所以4sin 5x =. 故选:A.【点睛】本题主要考查向量平行的坐标表示,同角三角函数平方关系,属于基础题. 4.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数解析式来分析函数的图象与性质,下列函数的解析式(其中 2.71828e =L 为自然对数的底数)与所给图象最契合的是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()tan x xy e e -=-D. ()cos x xy e e -=+【答案】D 【解析】 【分析】根据0x =时的函数值排除即可.【详解】当0x =时,对于A ,()00sin sin20y e e =+=>,故排除A ;对于B ,()00sin 0y e e=-=,故排除B ; 对于C ,()00tan 0y e e=-=,故排除C ;对于D ,()00cos cos20y e e =+=<,符合题意.故选:D.【点睛】本题主要考查函数表示方法中的图象法与解析法之间的对应关系,可利用从函数图象上的特殊点,排除不合要求的解析式.5.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( ) A.29B.14C.718D.112【答案】C 【解析】 分析】基本事件的总数有6636⨯=种,利用列举法求出第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的基本事件有14种,根据古典概型概率计算公式,即可求出答案.【详解】从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,有36个基本事件,其中第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除有如下基本事件 (第一次抽得的卡片1,第二次摸到卡片2用(1,2)表示):(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,2),(2,4),(2,6),(3,3),(3,6), (4,4),(5,5),(6,6),共14个,所以第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率1473618P ==. 故选:C.【点睛】本题主要考查古典概型的概率的求法,属于基础题.6.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :2211x y a a+=+(0)a >的离心率为12,则椭圆C 的蒙日圆方程为( ) A. 229x y += B.227x y += C. 225x y +=D.224x y +=【答案】B 【解析】 【分析】根据椭圆C 的离心率可求出3a =,根据题意知椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,利用过上顶点和右顶点的切线可得蒙日圆上的一点,即可椭圆C 的蒙日圆方程.【详解】因为椭圆C :2211x y a a+=+(0)a >的离心率为12,12=,解得3a =,所以椭圆C 的方程为22143x y +=,所以椭圆的上顶点A ,右顶点(2,0)B ,所以经过,A B 两点的切线方程分别为y =2x =,所以两条切线的交点坐标为,又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r ==所以椭圆C 的蒙日圆方程为227x y +=.故选:B.【点睛】本题主要考查椭圆的几何性质,同时考查圆的方程,属于基础题.7.已知O 是ABC V 内部一点,20OA OB OC ++=u u u r u u u r u u u r r ,4BA BC ⋅=u u u r u u u r 且6ABC π∠=,则OACV 的面积为( )A.B.23C.D.43【答案】A 【解析】 【分析】由20OA OB OC ++=u u u r u u u r u u u r r可得1()2BO OA OC =+u u u r u u u r u u u r ,设D 为AC 的中点,则1()2OA O OC D =+u u u u r u u r u u u r ,可得BO OD =u u u r u u u r ,从而可得O 为BD 的中点,进而可得12AOC ABC S S =△△,由4BA BC ⋅=u u u r u u u r 可得||||BA BC ⋅=u u u r u u u r ,再由12||||sin ABC BA AB S BC C ⋅⋅=∠u u u r u u u r △即可求出ABC S V .【详解】在ABC V 中,由20OA OB OC ++=u u u r u u u r u u u r r ,得22OA OC OB BO +=-=u u u r u u u r u u u r u u u r,所以1()2BO OA OC =+u u u r u u u r u u u r ,设D 为AC 的中点,则1()2OA O OC D =+u u u u r u u r u u u r,所以BO OD =u u u r u u u r,所以O 为BD 的中点,所以12AOC ABC S S =△△, 因为4BA BC ⋅=u u u r u u u r ,所以3||||cos ||||4BA BC BA BC ABC BA BC ⋅=⋅⋅∠=⋅=u u u r u u u r u u u r u u u ru u u ru u u r, 所以83||||3BA BC ⋅=u u u r u u u r ,所以183123||||sin 232312ABCBA BC AB S C ⋅⋅∠==⨯=u u u r u u u r △, 所以1233233=AOC S =⨯△. 故选:A.【点睛】本题主要考查向量的线性运算,向量的数量积及三角形的面积公式,属于中档题. 8.已知函数()2ln x f x x =,若()21f x m x<-在(0,)+∞上恒成立, 2.71828e =⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( ) A. m e > B. 2em >C. 1m >D. m e >【答案】B 【解析】 【分析】()21f x m x <-在(0,)+∞上恒成立,即()21f x m x+<在(0,)+∞上恒成立,令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可,利用导数求出()g x 的最大值即可. 【详解】若()21f x m x <-在(0,)+∞上恒成立,即()21f x m x+<在(0,)+∞上恒成立, 令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可, 2431(ln 1)22ln 1()x x x x x g x x x ⋅-+⋅--'==,令()0g x '=,得12x e -=, 当120x e -<<时,()0g x '>;当12x e ->时,()0g x '<, 所以()g x 在12(0)e -,上是单调递增,在12(,)e -+∞上是单调递减, 所以当12max ()()2e g x g e -==, 所以实数m 的取值范围是2e m >. 故选:B.【点睛】本题主要考查分离参数法处理恒成立问题,同时考查利用导数求函数的最值,属于中档题.二、多项选择题9.设a ,b ,c 为实数,且0a b >>,则下列不等式中正确的是( ) A. ()222log log ab b >B. 22ac bc >C. 1b a a b<<D. 1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】AC 【解析】 【分析】对A ,利用作差法比较即可;对B ,利用不等式的性质判断即可;对C ,利用作差法比较即可;对D ,利用指数函数的单调性比较即可. 【详解】对A ,因为0a b >>,所以1ab>,所以2222222log ()log log log log 10ab a ab b b b-==>=, 所以222log ()log ab b >,故A 正确;对B ,当0c =时,22ac bc >不成立,故B 错误; 对C ,因为0a b >>,所以10b b a a a --=<,10a b a b b--=<, 所以1b aa b<<,故C 正确; 对D ,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,又a b >,所以1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 错误. 故选:AC【点睛】本题主要考查作差法比较大小,不等式的性质及指数函数的单调性,属于基础题. 10.已知等差数列{}n a 的前n 项和为()n S n N *∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A. 122a =B. 2d =-C. 当10n =或11n =时,n S 取得最大值D. 当0n S >时,n 的最大值为20【答案】BCD 【解析】 【分析】由690S =可得12530a d +=,由7a 是3a 与9a 的等比中项可得110a d =-,联立方程可求出120a =,2d =-,即可判断A ,B 选项,求出等差数列{}n a 的前n 项和为n S ,即可判断C ,D.【详解】因为690S =,所以1656902a d ⨯+=,即12530a d +=,① 又因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅, 所以2111(6)(2)(8)a d a d a d +=++,整理得110a d =-,②由①②解得120a =,2d =-,故A 错误; 所以22(1)2144120(2)21()224n n n S n n n n -=+⨯-=-+=--+, 又n *∈N ,所以当10n =或11n =时,n S 取得最大值,故C 正确;令2210n S n n =-+>,解得021n <<,又n *∈N ,所以n 的最大值为20,故D 正确. 故选:BCD【点睛】本题主要考查等差数列的通项公式,等差数列前n 项和公式,等比中项的应用,同时考查等差数列和的最值问题,属于基础题.11.声音是由物体振动产生的声波,纯音的数学模型是函数sin y A t ω=,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数()sin f x x x =+则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 是周期函数 C. ()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增 D. ()f x 最大值为2【答案】ABD 【解析】 【分析】根据奇偶性的定义和周期函数的定义可判断A ,B ;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()sin 2sin()3f x x x x =+=+π,可判断C ;结合函数()f x 的周期性对x 进行分类讨论,将函数()f x 的绝对值去掉,再求其最大值可判断D. 【详解】函数()f x 的定义域为R ,因为())sin()sin ()f x x x x x f x -=-+-=+=, 所以()f x 是偶函数,故A 正确;因为sin cos s )()(i ()n f x πx πx x x π+++=++-sin ()x x f x +=,所以()f x 是以π为周期的周期函数,故B 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为1()sin 2sin 2sin()223f x x x x x x ⎛⎫=+=+=+ ⎪ ⎪⎝⎭π, 此时()f x 在06π⎡⎤⎢⎥⎣⎦,上单调递增,在,62ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;由于函数()f x 是以π为周期的周期函数,故只需研究一个周期内的最大值即可, 不妨取[0,]x π∈,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()2sin()3f x x π=+, 由0,2x π⎡⎤∈⎢⎥⎣⎦,得5,336x πππ⎡⎤+∈⎢⎥⎣⎦, 所以当32x ππ+=,即6x π=时,()f x 取得最大值2,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,1()sin 2sin 2sin()23f x x x x x x ⎛⎫=+==- ⎪ ⎪⎝⎭π, 由,2x ππ⎡⎤∈⎢⎥⎣⎦,得2,363x πππ⎡⎤-∈⎢⎥⎣⎦, 所以32x ππ-=,即56x π=时,()f x 取得最大值2, 故当[0,]x π∈时,()f x 取得最大值2,故D 正确. 故选:ABD.【点睛】本题主要考查三角函数的奇偶性、周期性、单调性的判断及最值的求法,同时考查两角和与差的正弦公式的逆用,属于中档题.12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A. 11B E A B ⊥B. 平面1//B CE 平面1A BDC. 三棱锥11C B CE -的体积为83D. 三棱锥111C B CD -的外接球的表面积为24π 【答案】CD 【解析】 【分析】以1{,,}AB AD AA u u u r u u u r u u u r 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅u u u r u u u r 值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA u u u r u u u r u u u r 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--u u u r ,1(2,0,4)A B =-u u u r , 因为1140840B E A B ⋅=-++=≠u u u r u u u r ,所以1B E u u u r 与1A B uuu r 不垂直,故A 错误; 1(0,2,4)CB =-u u u r ,(2,0,2)CE =-u u u r设平面1B CE 的一个法向量为111(,,)n x y z =r,则 由100n CB n CE ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =所以(1,2,1)n =r,同理可得设平面1A BD 的一个法向量为(2,2,1)m =u r,故不存在实数λ使得n λm =r u r,故平面1B CE 与平面1A BD 不平行,故B 错误;在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.已知命题“2,10x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是_______【答案】[]22-,【解析】命题“2,10x R x ax ∃∈-+<”假命题,则“2,10x R x ax ∀∈-+≥”为真命题.所以240a =-≤n ,解得22a -≤≤. 答案为:[]2,2-.14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______. 【答案】25- 【解析】 【分析】先求得61x x ⎛⎫- ⎪⎝⎭中含21x 的项与常数项,进而可得()6212x x x ⎛⎫+- ⎪⎝⎭的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式中含21x 的项为44262115C x x x ⎛⎫-= ⎪⎝⎭,61x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为3336120C x x ⎛⎫-=- ⎪⎝⎭,所以()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为154025-=-.故答案为:25-.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.已知()f x 为奇函数,当0x >时,()ln xf x x=,则曲线()y f x =在点()1,0-处的切线方程是______. 【答案】10x y -+= 【解析】 【分析】利用函数()f x 为奇函数,可求出当0x <时,()f x 的表达式为ln()()x f x x-=,然后根据在一点处的切线方程的求法,即可求出曲线()y f x =在点()1,0-处的切线方程.【详解】因为()f x 为奇函数,所以()()f x f x -=-, 当0x <时,则0x ->,所以ln()ln()()()x x f xf x x x--=--=-=-, 所以221(1)ln()1ln()()x x x x f x x x ⨯-⨯-----'==, 所以曲线()y f x =在点()1,0-处的切线的斜率(1)1k f '=-=, 所以切线方程是01y x -=+,即10x y -+=. 故答案为:10x y -+=【点睛】本题主要考查根据函数的奇偶性求函数的解析式,在一点处的切线方程的求法,同时考查复合函数的导数,属于中档题.16.已知抛物线C :22y px =()06p <<的准线交圆1O :()2234x y ++=于A ,B 两点,若23AB =,则抛物线C 的方程为______,已知点()1,2M ,点E 在抛物线C 上运动,点N 在圆2O :()2221x y -+=上运动,则EM EN +的最小值为______.【答案】 (1). 28y x = (2). 2.【解析】【详解】(1)设抛物线C 的准线与x 轴交于点D ,抛物线C 的准线方程为2px =-,则22211AO AD DO =+,即224|3|2p =+-+, 整理得212320p p -+=,解得4p =或8p =,又06p <<,所以4p =,所以抛物线C 的方程为28y x =.(2)由题意知 圆2O 的圆心坐标为(2,0)与抛物线的焦点坐标重合, 过E 作抛物线C 的准线2x =-的垂线,垂足为F ,则2||||EO EF =, 所以22211EM EN EM EO NO EM EO EM EF +≥+-=+-=+-, 所以当M ,E ,F 三点共线时,EM EF +最小,最小值为3, 所以1312EM EN EM EF +≥+-≥-=, 所以EM EN +的最小值为2. 故答案为:①28y x =;②2【点睛】本题主要考查抛物线的定义和准线方程,圆中的弦长公式,抛物线中的最值问题,同时考查数形结合思想和转化与化归思想.四、解答题17.设数列{}n a 的前n 项和为n S ,11a =,______. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列{}1n S a +也为等比数列;条件②:点{}1,n n S a +在直线1y x =+上;条件③:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)不论选择哪个条件,1=2n n a -()N n *∈;(2)()()3234212n n T n n +=-++ 【解析】 【分析】(1) 方案一:选条件①.数列{}1n S a +也为等比数列,可根据其前3项也成等比数列列出方程,再将123,,S S S 用1,a q 表示解出q,即可求出n a ;方案二:选条件②,可得11n n a S +=+()N n *∈,再将n 用1n -代换可得11n n a S -=+()2n ≥,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;方案三:选条件③.可得当2n ≥时,1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈,再将n 用1n -代换可得()121212221n n n n a a a n a ---++⋅⋅⋅+=-,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;(2)由(1)不论选择哪个条件,1=2n n a -()N n *∈,代入化简可得()12n b n n =+,利用裂项相消法求和,即可求出数列{}n b 的前n 项和n T . 【详解】(1)方案一:选条件①. 因为数列{}1n S a +为等比数列,所以()()()2211131S a S a S a +=++,即()()2121123222a a a a a a +=++, 设等比数列{}n a 的公比为q ,因为11a =, 所以()()22222q q q+=++,解得2q =或0q =(舍), 所以1112n n n a a q --==()N n *∈,(2)由(1)得12n n a -=()N n *∈, 所以()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭,所以11111111111232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()13113232212442123111212n n n n n n n ⎛⎫=-=⎭+⎛-+ +⎫-=- ⎪+++⎝⎭⎝++⎪, 方案二:(1)选条件②.因为点()1,n n S a +在直线1y x =+上,所以11n n a S +=+()N n *∈,所以11n n a S -=+()2n ≥,两式相减得1n n n a a a +-=,12n na a +=()2n ≥, 因为11a =,211112a S a =+=+=,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列,所以1112n n n a a q --==()N n *∈(2)同方案一的(2). 方案三:(1)选条件③.当2n ≥时,因为1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈⋅⋅⋅(i )所以()121212221n n n n a a a n a ---++⋅⋅⋅+=-,所以()1212122221nn n n a a a n a --++⋅⋅⋅+=-⋅⋅⋅(ii )(i )-(ii )得122(1)n n n a na n a +=--,即12n na a +=()2n ≥, 当1n =时,122a a =,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列所以1112n n n a a q --==()N n *∈(2)同方案一的(2).【点睛】本题主要考查等比数列通项公式求法,裂项相消法求和,属于基础题.18.在ABC V 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足cos2cos sin a C a C c A =-. (1)求角C ;(2)若ABC V 为锐角三角形,12c =,求ABC V 面积S 的最大值.【答案】(1)4C π=;(2))361【解析】 【分析】(1)对cos2cos sin a C a C c A =-,利用正弦定理得sin cos2sin cos sin sin A C A C C A =-,进而可得cos2cos sin C C C =-,再利用二倍角公式即可求出角C ;(2)由已知可得4C π=,故要求ABC V 面积S 的最大值,只需求出ab 的最大值即可,利用余弦定理可得222144c a b ==+,再利用基本不等式即可求出ab 的最大值. 【详解】(1)因为cos2cos sin a C a C c A =-,所以由正弦定理可得:sin cos2sin cos sin sin A C A C C A =-, 因为()0,A π∈,sin 0A ≠,所以cos2cos sin C C C =-, 所以22cos sin cos sin C C C C -=-, 即()()cos sin cos sin 10C C C C -+-=, 所以cos sin 0C C -=或cos sin 10C C +-=, 即cos sin C C =或cos sin 10C C +-=, ①若cos sin C C =,则4C π=,②若cos sin 10C C +-=,则sin 42C π⎛⎫+= ⎪⎝⎭, 因为5444C πππ<+<,所以344C ππ+=,即2C π=, 综上,4C π=或2C π=.(2)因为ABC V 为锐角三角形,所以4C π=,因为(222221442cos 224c a b ab a b ab ab π==+-=+-≥=,即(722ab ≤=(当且仅当a b =等号成立),所以()11sin sin 72236122444S ab C ab π===≤+=,即ABC V 面积S 的最大值是()3621+.【点睛】本题主要考查正弦定理,二倍角公式,基本不等式及三角形的面积公式,同时考查三角形中面积的最大值求法,属于基础题.19.如图,四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(1)求证:平面11CC D D ⊥底面ABCD ;(2)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求直线1CA 和平面11BCC B 所成角的正弦值.【答案】(1)见解析;6 【解析】 【分析】(1)要证平面11CC D D ⊥底面ABCD ,只需证明其中一个面内一条线垂直于另一个平面即可,可证1D E ⊥底面ABCD ,由底面ABCD 和侧面11BCC B 都是矩形,可得BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,从而可得1BC D E ⊥,又1D E CD ⊥,从而可证出1D E ⊥底面ABCD ;(2) 取AB 的中点F ,以1{,,}EF EC ED u u u r u u u r u u u u r为正交基底建系,设1ED a =()0a >,写出各点坐标,分别求出平面1BED 与平面11BCC B 的法向量()11,1,0n =-u r ,()20,,1n a =-u u r,根据它们所成的锐二面角的大小为3π,利用夹角公式列出方程可求出1a =,再求出()11,1,1CA =-u u u r ,设直线1CA 和平面11BCC B 所成的角为θ,由12sin cos CA n =〈⋅〉u u u r u u rθ即可求出答案.【详解】(1)因为底面ABCD 和侧面11BCC B 都是矩形,所以BC CD ⊥,1BC CC ⊥,又1CD CC C =I ,1,CD CC ⊂平面11DCC D , 所以BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,所以1BC D E ⊥,又1D E CD ⊥,BC CD C ⋂=,,BC CD ⊂底面ABCD , 所以1D E ⊥底面ABCD ,又1D E ⊂平面11CC D D , 所以平面11CC D D ⊥底面ABCD .(2)取AB 的中点F ,因为E 是CD 的中点,底面ABCD 是矩形,所以EF CD ⊥,以E 为原点,以EF ,EC ,1ED 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系E xyz -,如图所示:设1ED a =()0a >,则()0,0,0E ,()1,1,0B ,()10,0,D a ,()0,1,0C ,()10,2,C a设平面1BED 的法向量()111,,n x y z =r ,()1,1,0EB =u u u r ,()10,0,ED a =u u u u r.由11100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩u v u u u v u v u u u u v 可得:11100x y az +=⎧⎨=⎩, 令11x =可得11y =-,10z =,所以()11,1,0n =-u r,设平面11BCC B 的法向量()2222,,n x y z =u u r ,()1,0,0CB =u u u r ,()10,1,CC a =u u u u r. 由22100n CB n CC ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u vu u v u u u u v 可得,22200x y az =⎧⎨+=⎩,令21z =可得2y a =-,所以()20,,1n a =-u u r由于平面11BCC B 与平面1BED 所成的锐二面角的平面角为3π, 所以1212212cos ,cos 321n n n n n n a π⋅===⋅⨯+u r u u ru r u u r u r u u r ,解得1a =.所以平面11BCC B 的法向量()20,1,1n =-u u r,由于()1,1,0A -,()0,1,0C ,()0,1,0D -,()10,0,1D ,所以()()()1111,2,00,1,11,1,1CA CA AA CA DD =+=+=-+=-u u u r u u u r u u u r u u u r u u u u r, 设直线1CA 和平面11BCC B 所成的角为θ,则12126sin 323CA n CA n θ⋅===⨯⋅u u u r u u ru u u r u u r .【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,根据所成二面角的大小逆向求参数值及利用向量法求线面角的正弦值,属于中档题.20.某专业机械生产厂为甲乙两地(两地仅气候条件差异较大,其他条件相同)的两个不同机器生产厂配套生产同一种零件,在甲乙两地分别任意选取100个零件进行抗疲劳破坏性试验,统计每个零件的抗疲劳次数(抗疲劳次数是指从开始试验到零件磨损至无法正常使用时的循环加载次数),将甲乙两地的试验的结果,即每个零件的抗疲劳次数(单位:万次)分别按(]7,8,(]8,9,(]9,10,(]10,11,(]11,12分组进行统计,甲地的实验结果整理为如下的频率分布直方图(其中a ,b ,c 成等差数列,且23c b =),乙地的统计结果整理为如下的频数分布表.(1)求a ,b ,c 的值并计算甲地实验结果的平均数x .(2)如果零件抗疲劳次数超过9万次,则认为零件质量优秀,完成下列的22⨯列联表: 质量不优秀 质量优秀 总计 甲地 乙地试根据上面完成的22⨯列联表,通过计算分析判断,能否有97.5%的把握认为零件质量优秀与否与气候条件有关? 附:临界值表其中2K 的观测值()()()()()2n ad bc k a b c d a c b d -=++++(3)如果将抗疲劳次数超过10万次的零件称为特优件,在甲地实验条件下,以频率为概率,随机打开一个4个装的零件包装箱,记其中特优件的个数为ξ,求ξ的分布列和数学期望. 【答案】(1)0.1a =,0.2b =,0.3c =,平均数9.3x =万次;(2)见解析,有;(3)见解析,1 【解析】 【分析】(1)根据频率分布直方图的的矩形面积和为1,可得0.6a b c ++=,再由a ,b ,c 成等差数列,可得2b a c =+,再结合23c b =解方程即可求出a ,b ,c 的值;利用组中值乘以相应的频率再求和即可求出平均数x ;(2)根据已知条件分别求出甲、乙抗疲劳次数超过9万次的零件数和不超过9万次的零件数,即可完成22⨯列联表,然后根据22⨯列联表求出观测值k ,查对临界值,即可作出判断;(3)根据已知条件可得任意抽取一件产品为特优件的概率14p =,ξ的取值可能为0,1,2,3,4,根据二项分布分别求出相应的概率,即可列出分布列并求出数学期望.【详解】(1)由频率分布直方图的性质可得:0.050.351a b c ++++=,即0.6a b c ++= 因为a ,b ,c 成等差数列,所以2b a c =+,所以0.2b = 又23c b =,解之得:0.3c =,0.1a =所以7.50.18.50.39.50.3510.50.211.50.059.3x =⨯+⨯+⨯+⨯+⨯= 即抗疲劳次数的平均数9.3x =万次(2)由甲地试验结果的频率分布直方图可得:抗疲劳次数超过9万次的零件数为()1000.350.20.0560⨯++=件,不超过9万次的件数为1006040-=件,由乙地试验结果的分布表可得:抗疲劳次数超过9万次的零件数为4125975++=, 不超过9万次的零件数为25件,所以22⨯列联表为所以()220040752560200 5.128 5.0246513510010039k ⨯-⨯==≈>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为零件质量优秀与否与气候条件有关, 即有97.5%的把握认为零件质量优秀与否与气候条件有关.(3)在甲地实验条件下,随机抽取一件产品为特优件的频率为0.25, 以频率为概率,所以任意抽取一件产品为特优件的概率14p = 则ξ的取值可能为0,1,2,3,4所以()400431********P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭; ()311431812714425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()2224315427244256128P C ξ⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭; ()13343112334425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()0444311444256P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 所以ξ的分布列为ξ0 1 2 3 4P81256 2764 27128 364 1256ξ的数学期望()8110854121012341256256256256256E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题主要考查频率分布直方图的性质,利用组中值估计平均数,独立性检验的应用,二项分布及数学期望,属于中档题.21.已知椭圆E :22221x y a b+=()0a b >>的离心率为12,其左右顶点分别为1A ,2A ,上下顶点分别为2B ,1B ,四边形1122A B A B 的面积为43.(1)求椭圆E 的方程;(2)若椭圆E 的左右焦点分别为1F ,2F ,过2F 的直线l 与椭圆交于不同的两点M ,N ,记1F MN △的内切圆的半径为r ,试求r 的取值范围.【答案】(1)22143x y +=;(2)304r <≤【解析】 【分析】(1)根据离心率为12,四边形1122A B A B 的面积为222a b c =+,即可求出,a b ,进而求出椭圆E 的方程;(2)由1F MN △的周长1148F M F N MN a ++==,可得()111142F MN S F M F N MN r r =++=△,即114F MN r S =△, 对直线l 的斜率是否存在进行分类讨论,当l x ⊥轴时,l 的方程为:1x =,可求得34r =;当l 与x 轴不垂直时,设l :()()10y k x k =-≠,将椭圆的方程与直线l 的方程联立消去x ,由根与系数的关系可求出12y y +,12y y ,代入11212F MN F F M F F N S S S =+△△△1212F F =k 的函数,利用换元法即可求出r 的取值范围. 【详解】(1)因为椭圆E 的离心率为12,所以12c e a ==,因为四边形1122A B A B 的面积为1222a b ⨯⨯=又222a b c =+,解得:2a =,b =1c =,所以椭圆E方程为:22143x y +=.(2)设()11,M x y ,()22,N x y ,则1F MN △的周长48a ==,()111142F MN S F M F N MN r r =++=△,即114F MN r S =△, 当l x ⊥轴时,l 的方程为:1x =,3MN =,11211134424F MN r S MN F F ==⨯⨯=△, 当l 与x 轴不垂直时,设l :()()10y k x k =-≠,由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22243690k y ky k ++-=,所以122643k y y k +=-+,2122943k y y k =-+,112121221211221111222F MN F F M F F N S S S F F y F F y F F y y =+=⋅+⋅=⋅-△△△1211222F F ==⨯=所以114F MN r S ==△ 令243k t +=,则3t >,r ===, 因为3t >,所以1103t <<,所以304r << 综上可知:304r <≤【点睛】本题主要考查求椭圆的标准方程,直线与椭圆的位置关系,同时考查椭圆中的范围问题,对于第(2)问关键是借助于“算两次”面积相等得到114F MN r S =△,将问题转化为求1MN F S V 的面积问题.22.已知函数()22xa f x e x =-( 2.71828e =⋅⋅⋅为自然对数的底数)有两个极值点1x ,2x . (1)求a 的取值范围; (2)求证:122ln x x a +<. 【答案】(1)(),e +∞;(2)见解析 【解析】 【分析】(1)求()x f x e ax '=-,令()()xg x f x e ax '==-,利用导数研究函数()g x 的单调性:当0a ≤时,()0xg x e a '=->,此时()g x 在R 上单调递增,至多有一个零点,不符合题意;当0a >时,只需()()min ln 0g x g a =<,同时使得(),ln a -∞和()ln ,a +∞各有一个零点即可;(2) 不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x <<,要证122ln x x a +<,即证122ln x a x <-,而当(),ln x a ∈-∞时,函数()g x 单调递减,即证()()122ln g x g a x >-,而()()12g x g x =,即证()()222ln g x g a x >-,故可构造函数()()()2ln p x g x g a x =--,利用导数判断()p x 的单调性转化即可.【详解】(1)由已知得()xf x e ax '=-,因为函数()f x 有两个极值点1x ,2x ,所以方程()0xf x e ax '=-=有两个不相等的根1x ,2x设()()xg x f x e ax '==-,则()xg x e a '=-①当0a ≤时,()0xg x e a '=->,所以()g x 在R 上单调递增,至多有一个零点,不符合题意 ②当0a >时,由()0xg x e a '=-=得ln x a =.当(),ln x a ∈-∞时,()0g x '<,函数()g x 单调递减; 当()ln ,x a ∈+∞时,()0g x '>,函数()g x 单调递增. 所以()()min ln ln 0g x g a a a a ==-<,即a e >, 令()2ln a a a ϕ=-()0a >,则()221a a a aϕ-'=-=, 当()0,2a ∈时,()0a ϕ'<,()a ϕ为减函数; 当()2,a ∈+∞时,()0a ϕ'>,()a ϕ为增函数; 所以()()()min 222ln 221ln 20a ϕϕ==-=->所以()0a ϕ>,即2ln a a >,从而ln 2aa a <<,2a e a > 所以()20ag a e a =->,又因为()010g =>,所以()g x 在区间()0,ln a 和()ln ,a a 上各有一个零点,符合题意, 综上,实数a 的取值范围为(),e +∞.(2)不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x << 设()()()()2ln 2ln 2ln xa xp x g x g a x e ax ea a x -⎡⎤=--=----⎣⎦222ln x x e a e ax a a -=--+,则()222220x x p x e a e a a a a -'=+-≥=-=, 当且仅当2x x e a e -=,即ln x a =时,等号成立. 所以函数()p x 在R 上单调递增.由2ln x a >,可得()()2ln 0p x p a >=,即()()222ln 0g x g a x -->, 又因为1x ,2x 为函数()g x 的两个零点,所以()()12g x g x =, 所以()()122ln g x g a x >-, 又2ln x a >,所以22ln ln a x a -<, 又函数()g x 在(),ln a -∞上单调递减, 所以122ln x a x <-,即122ln x x a +<.【点睛】本题主要考查利用导数研究函数的性质,构造函数证明不等式,同时考查极值点偏移问题,属于难题.。
山东省2023届高考考前押题卷数学试题(含解析)

山东省2023届高考考前押题卷数学试题学校:___________姓名:___________班级:___________考号:___________A .290mB .420.25mC .490m 5.定义两个向量u 与v 的向量积u v ⨯是一个向量,它的模方向与u 和v同时垂直,且以,,u v n 的顺序符合右手法则(如图)体ABCD 中,则()AB AD AC ⨯⋅=( )A .42B .46.已知5458<,设4log 5,a =A .a c b >>C .c b a>>A .8081-B .1698.已知非零数列{}123,n n n a b a a a a =⋅⋅ ()12n n n a b ⎧⎫⎪⎪⎨⎬-⋅⎪⎪⎩⎭的前2023项的和为( )A .12-二、多选题9.甲、乙两人6次模拟考试英语成绩(不含听力)的统计折线图如下图所示,下列说A.若甲、乙两组成绩的平均数分别为B.若甲、乙两组成绩的方差分别为C.甲成绩的中位数大于乙成绩的第三四分位数D.甲成绩的极差大于乙成绩的极差三、填空题15.设20a b >>,则()2212a ab a a b ++-的最小值为16.已知12,F F 分别为双曲线22221(0,x y a b a b -=>>直线与双曲线的右支交于,A B 两点,记AF F △的内切圆半径为(1)证明:GC //平面EDB ;(2)若ACG 为等边三角形,点求sin α的最小值.21.已知圆22:4,O x y O +=为坐标原点,点以L 为准线的拋物线恒过点F 为S .参考答案:【详解】,sin,=⋅⋅AB AD AB ADABD的中心为O,连接COAB,AD⊂平面ABD,故223⨯⨯=,OC=AB【详解】选项,取1CD BB 、的中点分别为对于B 选项,取11B C 中点T ,把直线BET △中,213,BE BT TE ==5252425cos 25226TBE +-∠==⨯,故选项对于C 选项,当球与直四棱柱的上底面和当球与直四棱柱的下底面和4对于D 选项,设四边形1111D C B A 内切圆半径为1111314416,22A B C D S r r =⨯⨯=⨯⨯=由题可知在直四棱柱11ABCD A B C -心P ,如图建系,()(10,0,33,0,2,0P A 此时两球心的距离为31,【详解】由图可知:AB DE FG IJ JK=====AQC,∴30ACB∠=︒,∴BC十三边形的面积为316832⨯=.:83由122AF AF a -=,即1AM F +得122F M F N a -=,即1F E F -记C 点的横坐标为0x ,则(0,0E x 则()002x c c x a +--=,得0x a =(2)设底面圆的圆心为O ,过以O 为坐标原点,,,OA ON OG ()()(0,0,0,1,3,0,1,O B D --因为34AE AG =,所以由34AE =设()2π2cos ,2sin ,003F θθθ⎛≤≤ ⎝设平面BDE 的一个法向量为n ()30,23,0,,3,2DB BE ⎛==- ⎝ ∴2303333022y x y z ⎧=⎪⎨-+=⎪⎩,所以可取23cos -4(2)设点()00,P x y ,过点P 的直线的斜率为联立方程组()002244y y k x x x y ⎧-=-⎨+=⎩,消y【点睛】关键点点睛:第二问,设切线方程,联立椭圆方程并整理,根据切线与椭圆的位置关系有Δ0=得到关于切线斜率的一元二次方程,求出直线的方程,利用根与系数的关系得到AB 12,d d ,则()1212PAOB S AB d d =+四边形,结合22.(1)1a <1x ∴>时,()()('0,h x p x h =<在1x =处取得极大值也是最大值存在两条切线重合等价于y =(2)因为12a =,由(1)知,取令()()'22ln 1,e x x x x ϕϕ=--当()0,e x ∈ 时,()'0,x ϕϕ<。
2023-2024学年山东省邹城市第一中学高三下第一次测试数学试题含解析

2024年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量X 的分布列是X12 3P1213a则()2E X a +=( ) A .53B .73C .72D .2362.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )A .122π-B .21π-C .22π-D .24π-3.已知三棱锥D ABC -的外接球半径为2,且球心为线段BC 的中点,则三棱锥D ABC -的体积的最大值为( ) A .23B .43C .83D .1634.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e xf x x =+,则32(2)a f =-,2(log 9)b f =,5)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3166.已知数列{}n a 的前n 项和为n S ,且14121n n S a n +-=-,11a =,*n N ∈,则{}n a 的通项公式n a =( )A .nB .1n +C .21n -D .21n7.已知函数()()0xe f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .(),e +∞D .1,1e ⎛⎫⎪⎝⎭8.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )A .1?S >-B .0?S <C .–1?S <D .0?S >9.若x ,y 满足约束条件-0210x y x y x ≤⎧⎪+≤⎨⎪+≥⎩,,,则z =32x y ++的取值范围为( )A .[2453,]B .[25,3] C .[43,2] D .[25,2] 10.集合{|20}N A x x B =-≤=,,则A B =( )A .{}1B .{}1,2C .{}0,1D .{}0,1,211.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅12.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”。
06不等式多选题

06不等式多选题1.【山东省菏泽一中2019 2020学年高三3月线上模拟】已知1a >,01c b <<<,下列不等式成立的是( ) A .b c a a > B .c c ab b a+>+ C .log log b c a a <D .b cb ac a>++ 【答案】ACD【解析】对于A :由1a >,01c b <<<,可得b c a a >,故A 正确; 对于B :由1a >,01c b <<<,c c a bb a +-+ 可得()()()0a c b cb ca bc ba b b a b b a -+--==<++ ,c c ab b a +<+ ,故B 错误;对于C :由1a >,01c b <<<,1log log b a a b =,1log log ca a c=,则log log 0a a c b <<,则110log log a a b c<<,可得log log b c a a <,故C 正确;对于D :由1a >,01c b <<<,()()()()()0a b c b c bc ba cb cab ac a b a c a b a c a -+---==>++++++可得b cb ac a>++,故D 正确. 故选:ACD .2.【山东省济南外国语2019-2020学年高三寒假综合测试三月份在线考试】下列结论正确的是( )A .x R ∀∈,12x x+≥B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若()20x x -<,则()2log 0,1x ∈D .若0a >,0b >,1a b +≤,则104ab <≤ 【答案】BD【解析】对于A :当0x <时,1x x+为负数,所以A 不正确; 对于B :若0a b <<,则110b a<<,考虑函数3()f x x =在R 上单调递增,所以11()()f f a b >,即3311()()a b>,所以B 正确; 对于C :若()20x x -<,则02x <<,2log (,1)x ∈-∞,所以C 不正确;对于D :若0a >,0b >,1a b +≤21,0()224a b a b ab ++≤<≤=所以D 正确. 故选:BD .3.【百师联盟2019-2020学年高三上学期期中联考】下列命题中不正确...的是( ) A .设m 为直线,,αβ为平面,且m α⊥;则“//m β”是“αβ⊥”的充要条件 B .设随机变量1)0(N ζ,,若()3P p ζ≥=,则()1302P p ζ-<<=- C .若不等式922x m x+≥+(0x >)恒成立,则m 的取值范围是(,2)-∞ D .已知直线2ax by +=经过点(1)3,,则28a b +的取值范围是[4)+∞, 【答案】AC【解析】A 选项,如图所示:αβ⊥,m α⊥,m β⊂,不一定//m β,因此不是充要条件,故A 错误.B 选项,对称轴为0x =,由对称性可知:121(30)22p P p ζ--<<==-.故B 正确. C 选项,由996x x x x+≥=,可得622m ≥+,所以m 的范围为(]2-∞,,故C 不正确. 选项D ,由直线2ax by +=经过点(1,3),可得32a b +=,则328228224a b a b a b ++≥==,当且仅当31a b ==等号成立, 所以取值范围是[4,)+∞, 故D 正确. 故选:AC4.【江苏省海安高级中学2019-2020学年高三上学期12月月考】下列结论正确的是( )A .若22a b >,则11a b< B .若0x >,则44x x+≥ C .若0a b >>,则lg lg a b > D .若0ab >,1a b +=,则114a b+≥ 【答案】BCD【解析】对于A ,若22a b >,则a b >,当2a =,1b =-时,11a b<不成立,故A 错;对于B ,由0x >,则44x x +≥=,当且仅当2x =取等号,故B 正确; 对于C ,由lg y x =为单调递增函数,由0a b >>,则lg lg a b >,故C 正确;对于D ,由0ab >,1a b +=,则()111124b a a b a b a b ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当12a b ==时取等号,故D 正确; 故选:BCD5.【江苏省徐州市2019-2020学年高三上学期期中】给出下面四个推断,其中正确的为( ).A .若,(0,)a b ∈+∞,则2b aa b+;B .若,(0,)x y ∈+∞则lg lg 2lg lg x y x +⋅C .若a ∈R ,0a ≠,则44a a+; D .若,x y ∈R ,0xy <,则2x yy x+≤-. 【答案】AD【解析】对于选项A ,因为,(0,)a b ∈+∞,则22b a b aa b a b+⨯=,当且仅当b a a b =,即a b =时取等号,即选项A 正确;对于选项B ,当,(0,1)x y ∈时,lg ,lg (,0)x y ∈-∞,lg lg 2lg lg x y x +⋅B 错误;对于选项C ,当0a <时,44a a+显然不成立,即选项C 错误;对于选项D ,0xy <,则0,0y x x y ->->,则[()()]2x y x y y x y x +=--+-≤-=-,当且仅当()()xy y x-=-,即x y =-时取等号,即选项D 正确, 即四个推段中正确的为AD , 故选:AD.6.【山东省滨州市三校联考2019-2020学年高三上学期期中】设11a b >>>-,0b ≠,则下列不等式中恒成立的是( ) A .11a b< B .11a b> C .2a b > D .22a b >【答案】CD【解析】当12,2a b ==-,满足条件.但11a b <不成立,故A 错误,当0a b >>时,11a b <,故B错误,11,0b b >>-≠,201b ∴<<,则2a b >,故C 正确,11,0,0a b a b a b >>>-∴+>->,22()()0a b a b a b ∴-=+->,故D 正确.故选:CD .7.【山东省德州市2019-2020学年高三上学期期中】对于实数a 、b 、c ,下列命题中正确的是( )A .若a b >,则ac bc <;B .若0a b <<,则22a ab b >>C .若0c a b >>>,则a b c a c b>-- D .若a b >,11a b >,则0a >,0b <【答案】BCD【解析】若0c >,则由a b >得ac bc >,A 错;若0a b <<,则2a ab >,2ab b > 22a ab b >>,B 正确;若0c a b >>>,则0c b c a ->->,∴110c a c b>>--,∴a b c a c b >--,C 正确; 若a b >,且,a b 同号时,则有11a b <,因此由11,a b a b>>得0,0a b ><,D 正确.故选:BCD .8.【山东省烟台市2019-2020学年高三上学期期中】下列结论正确的是( )A .若0,0a b c d >><<,则一定有b ac d> B .若0x y >>,且1xy=,则()21log 2xyx x y y +>>+C .设{}n a 是等差数列,若210a a >>,则2a >D .若[)0,x ∈+∞,则()21ln 18x x x +≥- 【答案】AC【解析】选项A ,由0c d <<,可得0c d ->->,则110d c->->,又0a b >>,所以a b d c ->-,则b ac d>,故A 正确. 选项B ,取12,2x y ==,则221154,,log ()log 1282x y x x y y +==+=>,不等式不成立,故B 不正确.选项C ,由题意得1322a a a +=且13a a ≠,所以21311=()22a a a +>⨯=C 正确. 选项D ,设21()ln(1)8h x x x x =+-+,则1(3)()1144(1)x x x h x x x -'=-+=++,当03x <<时,()0h x '<,则()h x 单调递减,()(0)0h x h <=,故D 不正确. 故选:AC.9.【山东省枣庄市第三中学2010-2020学年高三上学期10月学情调查】如下的四个命题中真命题的标号为( )A .已知实数a ,b ,c 满足2743b c a a +=-+,254c b a a -=-+,则c b a >>B .若22ππαβ-<<<,则αβ-的取值范围是(),ππ-C .如果ln 33a =,ln 44b =,ln 55c =,那么c b a << D .若0a b <<,则不等式11b b a a +<+一定成立 【答案】ABCD【解析】对A ,由2245(2)10c b a a a -=-++=->,c b ∴>.再由2347b c a a +=-+①,245c b a a -=-+②,-①②得:2222b a =+,即21b a =+.22131()24a a a +-=-+,21b a a ∴=+>,c b a ∴>>,故A 正确;对B ,22ππβ-<<,22ππβ∴-<-<,παβπ∴-<-<,故B 正确;对C ,由ln x y x =,则'21ln x y x-=,当x e >时,1ln 0x -<,∴ln x y x =在(,)e +∞上单调递减,345e <<<,ln 3ln 4ln 5345∴>>,c b a ∴<<,故C 正确; 对D ,要证不等式11b b a a +<+成立,等价于证明(1)(1)a b a b +⋅<⋅+b a ⇔<,0a b <<,||||b a ∴<显然成立,故D 正确.故选ABCD .10.【2019年山东省济南市外国语学校高三9月阶段测试】已知a ,b 为正实数,则下列命题正确的是()A .若221a b -=,则1a b -<B .若111b a-=,则1a b -<C .若1a b e e -=,则1a b -<D .若ln ln 1a b -=,则1a b -<【答案】AC 【解析】对于A :221a b -=时,()()1a b a b -+=⋅.0,0a b >>,0a b a b ∴<-<+,11a b a b∴-=<+,故A 正确; 对于B :111b a-=时,不妨取33,4a b ==满足条件,则914a b -=>,所以B 错误.对于C :由1a b e e -=,可得(1)1a b bb b a b e e e e -+--=-=.0b >,1b e ∴>,11a b e -∴-<,即2a b e -<,ln 2ln 1a b e ∴-<<=,故C 正确.对于D :不妨取2,a e b e ==满足条件,则21a b e e -=->,所以D 错误. 故选:AC .11.【山东省青岛市2020届高三第三次模拟】已知曲线()32213f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103D .92【答案】AC 【解析】由题可知,322()13f x x x ax =-+-,则2()22f x x x a '=-+,可令切点的横坐标为m ,且0m >,可得切线斜率2223k m m a =-+=,由题意,可得关于m 的方程22230m m a -+-=有两个不等的正根,且可知1210m m +=>,则1200m m ∆>⎧⎨>⎩,即48(3)0302a a -->⎧⎪⎨->⎪⎩,解得:732a <<,a ∴的取值可能为196,103.故选:AC. 12.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(二)】已知函数()e 2xf x x =+-的零点为a ,函数()ln 2g x x x =+-的零点为b ,则下列不等式中成立的是( ) A .e ln 2a b +> B .e ln 2a b +< C .223a b +<D .1ab <【答案】CD【解析】由()0f x =,()0g x =得e 2x x =-,ln 2x x =-,函数e x y =与ln y x =互为反函数,在同一坐标系中分别作出函数e x y =,ln y x =,2y x =-的图象,如图所示,则(),eaA a ,(,ln )B b b .由反函数性质知,A B 关于(1,1)对称,则2a b +=,e ln 2ab +=,2()14a b ab +<=,∴A 、B 错误,D 正确.()e 10xf x '=+>,()f x ∴在R 上单调递增,且(0)10f =-<,13e 022f ⎛⎫=-> ⎪⎝⎭,102a ∴<<.又∵点(e ),aA a 在直线2y x =-上,即e 2a a b =-=,22221e e 34a a b a ∴+=+<+<,故C 正确.故选:CD13.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(一)】对于实数a ,b ,m ,下列说法正确的是( ) A .若22am bm >,则a b > B .若a b >,则a ab bC .若0b a >>,0m >,则a m ab m b+>+ D .若0a b >>且ln ln a b =,则()23,a b +∈+∞ 【答案】ABCD【解析】对实数a ,b ,m .2220am bm m ∴>>,a b ∴>,A 正确;a b >,分三种情况,当0a b >>时,0a ab b ;当0a b >>时,22a a ab b b ;当0a b >>时,22a aa b b b ,a a b b ∴>成立,B 正确;0b a >>,0m >,()()()()()0()a m b a b m b a m a m a ab bm ab am b m b b b m b b m b b m +-+-++---===+++∴>+,C 正确; 若0a b >>,且ln ln a b =,1a b ∴=,且1a >.122a b a a∴+=+, 设()()121f a a a a=+>,根据双勾函数的单调性知,()f a 在区间()1,+∞上单调递增, ()(1)3f a f ∴>=,即()23,a b +∈+∞,D 正确.故选:ABCD .14.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(一)】已知函数()ln f x x =,若()f x 在1x x =和()212x x x x =≠处切线平行,则( )A12= B .12128x x <C .1232x x +<D .2212512x x +>【答案】AD【解析】由题意知()()10f x x x'=>,因为()f x 在1x x =和()212x x x x =≠处切线平行,所以()()12f x f x ''=1211x x =-12=,A 正确; 由基本不等式及12x x ≠,可得12=>12256x x >,B错误;1232x x +>>,C 错误;2212122512x x x x +>>,D 正确. 故选:AD15.【山东省泰安市2020届高三第五次模拟】已知向量()()()2,1,1,1,2,,a b c m n ==-=--其中,m n 均为正数,且()//a b c -,下列说法正确的是( ) A . a 与b 的夹角为钝角 B .向量a 在bC .24m n +=D .mn 的最大值为2【答案】CD【解析】由题意知,10a b ⋅=>,所以a 与b 的夹角为锐角,故选项A 错误;向量a 在b 方向上的投影为12a b b⋅==,故选项B 错误; ()1,2a b -=,因为()//a b c -,,m n 均为正数,所以c 为非零向量,且24,24n m m n -=-+=,故选项C 正确;由基本不等式知,42m n =+≥,2mn ≤,当且仅当22m n ==时取等号, 故mn 的最大值为2,故选项D 正确. 故选:CD16.【山东省潍坊市2020届高三模拟(二模)】若1a b <<-,0c >则下列不等式中一定成立的是( )A .11a b a b->- B .11b a a b -<- C .ln()0b a -> D .()()c ca b b a>【答案】BD【解析】由函数1y x x=-在(,1)-∞-上为增函数可知,当1a b <<-时,11a b a b -<-,故选项A 错误; 由函数1y x x =+在(,1)-∞-上为增函数可知,当1a b <<-时,11a b a b +<+,即11b aa b -<-,故选项B 正确;由于a b <,则0b a ->,但不确定b a -与1的大小关系,故ln()b a -与0的大小关系不确定,故选项C 错误;由1a b <<-可知,1a b >,01b a <<,而0c >,则10c ca b b a ⎛⎫⎛⎫>>> ⎪ ⎪⎝⎭⎝⎭,故选项D 正确.故选:BD17.【山东省济宁市2020届高三6月高考模拟考试(三模)】已知直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( )A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .122x x >【答案】ABC【解析】函数xy e =与ln y x =互为反函数,则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<,122112211ln ln ln ln x x x x x x x x +=-<()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤,由于12x x ≠,则121x x <,故D 错误; 故选:ABC18.【山东省淄博市部分学校2020届高三6月阶段性诊断考试(二模)】设[]x 表示不小于实数x 的最小整数,则满足关于x 的不等式[][]2120x x +-≤的解可以为( ) A 10 B .3 C .-4.5 D .-5【答案】BC【解析】因为不等式[][]2120x x +-≤,所以[]()[]()340x x -+≤,所以[]43x -≤≤,又因为[]x表示不小于实数x 的最小整数,所以不等式[][]2120x x +-≤的解可以为3,-4.5.故选:BC 19.【山东省德州市2020届高三第二次(6月)模拟】若正实数a ,b 满足1a b +=则下列说法正确的是( )A .ab 有最大值14B C .11a b+有最小值2 D .22a b +有最大值12【答案】AB【解析】对于A :2211224a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12a b ==时取等号.故A 正确;对于B :22a b a b a b =++≤+++=,≤,当且仅当12a b ==时取等号.故B 正确;对于C :()1111224b a a b a b a b a b ⎛⎫+=++=++≥+⎝= ⎪⎭.当且仅当12a b ==时取等号.所以11a b+有最小值4.故C 错误; 对于D :()()2222222121a b a ab b a a bb +=⇒++=≤+++,即2212a b +≥,故22a b +有最小值12.故D 错误; 故选:AB .20.【山东省、海南省新高考2019-2020学年高三4月份】对于实数a ,b ,c ,下列命题是真命题的为( )A .若a >b ,则11a b< B .若a >b ,则ac 2≥bc 2 C .若a >0>b ,则a 2<﹣ab D .若c >a >b >0,则a b c a c b--> 【答案】BD【解析】A .根据a >b ,取a =1,b =﹣1,则11ab<不成立,故A 错误; B .∵a >b ,∴由不等式的基本性质知ac 2≥bc 2成立,故B 正确; C .由a >0>b ,取a =1,b =﹣1,则a 2<﹣ab 不成立,故C 错误;D .∵c >a >b >0,∴(a ﹣b )c >0,∴ac ﹣ab >bc ﹣ab ,即a (c ﹣b )>b (c ﹣a ),∵c ﹣a >0,c ﹣b >0,∴a b c a c b-->,故D 正确. 故选:BD .21.【2020届山东省临沂市蒙阴县实验中学高三上学期期末】下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的必要不充分条件;C .若随机变量ξ服从二项分布:14,4B ξ⎛⎫⎪⎝⎭,则()1E ξ=; D .已知直线2ax by +=经过点()1,3,则28a b +的取值范围是[)4,+∞ 【答案】ACD【解析】A 选项,若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,根据正态分布曲线的对称性有()()240.79P P ξξ≥-=≤=,所以()()21210.790.21P P ξξ≤-=-≥-=-=,A 选项正确;B 选项,因为//αβ,直线l ⊥平面α,所以直线l ⊥平面β,又直线//m 平面β,所以l m ⊥,充分性成立;设n αβ=,在α内取平行于n 的直线m n ≠,则l m ⊥且βn//,但是α与β相交,必要性不成立,B 不正确; C 选项,因为14,4B ξ⎛⎫⎪⎝⎭,所以1414E np ξ==⨯=,C 正确;D 选项,由题意知32a b +=,因为20a >,3820b b =>,所以2824a b +≥=,当且仅当11,3a b ==时取等号,故D 正确. 故选:ACD22.【2020届山东省聊城市高三高考模拟(一)】若实数2a ≥,则下列不等式中一定成立的是( )A .21(1)(2)a a a a +++>+B .1log (1)log (2)a a a a ++>+C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【解析】令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减,对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++, 即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确;对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误; 对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥,所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦.因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确;故选:ABD23.【2020届天一大联考海南省高三年级第三次模拟】设a ,b ,c 为实数且a b >,则下列不等式一定成立的是( ) A .11a b> B .20201a b -> C .ln ln a b > D .()()2211a c b c +>+【答案】BD【解析】对于A ,若0a b >>,则11a b<,所以A 错误; 对于B ,因为0a b ->,所以20201a b ->,故B 正确;对于C ,函数ln y x =的定义域为0,,而a ,b 不一定是正数,所以C 错误;对于D ,因为210c +>,所以()()2211a c b c +>+,所以D 正确.故选:BD24.【山东省泰安市2019-2020学年高三上学期期末】已知a b c d ,,,均为实数,则下列命题正确的是( )A .若,a b c d >>,则ac bd >B .若0,0ab bc ad >->,则0c da b-> C .若,,a b c d >>则a d b c ->- D .若,0,a b c d >>>则a b d c> 【答案】BC【解析】若0a b >>,0c d >>,则ac bd <,故A 错; 若0ab >,0bc ad ->,则0bc adab ->,化简得0c d a b->,故B 对; 若c d >,则d c ->-,又a b >,则a d b c ->-,故C 对; 若1a =-,2b =-,2c =,1d =,则1a d =-,1b c =-,1a bd c==-,故D 错; 故选:BC .25.【2020届山东省潍坊市临朐县高三综合模拟考试数学试题(一)】实数x ,y 满足2220x y x ++=,则下列关于1yx -的判断正确的是( )A .1yx -B .1yx -的最小值为C .1y x -的最大值为3D .1y x -的最小值为3- 【答案】CD【解析】由题意可得方程2220x y x ++=为圆心是(1,0)C -,半径为1的圆,由1yx -为圆上的点与定点(1,0)P 的斜率的值.设过(1,0)P 点的直线为(1)y k x =+,即0kx y k -+=,圆心到到直线的距离d r =1=,整理可得231k =解得3k =±,所以[]133y x ∈--,即1y x -的最3-.故选CD .26.【山东省日照市五莲县第一中学2019-2020学年高三3月过程检测】已知2a b >,则( )A .23b b a <-B .3322a b a b ab +>+C .ab a b >+D .12112ab a b+>+ 【答案】BC【解析】2a b >,对于A :A 错误,比如3a =,2b =,43>不成立; 对于B :()3322222()()()()0a b a b aba ab b a b a b a b +-+=---=-+>成立;对于C :由1(1)(1)(1)1011b ab a b a b b b a b a b b ⎡⎤⎛⎫⎛⎫--=--=--=--+> ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦,故C 成立, 对于D :1211(2)(2)022a b ab a b ab--+--=,故D 不成立, 故选:BC .27.【山东省日照市五莲县第一中学2019-2020学年高三3月过程检测】数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线()32222:16C x y x y +=恰好是四叶玫瑰线.给出下列结论正确的是( )A .曲线C 经过5个整点(即横、纵坐标均为整数的点)B .曲线C 上任意一点到坐标原点O 的距离都不超过2 C .曲线C 围成区域的面积大于4πD .方程()3222216(0)x y x y xy +=>表示的曲线C 在第一象限和第三象限【答案】BD【解析】把2x =,2y =代入曲线C ,可知等号两边成立,所以曲线C 在第一象限过点(2,2), 由曲线的对称性可知,该点的位置是图中的点M ,对于A 选项,只需要考虑曲线在第一象限内经过的整点即可,把(1,1),(1,2)和(2,1)代入曲线C 的方程验证可知,等号不成立,所以曲线C 在第一象限内不经过任何整点.再结合曲线的对称性可知,曲线C 只经过整点(0,0),即A 错误;对于B 选项,因为222(0,0)x yxy x y +>>,所以222x y xy +,所以()()()22232222222161644x y xy x y x y ++=⨯=+,所以224x y +,即B 正确;对于C 选项,以O 为圆点,2为半径的圆O 的面积为4π,显然曲线C 围成的区域的面积小于圆O 的面积,即C 错误;对于D 选项,因为0xy >,所以x 与y 同号,仅限与第一和三象限,即D 正确. 故选:BD .28.【2020届山东省潍坊市奎文区第一中学高三下学期3月月考】设正实数a ,b 满足1a b +=,则( )A .11a b+有最小值4 B 12C 有最大值1D .22a b +有最小值12【答案】AD【解析】对于A :正实数a ,b 满足1a b +=,即有a b +≥104ab <≤,即有1114a b ab +=≥,即有a b =时,11a b+取得最小值4,无最大值,故A 正确;对B :由102<≤有最大值12,故B 错误;对于C ==≤=a b =,故C 错误;对于D :由222a b ab +≥可得2222()()1a b a b +≥+=,则2212a b +≥,当12a b ==时,22a b +取得最小值12,故D 正确. 故选:AD .29.【2020届山东省枣庄、滕州市高三上学期期末】如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h 【答案】AC 【解析】A.∵24,u x x +24v x x =+24,22u v u vx x +-+==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确. B.24125x x t +-=126510u v u v+-=+-,整理得15436t u v =++,B 错误; C.由A 、B 得161615363644t u u u u=++≥⋅=,16u u =即4u =时取等号,244x x +=,解得31.52x ==,C 正确; D.4x =时,2585t =+,25710521500441305t ---=-==>,3t >,D 错. 故选:AC.30.【山东省潍坊市2019-2020学年高三上学期期中】若x y ≥,则下列不等式中正确的是( )A .22x y ≥B .2x yxy +≥C .22x y ≥ D .222x y xy +≥【答案】AD【解析】对A ,由指数函数的单调性可知,当x y ≥,有22x y ≥,故A 正确; 对B ,当0,0,x y x y <<>时,2x yxy +≥不成立,故B 错误;对C ,当0x y ≥≥时,22x y ≥不成立,故C 错误; 对D ,2222()0x y xy x y +-=-≥成立,从而有222x y xy +≥成立,故D 正确;故选:AD.。
山东省青岛市2020届高三数学5月模拟检测试题(含解析)

山东省青岛市2020届高三数学5月模拟检测试题(含解析)一、单项选择题1.已知全集U =R ,集合{}2320A x x x =-+≤,{}131x B x -=≥,()U A B =( )A. []1,2B. ()2,+∞C. [)1,+∞ D. (),1-∞【答案】B 【解析】 【分析】将集合A ,B 化简,再求出UA ,根据交集的定义即可得到答案.【详解】因为{}{}2320=12A x x x x x =-+≤≤≤,{}{}{}1103133=1x x B x x x x --=≥=≥≥,所以(){|1UA B x x ⋂=<或}{}{}212x x x x x >⋂≥=>.故选:B.【点睛】本题主要考查交集、补集的运算,同时考查一元二次不等式的解法及指数不等式的解法,属于基础题.2.若复数z 满足)|i z i =(其中i 是虚数单位),则复数z 的共轭复数z 的虚部为( ) A.12B.12i C. 12-D. 12i -【答案】C 【解析】 【分析】根据复数模的定义可得)2i z =,从而可得z =,再根据复数的乘除运算即可求出复数z ,再根据共轭复数的定义,求出z 即可得到答案.【详解】由)|i z i -=得)2i z ==,所以)1422i z i ===+,所以312z i =-,所以z 的虚部为12-.故选:C.【点睛】本题主要考查复数的模,复数代数形式的乘除运算及共轭复数的概念,属于基础题. 3.已知向量()1cos ,2a x =+,()sin ,1b x =,0,2x π⎛⎫∈ ⎪⎝⎭,若//a b ,则sin x =( ) A.45B.35C.25D.25【答案】A 【解析】 【分析】根据向量平行的坐标表示列出方程可得cos 2sin 1x x =-,代入22sin cos 1x x +=解方程即可求出sin x .【详解】因为//a b ,所以1cos 2sin 0x x +-=,所以cos 2sin 1x x =-, 又因为22sin cos 1x x +=,所以22sin (2sin 1)1x x +-=, 即25sin 4sin 0x x -=,解得4sin 5x =或sin 0x =,又0,2x π⎛⎫∈ ⎪⎝⎭, 所以4sin 5x =. 故选:A.【点睛】本题主要考查向量平行的坐标表示,同角三角函数平方关系,属于基础题. 4.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数解析式来分析函数的图象与性质,下列函数的解析式(其中 2.71828e =为自然对数的底数)与所给图象最契合的是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()tan x xy e e -=-D. ()cos x xy e e -=+【答案】D 【解析】 【分析】根据0x =时的函数值排除即可.【详解】当0x =时,对于A ,()00sin sin20y e e =+=>,故排除A ;对于B ,()00sin 0y e e=-=,故排除B ; 对于C ,()00tan 0y e e=-=,故排除C ;对于D ,()00cos cos20y e e =+=<,符合题意.故选:D.【点睛】本题主要考查函数表示方法中的图象法与解析法之间的对应关系,可利用从函数图象上的特殊点,排除不合要求的解析式.5.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( ) A.29B.14C.718D.112【答案】C 【解析】 分析】基本事件的总数有6636⨯=种,利用列举法求出第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的基本事件有14种,根据古典概型概率计算公式,即可求出答案. 【详解】从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,有36个基本事件,其中第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除有如下基本事件 (第一次抽得的卡片1,第二次摸到卡片2用(1,2)表示):(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6), (4,4),(5,5),(6,6),共14个,所以第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率1473618P ==. 故选:C.【点睛】本题主要考查古典概型的概率的求法,属于基础题.6.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :2211x y a a+=+(0)a >的离心率为12,则椭圆C 的蒙日圆方程为( )A. 229x y +=B. 227xy +=C. 225x y +=D.224x y +=【答案】B 【解析】 【分析】根据椭圆C 的离心率可求出3a =,根据题意知椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,利用过上顶点和右顶点的切线可得蒙日圆上的一点,即可椭圆C 的蒙日圆方程.【详解】因为椭圆C :2211x y a a+=+(0)a >的离心率为12,12=,解得3a =,所以椭圆C 的方程为22143x y +=,所以椭圆的上顶点A ,右顶点(2,0)B ,所以经过,A B 两点的切线方程分别为y =2x =,所以两条切线的交点坐标为,又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r ==所以椭圆C 的蒙日圆方程为227xy +=.故选:B.【点睛】本题主要考查椭圆的几何性质,同时考查圆的方程,属于基础题. 7.已知O 是ABC 内部一点,20OA OB OC ++=,4BA BC ⋅=且6ABC π∠=,则OAC的面积为( ) A.3 B.23C.23D.43【答案】A 【解析】 【分析】由20OA OB OC ++=可得1()2BO OA OC =+,设D 为AC 的中点,则1()2OA O OC D =+,可得BO OD =,从而可得O 为BD 的中点,进而可得12AOC ABC S S =△△,由4BA BC ⋅=可得83||||BA BC ⋅=,再由12||||sin ABC BA AB S BC C ⋅⋅=∠△即可求出ABCS.【详解】在ABC 中,由20OA OB OC ++=,得22OA OC OB BO +=-=, 所以1()2BO OA OC =+,设D 为AC 的中点,则1()2OA O OC D =+, 所以BO OD =,所以O 为BD 的中点,所以12AOC ABC S S =△△,因为4BA BC ⋅=,所以3||||cos ||||4BA BC BA BC ABC BA BC ⋅=⋅⋅∠=⋅⋅=,所以83||||3BA BC ⋅=, 所以11||||sin 232312ABCBA BC AB S C ⋅⋅∠==⨯=△, 所以1233=AOC S =⨯△. 故选:A.【点睛】本题主要考查向量的线性运算,向量的数量积及三角形的面积公式,属于中档题.8.已知函数()2ln x f x x =,若()21f x m x<-在(0,)+∞上恒成立, 2.71828e =⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( )A. m e >B. 2e m >C. 1mD. m >【答案】B 【解析】 【分析】()21f x m x <-在(0,)+∞上恒成立,即()21f x m x +<在(0,)+∞上恒成立,令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可,利用导数求出()g x 的最大值即可. 【详解】若()21f x m x <-在(0,)+∞上恒成立,即()21f x m x+<在(0,)+∞上恒成立, 令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可, 2431(ln 1)22ln 1()x x x x x g x x x ⋅-+⋅--'==,令()0g x '=,得12x e -=, 当120x e -<<时,()0g x '>;当12x e ->时,()0g x '<, 所以()g x 在12(0)e -,上是单调递增,在12(,)e -+∞上是单调递减,所以当12max ()()2e g x g e -==, 所以实数m 的取值范围是2e m >. 故选:B.【点睛】本题主要考查分离参数法处理恒成立问题,同时考查利用导数求函数的最值,属于中档题.二、多项选择题9.设a ,b ,c 为实数,且0a b >>,则下列不等式中正确的是( ) A. ()222log log ab b >B. 22ac bc >C. 1b a a b<<D. 1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】AC 【解析】 【分析】对A ,利用作差法比较即可;对B ,利用不等式的性质判断即可;对C ,利用作差法比较即可;对D ,利用指数函数的单调性比较即可. 【详解】对A ,因为0a b >>,所以1ab>, 所以2222222log ()log log log log 10ab a ab b b b-==>=, 所以222log ()log ab b >,故A 正确; 对B ,当0c时,22ac bc >不成立,故B 错误;对C ,因为0a b >>,所以10b b a a a --=<,10a b a b b--=<, 所以1b aa b<<,故C 正确; 对D ,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,又a b >,所以1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 错误.故选:AC【点睛】本题主要考查作差法比较大小,不等式的性质及指数函数的单调性,属于基础题. 10.已知等差数列{}n a 的前n 项和为()n S n N *∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A. 122a =B. 2d =-C. 当10n =或11n =时,n S 取得最大值D. 当0n S >时,n 的最大值为20【答案】BCD 【解析】 【分析】由690S =可得12530a d +=,由7a 是3a 与9a 的等比中项可得110a d =-,联立方程可求出120a =,2d =-,即可判断A ,B 选项,求出等差数列{}n a 的前n 项和为n S ,即可判断C ,D.【详解】因为690S =,所以1656902a d ⨯+=,即12530a d +=,① 又因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅, 所以2111(6)(2)(8)a d a d a d +=++,整理得110a d =-,②由①②解得120a =,2d =-,故A 错误; 所以22(1)2144120(2)21()224n n n S n n n n -=+⨯-=-+=--+, 又n *∈N ,所以当10n =或11n =时,n S 取得最大值,故C 正确;令2210n S n n =-+>,解得021n <<,又n *∈N ,所以n 的最大值为20,故D 正确. 故选:BCD【点睛】本题主要考查等差数列的通项公式,等差数列前n 项和公式,等比中项的应用,同时考查等差数列和的最值问题,属于基础题.11.声音是由物体振动产生的声波,纯音的数学模型是函数sin y A t ω=,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数()sin f x x x =+则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 是周期函数 C. ()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增 D. ()f x 最大值为2【答案】ABD 【解析】 【分析】根据奇偶性的定义和周期函数的定义可判断A ,B ;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x可化为()sin 2sin()3f x x x x =+=+π,可判断C ;结合函数()f x 的周期性对x 进行分类讨论,将函数()f x 的绝对值去掉,再求其最大值可判断D. 【详解】函数()f x 的定义域为R ,因为())sin()sin ()f x x x x x f x -=-+-=+=, 所以()f x 是偶函数,故A 正确;因为sin cos s )()(i ()n f x πx πx x x π+++=++-sin ()x x f x +=,所以()f x 是以π为周期的周期函数,故B 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为1()sin 2sin 2sin()23f x x x x x x ⎫=+=+=+⎪⎪⎝⎭π, 此时()f x 在06π⎡⎤⎢⎥⎣⎦,上单调递增,在,62ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;由于函数()f x 是以π为周期的周期函数,故只需研究一个周期内的最大值即可, 不妨取[0,]x π∈,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()2sin()3f x x π=+, 由0,2x π⎡⎤∈⎢⎥⎣⎦,得5,336x πππ⎡⎤+∈⎢⎥⎣⎦, 所以当32x ππ+=,即6x π=时,()f x 取得最大值2,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,13()3cos sin 2sin cos 2sin()223f x x x x x x ⎛⎫=-+=-=- ⎪ ⎪⎝⎭π, 由,2x ππ⎡⎤∈⎢⎥⎣⎦,得2,363x πππ⎡⎤-∈⎢⎥⎣⎦, 所以32x ππ-=,即56x π=时,()f x 取得最大值2, 故当[0,]x π∈时,()f x 取得最大值2,故D 正确. 故选:ABD.【点睛】本题主要考查三角函数的奇偶性、周期性、单调性的判断及最值的求法,同时考查两角和与差的正弦公式的逆用,属于中档题.12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A. 11B E A B ⊥B. 平面1//B CE 平面1A BDC. 三棱锥11C B CE -的体积为83D. 三棱锥111C B CD -的外接球的表面积为24π 【答案】CD 【解析】 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积. 三、填空题13.已知命题“2,10x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是_______【答案】[]22-,【解析】命题“2,10x R x ax ∃∈-+<”假命题,则“2,10x R x ax ∀∈-+≥”为真命题.所以240a =-≤,解得22a -≤≤.答案为:[]2,2-.14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______.【答案】25- 【解析】 【分析】先求得61x x ⎛⎫- ⎪⎝⎭中含21x 的项与常数项,进而可得()6212x x x ⎛⎫+- ⎪⎝⎭的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式中含21x 的项为44262115C x x x ⎛⎫-= ⎪⎝⎭,61x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为3336120C x x ⎛⎫-=- ⎪⎝⎭,所以()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为154025-=-.故答案为:25-.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.已知()f x 为奇函数,当0x >时,()ln xf x x=,则曲线()y f x =在点()1,0-处的切线方程是______. 【答案】10x y -+= 【解析】 【分析】利用函数()f x 为奇函数,可求出当0x <时,()f x 的表达式为ln()()x f x x-=,然后根据在一点处的切线方程的求法,即可求出曲线()y f x =在点()1,0-处的切线方程. 【详解】因为()f x 为奇函数,所以()()f x f x -=-, 当0x <时,则0x ->,所以ln()ln()()()x x f x f x x x--=--=-=-, 所以221(1)ln()1ln()()x x x x f x x x ⨯-⨯-----'==, 所以曲线()y f x =在点()1,0-处的切线的斜率(1)1k f '=-=, 所以切线方程是01y x -=+,即10x y -+=. 故答案为:10x y -+=【点睛】本题主要考查根据函数的奇偶性求函数的解析式,在一点处的切线方程的求法,同时考查复合函数的导数,属于中档题.16.已知抛物线C :22y px =()06p <<的准线交圆1O :()2234x y ++=于A ,B 两点,若AB =C 的方程为______,已知点()1,2M ,点E 在抛物线C 上运动,点N 在圆2O :()2221x y -+=上运动,则EM EN +的最小值为______.【答案】 (1). 28y x = (2). 2. 【解析】【详解】(1)设抛物线C 的准线与x 轴交于点D ,抛物线C 的准线方程为2px =-,则22211AO AD DO =+,即224(3)|3|2p =+-+, 整理得212320p p -+=,解得4p =或8p =,又06p <<,所以4p =,所以抛物线C 的方程为28y x =.(2)由题意知 圆2O 的圆心坐标为(2,0)与抛物线的焦点坐标重合, 过E 作抛物线C 的准线2x =-的垂线,垂足为F ,则2||||EO EF =, 所以22211EM EN EM EO NO EM EO EM EF +≥+-=+-=+-, 所以当M ,E ,F 三点共线时,EM EF +最小,最小值为3, 所以1312EM EN EM EF +≥+-≥-=, 所以EM EN +的最小值为2. 故答案为:①28y x =;②2【点睛】本题主要考查抛物线的定义和准线方程,圆中的弦长公式,抛物线中的最值问题,同时考查数形结合思想和转化与化归思想. 四、解答题17.设数列{}n a 的前n 项和为n S ,11a =,______. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列{}1n S a +也为等比数列;条件②:点{}1,n n S a +在直线1y x =+上;条件③:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)不论选择哪个条件,1=2n n a -()N n *∈;(2)()()3234212n n T n n +=-++ 【解析】 【分析】(1) 方案一:选条件①.数列{}1n S a +也为等比数列,可根据其前3项也成等比数列列出方程,再将123,,S S S 用1,a q 表示解出q ,即可求出na ;方案二:选条件②,可得11n n a S +=+()N n *∈,再将n 用1n -代换可得11n n a S -=+()2n ≥,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;方案三:选条件③.可得当2n ≥时,1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈,再将n 用1n -代换可得()121212221n n n n a a a n a ---++⋅⋅⋅+=-,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;(2)由(1)不论选择哪个条件,1=2n n a -()N n *∈,代入化简可得()12n b n n =+,利用裂项相消法求和,即可求出数列{}n b 的前n 项和n T . 【详解】(1)方案一:选条件①. 因为数列{}1n S a +为等比数列,所以()()()2211131S a S a S a +=++,即()()2121123222a a a a a a +=++, 设等比数列{}n a 的公比为q ,因为11a =, 所以()()22222q q q+=++,解得2q或0q =(舍),所以1112n n n a a q --==()N n *∈,(2)由(1)得12nn a ()N n *∈,所以()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭,所以11111111111232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()()13113232212442123111212n n n n n n n ⎛⎫=-=⎭+⎛-+ +⎫-=- ⎪+++⎝⎭⎝++⎪, 方案二:(1)选条件②.因为点()1,n n S a +在直线1y x =+上,所以11n n a S +=+()N n *∈,所以11n n a S -=+()2n ≥,两式相减得1n n n a a a +-=,12n na a +=()2n ≥, 因为11a =,211112a S a =+=+=,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列,所以1112n n n a a q --==()N n *∈(2)同方案一的(2). 方案三:(1)选条件③.当2n ≥时,因为1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈⋅⋅⋅(i )所以()121212221n n n n a a a n a ---++⋅⋅⋅+=-,所以()1212122221nn n n a a a n a --++⋅⋅⋅+=-⋅⋅⋅(ii )(i )-(ii )得122(1)n n n a na n a +=--,即12n na a +=()2n ≥, 当1n =时,122a a =,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列所以1112n n n a a q --==()N n *∈(2)同方案一的(2).【点睛】本题主要考查等比数列通项公式求法,裂项相消法求和,属于基础题.18.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足cos2cos sin a C a C c A =-. (1)求角C ;(2)若ABC 为锐角三角形,12c =,求ABC 面积S 的最大值. 【答案】(1)4C π;(2))361【解析】 【分析】(1)对cos2cos sin a C a C c A =-,利用正弦定理得sin cos2sin cos sin sin A C A C C A =-,进而可得cos2cos sin C C C =-,再利用二倍角公式即可求出角C ;(2)由已知可得4Cπ,故要求ABC 面积S 的最大值,只需求出ab 的最大值即可,利用余弦定理可得222144c a b ==+,再利用基本不等式即可求出ab 的最大值. 【详解】(1)因为cos2cos sin a C a C c A =-,所以由正弦定理可得:sin cos2sin cos sin sin A C A C C A =-, 因为()0,A π∈,sin 0A ≠,所以cos2cos sin C C C =-, 所以22cos sin cos sin C C C C -=-, 即()()cos sin cos sin 10C C C C -+-=, 所以cos sin 0C C -=或cos sin 10C C +-=, 即cos sin C C =或cos sin 10C C +-=,①若cos sin C C =,则4Cπ,②若cos sin 10C C +-=,则2sin 42C π⎛⎫+= ⎪⎝⎭, 因为5444C πππ<+<,所以344C ππ+=,即2C π=, 综上,4Cπ或2C π=.(2)因为ABC 为锐角三角形,所以4C π,因为()222221442cos 222224c a b ab a b ab ab ab ab π==+-=+-≥-=-,即()722222ab ≤=+-(当且仅当a b =等号成立),所以()()1122sin sin 7222362122444S ab C ab ab π===≤⨯+=+,即ABC 面积S 的最大值是()3621+.【点睛】本题主要考查正弦定理,二倍角公式,基本不等式及三角形的面积公式,同时考查三角形中面积的最大值求法,属于基础题.19.如图,四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(1)求证:平面11CC D D ⊥底面ABCD ;(2)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求直线1CA 和平面11BCC B 所成角的正弦值.【答案】(1)见解析;6 【解析】【分析】(1)要证平面11CC D D ⊥底面ABCD ,只需证明其中一个面内一条线垂直于另一个平面即可,可证1D E ⊥底面ABCD ,由底面ABCD 和侧面11BCC B 都是矩形,可得BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,从而可得1BC D E ⊥,又1D E CD ⊥,从而可证出1D E ⊥底面ABCD ;(2) 取AB 的中点F ,以1{,,}EF EC ED 为正交基底建系,设1ED a =()0a >,写出各点坐标,分别求出平面1BED 与平面11BCC B 的法向量()11,1,0n =-,()20,,1n a =-,根据它们所成的锐二面角的大小为3π,利用夹角公式列出方程可求出1a =,再求出()11,1,1CA =-,设直线1CA 和平面11BCC B 所成的角为θ,由12sin cos CA n =〈⋅〉θ即可求出答案. 【详解】(1)因为底面ABCD 和侧面11BCC B 都是矩形, 所以BC CD ⊥,1BC CC ⊥,又1CDCC C =,1,CD CC ⊂平面11DCC D ,所以BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,所以1BC D E ⊥,又1D E CD ⊥,BC CD C ⋂=,,BC CD ⊂底面ABCD , 所以1D E ⊥底面ABCD ,又1D E ⊂平面11CC D D , 所以平面11CC D D ⊥底面ABCD .(2)取AB 的中点F ,因为E 是CD 的中点,底面ABCD 是矩形,所以EF CD ⊥,以E 为原点,以EF ,EC ,1ED 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系E xyz -,如图所示:设1ED a =()0a >,则()0,0,0E ,()1,1,0B ,()10,0,D a ,()0,1,0C ,()10,2,C a 设平面1BED 的法向量()111,,n x y z =,()1,1,0EB =,()10,0,ED a =.由11100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩可得:11100x y az +=⎧⎨=⎩,令11x =可得11y =-,10z =,所以()11,1,0n =-,设平面11BCC B 的法向量()2222,,n x y z =,()1,0,0CB =,()10,1,CC a =.由22100n CB n CC ⎧⋅=⎪⎨⋅=⎪⎩可得,22200x y az =⎧⎨+=⎩,令21z =可得2y a =-,所以()20,,1n a =-由于平面11BCC B 与平面1BED 所成的锐二面角的平面角为3π,所以121212cos ,cos32n n n n n n π⋅===⋅,解得1a =.所以平面11BCC B 的法向量()20,1,1n =-,由于()1,1,0A -,()0,1,0C ,()0,1,0D -,()10,0,1D ,所以()()()1111,2,00,1,11,1,1CA CA AA CA DD =+=+=-+=-,设直线1CA 和平面11BCC B 所成的角为θ,则1212sin 32CA n CA n θ⋅===⋅. 【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,根据所成二面角的大小逆向求参数值及利用向量法求线面角的正弦值,属于中档题.20.某专业机械生产厂为甲乙两地(两地仅气候条件差异较大,其他条件相同)的两个不同机器生产厂配套生产同一种零件,在甲乙两地分别任意选取100个零件进行抗疲劳破坏性试验,统计每个零件的抗疲劳次数(抗疲劳次数是指从开始试验到零件磨损至无法正常使用时的循环加载次数),将甲乙两地的试验的结果,即每个零件的抗疲劳次数(单位:万次)分别按(]7,8,(]8,9,(]9,10,(]10,11,(]11,12分组进行统计,甲地的实验结果整理为如下的频率分布直方图(其中a ,b ,c 成等差数列,且23c b =),乙地的统计结果整理为如下的频数分布表.(1)求a ,b ,c 的值并计算甲地实验结果的平均数x .(2)如果零件抗疲劳次数超过9万次,则认为零件质量优秀,完成下列的22⨯列联表: 质量不优秀 质量优秀 总计 甲地 乙地 总计试根据上面完成的22⨯列联表,通过计算分析判断,能否有97.5%的把握认为零件质量优秀与否与气候条件有关? 附:临界值表()2P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828其中2K 的观测值()()()()()2n ad bc k a b c d a c b d -=++++(3)如果将抗疲劳次数超过10万次的零件称为特优件,在甲地实验条件下,以频率为概率,随机打开一个4个装的零件包装箱,记其中特优件的个数为ξ,求ξ的分布列和数学期望. 【答案】(1)0.1a =,0.2b =,0.3c =,平均数9.3x =万次;(2)见解析,有;(3)见解析,1 【解析】 【分析】(1)根据频率分布直方图的的矩形面积和为1,可得0.6a b c ++=,再由a ,b ,c 成等差数列,可得2b a c =+,再结合23c b =解方程即可求出a ,b ,c 的值;利用组中值乘以相应的频率再求和即可求出平均数x ;(2)根据已知条件分别求出甲、乙抗疲劳次数超过9万次的零件数和不超过9万次的零件数,即可完成22⨯列联表,然后根据22⨯列联表求出观测值k ,查对临界值,即可作出判断;(3)根据已知条件可得任意抽取一件产品为特优件的概率14p =,ξ的取值可能为0,1,2,3,4,根据二项分布分别求出相应的概率,即可列出分布列并求出数学期望.【详解】(1)由频率分布直方图的性质可得:0.050.351a b c ++++=,即0.6a b c ++= 因为a ,b ,c 成等差数列,所以2b a c =+,所以0.2b = 又23c b =,解之得:0.3c =,0.1a =所以7.50.18.50.39.50.3510.50.211.50.059.3x =⨯+⨯+⨯+⨯+⨯= 即抗疲劳次数的平均数9.3x =万次(2)由甲地试验结果的频率分布直方图可得:抗疲劳次数超过9万次的零件数为()1000.350.20.0560⨯++=件,不超过9万次的件数为1006040-=件,由乙地试验结果分布表可得:抗疲劳次数超过9万次的零件数为4125975++=, 不超过9万次的零件数为25件,所以22⨯列联表为所以()220040752560200 5.128 5.0246513510010039k ⨯-⨯==≈>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为零件质量优秀与否与气候条件有关, 即有97.5%的把握认为零件质量优秀与否与气候条件有关.(3)在甲地实验条件下,随机抽取一件产品为特优件的频率为0.25, 以频率为概率,所以任意抽取一件产品为特优件的概率14p = 则ξ的取值可能为0,1,2,3,4所以()400431********P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭; ()311431812714425664P C ξ⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭; ()2224315427244256128P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()13343112334425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()0444311444256P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 所以ξ的分布列为ξ的数学期望()8110854121012341256256256256256E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题主要考查频率分布直方图的性质,利用组中值估计平均数,独立性检验的应用,二项分布及数学期望,属于中档题.21.已知椭圆E :22221x y a b+=()0a b >>的离心率为12,其左右顶点分别为1A ,2A ,上下顶点分别为2B ,1B ,四边形1122A B A B 的面积为43.(1)求椭圆E 的方程;(2)若椭圆E 的左右焦点分别为1F ,2F ,过2F 的直线l 与椭圆交于不同的两点M ,N ,记1F MN △的内切圆的半径为r ,试求r 的取值范围.【答案】(1)22143x y +=;(2)304r <≤ 【解析】 【分析】 (1)根据离心率为12,四边形1122A B A B 的面积为43222a b c =+,即可求出,a b ,进而求出椭圆E 的方程;(2)由1F MN △的周长1148F M F N MN a ++==,可得()111142F MN S F M F N MN r r =++=△,即114F MN r S =△, 对直线l 的斜率是否存在进行分类讨论,当l x ⊥轴时,l 的方程为:1x =,可求得34r =;当l 与x 轴不垂直时,设l :()()10y k x k =-≠,将椭圆的方程与直线l 的方程联立消去x ,由根与系数的关系可求出12y y +,12y y ,代入11212F MN F F M F F N S S S =+△△△()2122112142F F y y y y =+-k 的函数,利用换元法即可求出r 的取值范围. 【详解】(1)因为椭圆E 的离心率为12,所以12c e a ==, 因为四边形1122A B A B的面积为1222a b ⨯⨯= 又222a b c =+,解得:2a =,b =1c =,所以椭圆E的方程为:22143x y +=.(2)设()11,M x y ,()22,N x y ,则1F MN △的周长48a ==,()111142F MN S F M FN MN r r =++=△,即114F MN r S =△, 当l x ⊥轴时,l 的方程为:1x =,3MN =,11211134424F MN r S MN F F ==⨯⨯=△, 当l 与x 轴不垂直时,设l :()()10y k x k =-≠,由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22243690k y ky k ++-=,所以122643k y y k +=-+,2122943k y y k =-+,112121221211221111222F MN F F M F F N S S S F F y F F y F F y y =+=⋅+⋅=⋅-△△△ 1211222F F ==⨯=所以114F MN r S ==△ 令243k t +=,则3t >,r ===, 因为3t >,所以1103t <<,所以304r << 综上可知:304r <≤【点睛】本题主要考查求椭圆的标准方程,直线与椭圆的位置关系,同时考查椭圆中的范围问题,对于第(2)问关键是借助于“算两次”面积相等得到114F MN r S =△,将问题转化为求1MNF S的面积问题.22.已知函数()22xa f x e x =-( 2.71828e =⋅⋅⋅为自然对数的底数)有两个极值点1x ,2x . (1)求a 的取值范围;(2)求证:122ln x x a +<. 【答案】(1)(),e +∞;(2)见解析 【解析】 【分析】(1)求()xf x e ax '=-,令()()xg x f x e ax '==-,利用导数研究函数()g x 的单调性:当0a ≤时,()0xg x e a '=->,此时()g x 在R 上单调递增,至多有一个零点,不符合题意;当0a >时,只需()()min ln 0g x g a =<,同时使得(),ln a -∞和()ln ,a +∞各有一个零点即可;(2) 不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x <<,要证122ln x x a +<,即证122ln x a x <-,而当(),ln x a ∈-∞时,函数()g x 单调递减,即证()()122ln g x g a x >-,而()()12g x g x =,即证()()222ln g x g a x >-,故可构造函数()()()2ln p x g x g a x =--,利用导数判断()p x 的单调性转化即可.【详解】(1)由已知得()xf x e ax '=-,因为函数()f x 有两个极值点1x ,2x ,所以方程()0xf x e ax '=-=有两个不相等的根1x ,2x设()()xg x f x e ax '==-,则()xg x e a '=-①当0a ≤时,()0xg x e a '=->,所以()g x 在R 上单调递增,至多有一个零点,不符合题意②当0a >时,由()0xg x e a '=-=得ln x a =.当(),ln x a ∈-∞时,()0g x '<,函数()g x 单调递减; 当()ln ,x a ∈+∞时,()0g x '>,函数()g x 单调递增. 所以()()min ln ln 0g x g a a a a ==-<,即a e >, 令()2ln a a a ϕ=-()0a >,则()221a a a aϕ-'=-=, 当()0,2a ∈时,()0a ϕ'<,()a ϕ为减函数; 当()2,a ∈+∞时,()0a ϕ'>,()a ϕ为增函数; 所以()()()min 222ln 221ln 20a ϕϕ==-=-> 所以()0a ϕ>,即2ln a a >,从而ln 2aa a <<,2a e a > 所以()20ag a e a =->,又因为()010g =>,所以()g x 在区间()0,ln a 和()ln ,a a 上各有一个零点,符合题意, 综上,实数a 的取值范围为(),e +∞.(2)不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x << 设()()()()2ln 2ln 2ln xa xp x g x g a x e ax ea a x -⎡⎤=--=----⎣⎦222ln x x e a e ax a a -=--+,则()222220x x p x e a e a a a a -'=+-≥=-=, 当且仅当2x x e a e -=,即ln x a =时,等号成立. 所以函数()p x 在R 上单调递增.由2ln x a >,可得()()2ln 0p x p a >=,即()()222ln 0g x g a x -->, 又因为1x ,2x 为函数()g x 的两个零点,所以()()12g x g x =, 所以()()122ln g x g a x >-, 又2ln x a >,所以22ln ln a x a -<,又函数()g x 在(),ln a -∞上单调递减, 所以122ln x a x <-,即122ln x x a +<.【点睛】本题主要考查利用导数研究函数的性质,构造函数证明不等式,同时考查极值点偏移问题,属于难题.。
山东省莱山第一中学2024届招生全国统一考试数学试题模拟试卷(一)

山东省莱山第一中学2024届招生全国统一考试数学试题模拟试卷(一)考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .2.若函数2()xf x x e a =-恰有3个零点,则实数a 的取值范围是( ) A .24(,)e+∞ B .24(0,)eC .2(0,4)eD .(0,)+∞3.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =-D .221y x =-4.已知非零向量a 、b ,若2b a =且23a b b -=,则向量b 在向量a 方向上的投影为( ) A 32b B .12b C .32b D .12b -5.若不等式22ln x x x ax -+对[1,)x ∈+∞恒成立,则实数a 的取值范围是( )A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞6.如图所示,已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且||2||BF AF =,则双曲线C 的离心率是( ).A .33B .72C 3D 77.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( ) 235 2.236≈≈≈) A .22个B .24个C .26个D .28个8.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( ) A .2430x y --= B .2430x y +-=C .4230x y +-=D .2430x y -+=9.在满足04i i x y <<≤,i i y xi i x y =的实数对(),i i x y (1,2,,,)i n =⋅⋅⋅⋅⋅⋅中,使得1213n n x x x x -++⋅⋅⋅+<成立的正整数n 的最大值为( ) A .5B .6C .7D .910.已知双曲线22221(0)x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于A B 、两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( ) A .324B .33C .305D .5211.已知i 为虚数单位,实数,x y 满足(2)x i i y i +=-,则||x yi -= ( ) A .1B 2C 3D 512.已知某几何体的三视图如图所示,则该几何体的体积是( )A .643B .64C .323D .32二、填空题:本题共4小题,每小题5分,共20分。
2020届山东省青岛市普通高中高三下学期高考模拟自主检测数学试题(解析版)

绝密★启用前山东省青岛市普通高中2020届高三毕业班下学期高考模拟自主检测数学试题(解析版)2020年6月一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.若复数321i z i =+(i 为虚数单位),则复数z 在复平面上对应的点所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】【分析】先利用复数的四则运算得到1z i =-+,从而得到复数对应的点,故可得正确的选项. 【详解】()()321221111(1)i i i i z i i i i i +====-++--+, 复数z 在复平面上对应的点为()1,1-,该点在第二象限,故复数z 在复平面上对应的点所在的象限为第二象限,故选:B.【点睛】本题考查复数的四则运算以及复数的几何意义,注意复数的除法是分子分母同乘以分母的共轭复数,本题属于基础题.2.已知全集U =R ,集合{}20M x R x x =∈-≤,集合{}cos ,N y R y x x R =∈=∈,则()U M N ⋂=( )A. [)1,0-B. ()0,1C. (),0-∞D. ∅【答案】A【解析】【分析】 化简集合M,N,根据集合的交集、补集运算求解即可. 【详解】{}20[0,1]M x R x x =∈-≤=,{}cos ,[1,1]N y R y x x R =∈=∈=-, (,0)(1,)U M ∴=-∞+∞,()[)1,0U M N =-∴⋂,故选:A【点睛】本题主要考查了集合的交集、补集运算,考查了一元二次不等式,余弦函数,属于容易题.3.如图是一个22⨯列联表,则表中a 、b 处的值分别为( )A. 96,94B. 60,52C. 52,54D. 50,52【答案】B【解析】【分析】 根据表格中的数据可先求出d 、c 的值,再结合总数为106可分别求得a 和b 的值.。
2020届山东省青岛第一中学高三下学期第五次在线考试数学试题(word版含答案)

2020届青岛一中2020届高三下学期第五次在线考试数学试题第I卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A3{|0log2},{|x x B x y=≤≤==,则A∩B=A.[1,3]B. [6,9]C.[3,9]D.[ -3,6]2.已知复数552izi=+-i,则|z|=BCD3.设11321313,log2,()3a b c===,则A. b<a<cB. c<b<aC. b<c<aD. c<a<b4.函数2()cos()3f x xπ=+的最小正周期为.4AπB.2 π.2CπD. π.1"51"nm nn<是“22m n<”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知抛物线2:12C y x=的焦点为F,A为C上一点且在第一象限,以F为圆心,FA为半径的圆交C的准线于B,D两点,且A,F,B三点共线,则|AF|=A.16B.10C.12D.87.已知函数f(x)是偶函数,当x>0时,f(x)=xln x+1,则曲线y=f(x)在x=-1处的切线方程为A. y=-xB. y=-x+2C. y=xD.y=x-28.在四面体ABCD中,且,,,AB AC AC CD AB CD⊥⊥所成的角为30°,5,4,3AB AC CD===,则四面体ABCD的体积为A.5B.6C.7D.8二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分部分选对的得3分,有选错的得0分.9.一组数据12321,21,21,,21nx x x X++++L的平均值为7,方差为4,记12332,32,32,,32nx x x X++≠≠L平均值为a,方差为b,则A. a=7B. a=11C. b=12D. b=910.设m,n ,l为三条不同的直线,α, β为两个不同的平面,则下面结论不正确的是A.若,,//m a n a ββ⊂⊂,则m//nB.若//,//,m n m n αβ⊥,则α⊥βC.若,,m a n a ββ⊥⊥⊥,则m ⊥nD.若//,//,1,m n m l n αα⊥⊥,则1⊥α11.在三棱锥D-ABC 中,AB=BC=CD=DA=1,且AB ⊥BC,CD ⊥DA,M,N 分别是棱,BC CD 的中点,下面结论正确的是A. AC ⊥BDB. MN//平面ABDC.三棱锥A-CMN .D AD BC 与一定不垂直12.定义:若函数F(x)在区间[,]a b ]上的值域为[a, b],则称区间[a, b]是函数F(x)的“完美区间”.另外,定义区间[a, b]的“复区间长度”为2(b-a),已知函数2()|1|f x x =-,则A. [0,1]是f(x)的一个“完美区间’B 是f(x)的一个“完美区间”C. f(x)的所有“完美区间”的“复区间长度”的和为3D.f(x)的所有“完美区间”的“复区间长度”的和为3+第II 卷三.填空题:本题共4小题,每小题5分,共20分.13.已知向量(4,3),(1,2),,a b a b =-=-的夹角为θ,则sinθ=___38114.(2)x x-的展开式中的常数项为___ 15.左手掷一粒骰子,右手掷一枚硬币,则事件“骰子向上为6点且硬币向上为正面”的概率为____16.已知抛物线24y x =的准线与x 轴的交点为H ,点F 为抛物线的焦点,点P 在抛物线上且|PH|=k|PF|,当k 最大时,点P 恰好在以H ,F 为焦点的双曲线上,则k 的最大值为____,此时该双曲线的离心率为___(本题第一空2分,第二空3分)四.解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)cos 220,2cos 2,b B B b C ac a -+==-=①②③补充在下面问题中,并加以解答. 已知△ABC 的内角A,B,C 所对的边分别是a,b,c 若______ ,且 a,b,c 成等差数列,则△ABC 是否为等边三角形?若是,写出证明;若不是,说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届山东省青岛市第一中学高三下学期第五次在
线考试数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 设集合,,则
()
A.B.C.D.
2. 已知复数,则()
A.B.C.D.
3. 设,,,则()
A.B.C.D.
4. 函数的最小正周期为()
A.B.
C.
D.
5. “”是“”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
6. 已知抛物线:的焦点为,为上一点且在第一象限,以为圆心,为半径的圆交的准线于,两点,且,,三点共线,则
()
A.16 B.10
C.12 D.8
7. 已知函数是偶函数,当时,,则曲线在
处的切线方程为()
A .
B .
C .
D .
8. 在四面体中,且,,,所成的角为30°,,,,则四面体的体积为( ) A.8 B.6 C.7 D.5
二、多选题
9. 一组数据的平均值为7,方差为4,记
的平均值为a,方差为b,则()
A.a=7 B.a=11 C.b=12 D.b=9
三、单选题
10. 设为三条不同的直线,为两个不同的平面,则下面结论正确的是()
A .若,则
B .若,则
C .若,则
D .,则
四、多选题
11. 在三棱锥D-ABC 中,,且,,M,N分别是棱BC,CD的中点,下面结论正确的是()
A .
B .平面ABD
C.三棱锥A-CMN 的体积的最大值为
D.AD与BC一定不垂直
12. 定义:若函数在区间上的值域为,则称区间是函数的“完美区间”,另外,定义区间的“复区间长度”为,已知函数,则()
A.是的一个“完美区间”
B.是的一个“完美区间”
C.的所有“完美区间”的“复区间长度”的和为
D.的所有“完美区间”的“复区间长度”的和为
五、填空题
13. 已知向量,的夹角为,则__________.
14. (2x3)8的展开式中常数项是_____.(用数字表示)
15. 左手掷一粒骰子,右手掷一枚硬币,则事件“骰子向上为6点且硬币向上为正面”的概率为_____.
六、双空题
16. 已知抛物线的准线与x轴的交点为H,点F为抛物线的焦点,点P 在抛物线上且,当k最大时,点P恰好在以H,F为焦点的双曲线上,则k的最大值为_____,此时该双曲线的离心率为_____.
七、解答题
17. 在①,②,③三个条件中任选一个,补充在下面问题中,并加以解答.
已知的内角A,B,C所对的边分别是a,b,c,若_____,且a,b,c成
等差数列,则是否为等边三角形?若是,写出证明;若不是,说明理由.
注:如果选择多个条件分别解答,按第一个解答计分.
18. 已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
19. 如图,在四棱锥中,是边长为4的正方形,平面
,分别为的中点.
(1)证明:平面.
(2)若,求二面角的正弦值.
20. 生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.
(1)完成下列列联表,并判断能否有95%的把握认为是否生二孩与头胎的生二孩不生二孩合计
头胎为女孩60
头胎为男孩
合计200
(2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎
是女孩的家庭户数的分布列及数学期望.
0.15 0.05 0.01 0.001
2.072
3.841 6.635 10.828
(其中).
21. 已知分别为椭圆的左、右焦点,为该椭圆的一条垂
直于轴的动弦,直线与轴交于点,直线与直线的交点为.
(1)证明:点恒在椭圆上.
(2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平
面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.
22. 已知函数,.
(1)设函数,讨论的单调性;
(2)设函数,若的图象与的图象有
,两个不同的交点,证明:.。