实验室的气路系统简单介绍

合集下载

气路系统基本结构及工作原理

气路系统基本结构及工作原理

气路系统基本结构及工作原理一、气路系统基本结构气路系统是指用于控制和传输气体的系统,常用于工业生产、交通运输和家用设备等领域。

气路系统的基本结构包括气源、气路管道、控制元件和执行元件。

1. 气源:气源是气路系统的供气设备,通常采用压缩空气作为气源。

常见的气源设备有压缩空气机组、气瓶和气体管网等。

2. 气路管道:气路管道用于传输气体,通常由金属或塑料管道组成。

气路管道的尺寸和材料选择取决于气体的流量、压力和使用环境等因素。

3. 控制元件:控制元件用于控制气体的流动和压力。

常见的控制元件有阀门、调节阀、压力开关和传感器等。

阀门用于控制气体的开关和流量,调节阀用于调节气体的压力,压力开关用于监测气体的压力变化,传感器用于检测气体的流量、温度和压力等参数。

4. 执行元件:执行元件用于根据控制信号执行相应的动作。

常见的执行元件有气动缸、气动阀和气动马达等。

气动缸用于将气体的压力转换为机械运动,气动阀用于控制气体的开关和流量,气动马达用于将气体的压力转换为机械功。

二、气路系统工作原理气路系统的工作原理是通过控制气体的流动和压力来实现相应的功能。

下面以一个简单的气动控制系统为例,介绍气路系统的工作原理。

假设气动控制系统用于控制一个气动缸的运动,实现物体的推拉动作。

该系统包括气源、气路管道、压力开关、气动缸和控制阀等。

1. 气源:气源提供压缩空气作为气动控制系统的供气设备。

通过气源设备将压缩空气输送到气路管道中。

2. 气路管道:气路管道将压缩空气从气源输送到气动缸和控制阀等执行元件。

气路管道中通常安装有压力开关,用于监测气体的压力变化。

3. 压力开关:压力开关用于监测气体的压力变化,并根据设定的压力值切换控制信号。

当气体压力达到设定值时,压力开关会发出一个信号,控制阀打开,气动缸开始运动。

4. 气动缸:气动缸是气动控制系统的执行元件,将气体的压力转换为机械运动。

当气动缸接收到控制信号后,气体的压力将推动活塞运动,实现物体的推拉动作。

集中供气简介

集中供气简介

实验室集中供气系统简介概述:实验室集中供气系统是一种被人们越来越普遍使用的一种供气方式。

它主要是由气源,切换装置,调压装置,终端用气点,监控及报警装置组成。

当代大多数实验室中的各种分析仪器如色谱仪或质谱仪都需要连续使用载气和燃料气,因此实验室的运行经理需要考虑如何将这些气体供给到实验室中,可以用高压钢瓶、液体杜瓦瓶、集中供气系统或综合上述几种方法来进行供气。

基于安全和效率因素,集中供气系统变得越来越普遍,并成为当今实验室设备中高纯气体的可靠连续的供应源。

在某些情况下,当地消防规范建议甚至要求将主要的气体源如钢瓶、杜瓦瓶和液体储槽放置在工作区外的指定区域,然后将气体通过管道系统输送至厂房内,并可通过安装在工作台上的使用点二级减压器方便地调节压力和流量。

它的特点主要体现在四个方面:安全、经济、纯度和人体工程学。

安全: 即使仍然使用钢瓶供气,但钢瓶被放置在工作区外的一个安全区域,使用者可以通过配备的远程切断系统在紧急状况下切断气体供应。

钢瓶储存区的合理布置可以保持可燃性容器和助燃性容器间的安全间距。

钢瓶的操作必须由培训合格的人员来操作以减少重大事故发生的机率。

经济性:建一个集中的气瓶间可以节省有限的实验室空间,更换钢瓶时不需要切断气体,保证气体的连续供应。

使用者只需管理较少的钢瓶,支付较少的钢瓶租金,因为使用同一气体的所有使用点来自于同一个气源。

此种供应方式最终会减少运输费用,减少退还给气体公司的空瓶中的余气量,以及良好的钢瓶管理。

纯度:可吹扫的减压器面板可以保持气体的指定纯度,钢瓶更换频率的减少导致杂质进入系统的机率降低。

人体工程学:集中管道供应系统可以将气体出口放置在使用点处,这样的话可以更合理的设计工作场所。

实验室供气系统广泛应用于:科研、教学机构;检验、检疫机构;化工、电子、医药、食品等行业。

一、基本概念实验室集中供气就是将所有气瓶集中存放在气瓶房,通过气瓶减压阀将气体输送到各个实验室(即仪器端)。

实验室气路控制原理

实验室气路控制原理

实验室气路控制原理实验室气路控制是指对实验室中的气体流动进行控制的原理和方法。

实验室气路控制是实验室安全管理的重要组成部分,它可以保证实验室内气体流动的安全、稳定和可控。

一、实验室气路控制的基本原理:实验室气路控制的基本原理是通过调节和控制阀门的开度来控制气体的流动。

实验室中常用的气体控制阀有手动阀、电磁阀、压力变送器等。

这些阀门可以根据实验需求,调节气体的流量、压力和温度等参数。

二、实验室气路控制的主要方法:1. 气体流量控制:实验室中常用的气体流量控制方法有手动控制、自动控制和比例控制等。

手动控制是通过手动阀来调节气体流量,适用于一些简单的实验。

自动控制是通过电磁阀等自动控制装置来实现气体流量的调节,可根据实验要求进行自动化控制。

比例控制是通过调节比例阀的开度,使得气体流量与某个参考信号成比例。

2. 气体压力控制:实验室中常用的气体压力控制方法有调压阀控制、压力变送器控制和反馈控制等。

调压阀控制是通过调节调压阀的开度,使得气体压力保持在设定值。

压力变送器控制是通过压力变送器测量气体压力信号,并通过控制单元进行调节。

反馈控制是根据气体压力的反馈信息,通过控制算法来调节气体压力。

3. 气体温度控制:实验室中常用的气体温度控制方法有加热控制和冷却控制两种。

加热控制是通过电加热器或加热装置对气体进行加热,使得气体温度达到设定值。

冷却控制是通过冷却装置或制冷机对气体进行冷却,控制气体温度保持在设定范围内。

三、实验室气路控制的应用:实验室气路控制广泛应用于化学实验室、生物实验室、物理实验室等各种实验环境中。

例如,在化学实验室中,常用气体控制系统可以控制气体流量和压力,保证化学反应的进行。

在生物实验室中,气体控制系统可以控制培养箱内的气体成分和浓度,提供适宜的培养条件。

在物理实验室中,气体控制系统可以控制实验装置内的气体流动,保证实验结果的准确性。

在实验室气路控制过程中,需要注意以下几点:1. 安全性:实验室气路控制系统必须具备良好的安全性能,确保实验过程中气体泄漏的风险最小化。

气路系统基本结构及工作原理

气路系统基本结构及工作原理

气路系统基本结构及工作原理气路系统是一种常见于工业和机械设备中的系统,它负责控制气体的流动和压力,从而实现机械设备的正常运行。

本文将介绍气路系统的基本结构和工作原理,匡助读者更好地了解和理解这一重要的工程原理。

一、气路系统的基本结构气路系统由多个组件和元件组成,这些组件和元件相互配合,形成为了一个完整的系统。

下面将介绍气路系统的基本组成部份。

1. 压缩机:压缩机是气路系统的核心组件,它负责将气体压缩成高压气体。

压缩机通常采用活塞式或者螺杆式结构,通过机械运动将气体压缩,并将其送入气路系统。

2. 储气罐:储气罐是气路系统中的一个重要组件,它用于储存压缩后的气体。

储气罐的主要作用是平衡气体的压力,确保气路系统能够稳定运行。

3. 过滤器:过滤器用于过滤气体中的杂质和颗粒物,保护气路系统的正常运行。

过滤器通常采用网状或者纤维状的滤材,可以有效地过滤气体中的杂质。

4. 节流阀:节流阀用于控制气体的流量和压力。

它通过调节阀门的开度,改变气体流动的截面积,从而实现对气体流量和压力的控制。

5. 气缸:气缸是气路系统中的执行元件,它将气体的能量转化为机械能,推动机械设备的运动。

气缸通常由活塞、气缸筒和密封件组成,通过气体的压力差驱动活塞运动。

二、气路系统的工作原理气路系统的工作原理可以简单概括为气体的压缩、输送和控制。

下面将详细介绍气路系统的工作原理。

1. 压缩:气路系统中的压缩机负责将气体压缩成高压气体。

在压缩过程中,气体的体积减小,同时压力和温度增加。

压缩机通过机械运动将气体压缩,并将其送入储气罐。

2. 储存:储气罐用于储存压缩后的气体,平衡气体的压力。

当气路系统需要气体时,储气罐释放气体,维持系统的正常运行。

储气罐还可以平衡气体的压力波动,确保系统的稳定性。

3. 输送:气路系统通过管道将气体输送到需要的位置。

管道通常由金属或者塑料制成,具有一定的强度和密封性。

气体通过管道流动时,可以通过节流阀等元件进行流量和压力的控制。

实验室常用系统分析-供气、供水和综合智能(标准版)

实验室常用系统分析-供气、供水和综合智能(标准版)

实验室常用系统分析-供气、供水和综合智能(标准版)
实验室是进行科研和教学活动的重要场所,其设备和环境对实验结果具有直接影响。

为了确保实验室的正常运行,实验室供气、供水和综合智能系统的设计与分析至关重要。

一、供气系统
1. 实验室供气系统主要包括:压缩空气、氮气、氧气、氢气等。

2. 供气系统的设计应满足实验室设备对气体的需求,同时考虑气体的安全性、稳定性及经济性。

3. 供气系统应配备压力表、流量计、气体分析仪等检测设备,以确保气体质量和供应量的准确性。

4. 实验室应定期对供气系统进行检查和维护,确保供气系统的安全运行。

二、供水系统
1. 实验室供水系统主要包括:饮用水、实验用水、冷却用水等。

2. 供水系统的设计应满足实验室设备对水的需求,同时考虑水质、水压及经济性。

3. 供水系统应配备水表、水质分析仪等检测设备,以确保水质质量和供应量的准确性。

4. 实验室应定期对供水系统进行检查和维护,确保供水系统的安全运行。

三、综合智能系统
1. 综合智能系统包括实验室环境监控、实验设备控制、实验室安全监控等。

2. 综合智能系统应具备实时监测、数据处理、报警等功能,以保证实验室的正常运行。

3. 综合智能系统应能对实验室内的气体、水质、温度、湿度等环境参数进行监测和控制。

4. 实验室应定期对综合智能系统进行检查和维护,确保系统的安全、稳定、高效运行。

实验室供气、供水和综合智能系统的分析与设计是实验室建设的重要环节。

只有充分考虑实验室的需求和特点,才能确保实验室的正常运行,为科研和教学活动提供有力支持。

实验室气体管道系统

实验室气体管道系统

实验室气体管道系统是实验室的一个重要方面,好的气体管路设计对气体系统至关重要。

实验室气体管道系统可以咨询博森科技。

据实验室现场状况,提供实验室气体管道工程的设计施工,并且提供各种安全保护系统,其中试验室气体管路系统包括实验室集中供气系统和室内气瓶供气系统。

一:供气方式:采用中压供气,二级减压的供气方式,气瓶气体压力为12.5MPa,经一级减压后为1MPa(管路压力1MPa),送至用气点,经二级减压后为0.3~0.5MPa(根据仪器需求)送至仪器,供气压力比较稳定。

二:气体管路材质的选择气体管路材质应满足以下要求:(1)对所有气体无渗透性(2)吸附效应最少(3)对所输送的气体呈化学惰性(4)能快速使输送的气体达到平衡316不锈钢是继304不锈钢之后,第二个得到最广泛应用的钢种,具有较好的耐腐蚀性,耐高温,强度优秀等特点,建议采用316无缝不锈钢管。

三:集中供气系统的设计(1)通过气瓶和输送管道将载气输送给仪器,在气瓶出口装有单向阀,可避免更换气瓶时有空气和水分混入,另外在一端安装泄压开关球阀,将多余的空气和水分排放后再接入仪器管道,保证仪器用气的纯度。

(2)集中供气系统采用二级减压保证压力的稳定,采用二级减压的方式,一是,经过第一级减压后,干路压力比气瓶压力大大降低,起到了缓冲管道压力的作用,提高了用气的安全,降低了应用的风险,二是保证仪器供气入口压力的稳定,降低了因为气体压力波动而引起的测量误差,保证了仪器使用的稳定性。

(3)由于实验室有些仪器需要使用易燃气体,如甲烷,乙炔,氢气,做这易燃气体的管路时,应注意管路尽量短,减少中间接头的连接,同时,气瓶一定装入防爆气瓶柜内,气瓶输出端接回火器,可阻止火焰回流气瓶引起的爆炸,防爆气瓶柜顶端应有连接到室外的通风排气口,且有泄漏报警装置,一旦泄漏能及时报警并将气体排到室外。

公司介绍:南京博森科技有限公司坐落于六朝古都—南京,公司致力于智慧实验室、恒温恒湿、生物安全、空气洁净、医用手术室、净化厂房、智能化系统、实验室仪器设备、网络中心机房、气候模拟环境、焓差室、非标准环境及系统节能等领域的规划与建设,以高精度、高质量、高可靠性为标准,引领科技进步为目标,注重节能环保,是集整体规划、设计、安装及运行维护等全方位为一体的高科技企业。

实验室气路系统设计说明

实验室气路系统设计说明

实验室气路系统设计说明:1.设计依据根据xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx2.设计范围xxxxxxxxxxxx3.系统简介实验室是用于完成实验、测试分析等各种实验工作的特殊环境。

无论其用于学校的科研教学,制药行业的研发,化工行业的研究,还是用于医学或私人研究,其运转必须是安全可靠的。

当代实验室离得各类耗气设备和各种分析仪如色谱仪和质谱仪都需要使用载气和燃料气,这些气体的控制系统对于实验人员和价格高昂的实验器材的安全都是至关重要的。

它必须确保这些气体的稳定性和安全性。

在现代化的实验室中,为了完成实验,需要用到多种分析仪器,如气相色谱仪,原子吸收,气—质联用仪,ICP等等,其中这些仪器需要用到高纯气体,传统的做法是采用独立钢瓶分散供气的模式,这种供气模式每台仪器设备单独配置气体钢瓶,分别满足每台仪器设备的使用,但随着近年来实验室投资的不断加大,仪器设备的迅速增加,用气量也逐年增加,传统的供气模式已经难以满足仪器设备增加的需求,同时分散供气模式带来的实验室布局混乱,钢瓶的频繁更换也对实验室的管理和维护造成了困难,为了解决以上两个方面的问题,就需要一套安全性高且能实现集中分配供气的系统完成从气源向仪器的供气,这就是实验室高纯气体管道系统的功能所在。

实验室集中供气系统的特点:安全性、洁净度、稳定性、经济性、操作便捷性和美观性。

4.系统工艺流程气路系统主要由气源、切换装置、管道系统、调压装置、用气点、监控及报警系统组成。

对于一些易燃易爆气体,如氢气、乙炔等,可能在设计和施工过程中稍有差异,必须加入阻火器防止火苗串入。

气路系统常用器材:钢瓶(气体压缩机)、钢瓶固定架、钢瓶柜、钢瓶接头、金属软管、半自动切换装置、一级减压器、二级减压器、焊接三通、焊接大小头、卡套阀门、不锈钢管道(BA)、压力表、可燃有毒气体监测报警装置等等。

5.系统设计和施工标准《工业金属管道工程施工及验收规范》 GB50235-2010《现场设备、工业管道焊接工程施工及验收规范》 GB50236-2011《氢气站设计规范》 GB50177-2005《氢气使用安全技术规范》 GB4962-2008《工业金属管道设计规范》 GB50316-2000《乙炔站设计规范》 GB50031-91《压缩空气站设计规范》GB50029-2014《建筑设计防火规范》 GB50016-20146.验收标准外观检查1.管道走线要横平竖直;管道均固定牢固2.管道外表面无明显破损。

太原实验室气路设计原理

太原实验室气路设计原理

太原实验室气路设计原理
太原实验室的气路设计原理主要围绕着安全可靠的气体供应,以及有效的管理和控制。

它包括气体源的选择,气体调节器的设计,调节器到实验室的连接,气体分支管路的设计,管路的安装,气体安全阀的安装,气体泄漏检测装置的安装以及气体管道的检查和维护工作等。

一、气体源的选择
在设计实验室的气路时,首先要选择合理的气体源,一般有以下几种方式:一是采用液化石油气提供气体,二是采用气体液化装置,三是使用工业气体气瓶,四是采用工业气体管网供应的气体。

1.液化石油气方式
液化石油气方式是最常用的气体供应方式,其优点在于低成本、容易掌握、容易控制,缺点是液化石油气有毒性,传输距离也有限。

2.气体液化装置方式
气体液化装置可将常压空气液化,液化后具有压力、容量等特点,优点是可以防止气体泄漏,缺点是成本较高。

3.工业气体气瓶方式
使用工业气体气瓶供应气体,优点是可以满足实验室的临时供需,缺点是存储气体量有限,并且个别气体容易发生反应,也容易受到外界环境的影响。

4.工业气体管网方式
工业气体管网方式是最理想的气体供应方式,它可以满足实验室不断变化的气体供求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)简介
气路系统主要应用于处理高纯度气体,或有毒气体和腐蚀性气体的控制设备,是真正的针对实验室的气路系统。

主要应用在:
原子吸收光谱法
废气分析
食品包装
制药业
半导体行业
近海行业
医用/工业激光行业
2)每样产品严格检查测试步骤
3)产品示例
4.不锈钢卡管套
英制尺寸
标准仪表卡套管(AP)
化学清洗和钝化卡套管(BA) 电热偶清洗卡套(EP)
特点
可提供外径为1/6至1 in.的卡套管;如有需要还可供应公制尺寸卡套管。

1)标准仪表卡管套(AP)
材料标准
2)化学清洗和钝化卡套管(BA)以及电热偶清洗卡套管(EP)
材料标准
清洗和包装
化学清洗和钝化卡套管
这种卡套管在非挥发物质残余量方面符合ASTM G93, A级标准的要求,也符合CGA G4.1.标准的要求。

卡套管底端部用具特殊材质薄膜和聚乙烯帽盖来保护。

卡套管单根包装在聚乙烯热封包装
袋中。

安全的产品选择
选择产品时,必须考虑总体系统设计以保证获得安全的,无故障的性能。

功能、材料兼容性、充分的额定值、正确的安装、使用和维护是系统设计师和用户的责任。

相关文档
最新文档