小学数学《数字谜与数阵图》练习题(含答案)
小升初奥数思维训练第3讲:数字谜、数阵图、幻方(拓展训练)(含答案解析)

【答案】22.5
【解析】
【分析】此幻方给出的已知条件比较少,中心数与幻和均未知,但是观察发现 第一行与第一列除共同的数字外只有一个未知,考虑使用幻方性质7解决.
幻方性质7:具有一个共同数的一行和一列中其他两个数的和相等,可知1+G=8+10,所以G为17,再根据幻方性质3可将中心数填出.
很明显,a3中应该填入最小的数1.2,a2、a4中应该填入次大的2.9和3.7,a1、a5中填入4.6和6.5,这样三角数等于3.1.
4.将1~6填入右图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.
【答案】
k=9 k=10 k=11 k=12
【解析】
【分析】此题属于典型数阵图填空,利用数字和全部相加的方法,找出每一个数字的相加次数,列出等式进行分析取值.
【详解】a+b+c最小为1+2+3=6,此时k=9,最大为4+5+6=15,此时k=12,那么k可等于10,11,对应a+b+c=9和12,可取1,3,5和2,4,6,经过尝试四种结果如下:
【详解】数字分组进行尝试:将全部数字分为三组,注意7,8,9必须分在不同组,无唯一分法,例如(951),(843),(762),又观察可知必须从每一组选一个组成数字和为15,可选择为(942),(537)(186),调换顺序可下列两种答案:
【点睛】一共六个要求相等的数字和,而每一个数字都相加两次,无特殊数字.列出等式为6S=(1+2+3+4+5+6+7+8+9)×2 解出S=15.将九个数字分为三组,每组三个数字和为15.
三年级下册数学试题-思维训练:数阵图与数字谜(含部分答案)全国通用

数阵图与数字谜知识要点1.有一种数阵图,它们的特点是从一个中心出发,向外作了一些射线,我们把这种数阵图叫做辐射型数阵图。
填辐射型数阵图的关键是确定中心数以及每条线段上的几个数的和,然后通过对各数的分析,进行试验填数求解。
2.有一种数阵图,它的各边之间相互连接,形成封闭图形,我们称它们为封闭型数阵图。
填这样的图形,主要是顶点数字,抓住条件提供的关系式,进行分析,用试验的方法确定顶点数以及各边上的数字之和,最后填出数阵图。
3.有的数阵图既有辐射型数阵图的特点,又有封闭型数阵图的要求,所以叫做“复合型数阵图”。
我们在思考数阵图问题时,首先要确定所求的和与关键数间的关系,再用试验的方法,找到相等的和与关键数字。
数阵图的解题关键是找”重复数”。
通常的步骤为:⑴观察图表共有几个和⑵找和,思考每个数被加过几个⑶利用整除求重复数例1把1~6这6个数填入下图的○内,使每条直线上3个数的和为9,怎样填?【拓展】如图“好、朋、友、伙、伴、帮、手”这7个汉字分别代表1~7这7个数字。
已知条直线上的3个数相加、2个圆周上的3个数相加,所得的5个和相同。
那么,“好”字代表多少?将1,4,7,10,13,16,19,22,25这9个数分别填入下图的9个○中,使三条边上○中的四个数的和都相等,每条边上四个数的和最大是_____。
弄清楚加减法各部分之间的数量关系是学习数字谜的基础。
1.审题,审题就是找出算式中数字之间的关系和特征,挖掘题目中的隐含条件,它是确定各空格内应该填什么数字的主要依据。
2.选择解题突破口:在审题的基础上,认真思考找出算式中容易填出或关键性的空格,做为解题的突破口,这一步是填空格的关键。
3.确定各空格填什么数字:从突破口开始,依据竖式的已知条件,逐个填出各空格中的数字。
突破口:⑴首位、末分析法;⑵进位、退位分析法;⑶奇偶性分析法;⑷数位分析法;⑸整除。
下式中,不同的字母表示不同的数字,那么ABC表示的三位数是() 例3例2知识要点左式中,不同的符号表示不同的数字,那么◎+△+◇=_____在下面的竖式的各个方框中填上适当的数字,使竖式成立。
小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)内容概述数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用。
数字谜一般分为横式数字谜和竖式数字谜。
横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等。
例题分析【例1】(☆☆)请在下列各式中分别插入一个数字,使之成为等式:⑴ 111111111111=⨯⨯⑵ 377377377773=⨯⨯分析:⑴ 1221111111=⨯⨯, 1001111111111⨯=⨯⨯=711111111911311⨯⨯=⨯,说明需要改动的数应在等式左边,所以应将等式左边的1改成91。
⑵ 37777131001377377377⨯⨯=⨯=,所以应将等式左边的3改成13。
【例2】(☆☆)在下面的四个□中填入同一个数,使得“迎”、“新”、“世”、“纪”四个字所代表的各数之和等于2000。
那么□中应填多少?□-1=迎,□+9=新,□×9=世,□÷9=纪分析:设“纪”所代表的数为x ,那么□=9x ,迎=9x -1,新=9x +9,世=9x ×9=81x ,根据题意有9x-1+9x+9+81x+x=2000,整理得1992100=x ,92.19=x ,那么□28.179992.19=⨯=。
【例3】(☆☆)如图,横、竖各12个方格,每个方格都有一个数,已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3,5,8和x 四个数,那么x 代表的数是 。
分析:竖列上任意三个相邻数之和为21,就是竖列上任意三个相邻数都是由三 个同样的数组成(只不过顺序不同),这样我们可把“3”向下每隔两格地“移动”,由此得出中间的一格应填21-3-8=10。
五年级计算数阵图与数字谜学生版

数阵图与数字谜知识要点解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.数论知识【例1】(第一届“华罗庚金杯”少年数学邀请赛决赛一试)如图,4个小三角形的顶点处有6个圆圈。
如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。
问这6个质数的积是多少?【例2】 一个整数乘以13后,乘积的最后三位数是123,这样的整数中最小的是多少?【例3】 红、黄、蓝和白色卡片各一张,每张上写有一个数字。
小明将这4张卡片如图放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差。
结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。
问:红、黄、蓝3张卡片上各是什么数字?蓝白黄红【例4】 如图算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,请求出这个算式。
春夏秋冬四季季年年年年年年【例5】 将1~9分别填入这九个区域,使得每个圆里的数字和相等。
【例6】已知76⨯=⨯,相同的字母代表相同的数字,不同的字母代表不同的数字,求ABCXYZ XYZABCABCXYZ是多少?【例7】三位数AAA乘三位数AAB等于六位数CCCDDD,求A,B,C,D分别是多少?【例8】(第二届“华罗庚金杯”少年数学邀请赛复赛)试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次:(这是一个三位数)、(这是一个三位数)、(这是一个一位数),使得这三个数中任意两个都互质。
17.数字谜2(数阵图初步)

3年级数字谜2(数阵图初步)数学游戏将1至6分别填入右图中的圆圈内, 使得图中三角形每条边上三个数的和都等于10. 现在已经填好了其中三个, 请你在图中填出剩下的数.例题例1、将1至9分别填入右图中的圆圈内, 可以使得图中所有三角形(共七个)的三个顶点上的数之和都等于15.现在已经填好了其中三个, 请你在图中填出剩下的数.例2、在右图中的八个圆圈内分别填入八个不同的自然数. 使得正方形每条边上三个数的和相等. 现在如果已经填好了五个数, 那么每条边上各数之和应该是多少? 并将其补充完整.例3、小悦是8月11日15点整出生的, 她想把1,2,3,4,5,6,7这七个数填入图4-18的七个方框里, 每个数只填一次, 使三条直线上的三个数之和恰好是8,11,15. 问:在圆上的三个数的乘积最大可能是多少?例4、把1至8分别填入右图的八个圆圈内, 使得任意两个有线段直接相连的圆圈内的数字之差都不等于1.课堂练习练习1、如图,在正方形的空格里填上适当的数,使每一横行,竖行,斜行的三个数相加的和都是18.练习2、在图中九个圆圈中分别填入九个不同的自然数, 使得图中六条直线上的三个数之和相等. 现在已经填入五个数, 请将其补充完整.练习3、把2、3、4、5、6、8、9、15、17、32这十个数填入下图的圆圈中, 使得除第一行之外的每个圆圈中的数都等于它上面的两个数之和.练习4、把1至7这七个数分别填入右图中各圆圈内, 使每条直线上三个圆圈内所填数之和都相等. 如果中心圆内填的数相等, 那么就视为同一种填法. 请写出所有可能的填法.数学思想、方法小结1. 俗话说:“射人先射马,擒贼先擒王”. 在很多数阵图中,都有一些位置是关键的位置,有一些数是关键的数, 分析这些关键的位置和关键的数往往是解决问题的突破口.2. 数量的性质:两个等量加上同一个量,和相等;两个等量减去同一个量,差相等.口诀:等量加等量,和________;等量减等量,差________.课后练习 得分__________________1、在右图中的三个圆圈内填入三个不同的自然数, 使得三角形每条边上的三个数之和都等于11.2、在右图中的四个圆圈内填入合适的自然数, 使得正方形每条边上的三个数之和都等于14.3、如右图所示, 请在三个空白圆圈内填入三个数, 使得每条直线上三个数之和都相等.4、把1~12这十二个数分别填入六角星图案的十二个圆圈中, 使得每条线段上的四个数之和相等. 现在如图已经填好了八个数, 请把数阵图补全.5、将1~7这七个自然数, 分别填在图中的圆圈内, 使得每条直线上的三个数的和都相等.【思考题】把1~8这八个数填入下面“十一”图形的八个空格内, 使得每一条直线上的三个数之和都相等.个性化补充练习。
数字谜综合数阵图和竖式数字谜

2.3位数分析
一个三位数乘以一个三位数,结果可能是五位数或 者六位数,根据乘积的位数就能判断出乘数的大小。
x
=
x
= 5568
例题1
将0至8这九个数字填入下面的方框内,使这个算式的 结果最大
876 5—34 x1 02
要差最大? 被减数要怎么样? 减数要怎么样?
差最大 被减数要最大 减数要最小
横式数字谜
横式加减法数字谜可以转化成 竖式数字谜来解决,相对而言比 较简单。二横式乘除法数字谜语 四十数字谜则有这明显区别,常 常要用到数论方面的知识。
在横式乘除法数字谜中,尤其 盈注意运用整除的知识。
比如: 迎杯x春杯=好好好
37×27=999
方法总结:小结---数阵图
1.如果数•阵1.图如果中数有阵若图干中个有相若等干的个和相,等可的以把其中 某几个和和累,加可在以一把起其,中或某者几比个较和有累公加共在部分的两 个相等的一和起。,或者比较有公共部分的两
ABCD
x
9
DCBA
位数乘九后仍得四位数
第一个因数的首位(即A=1) 积的首位(即D=9) 百位(即B),B不可能大于2,
否则会向前一位进位,积变为五 位数。B只可能为0。 算式变为10C9×9=9C01。积 的十位是0,减去个位进上来的8 得2, 八九七十二,C为8。 最终算式为1089×9=9801 结 果:A=1,B=0,C=8,D=9。
(2)、解字谜
ABCDEF
x
3
BCDEFA
(3)选讲:
在下面除法竖式的方框内填入适当的数字,使竖式成立
36
9 3 32 27 62 54
8
8<26 余数小于除数,所 以除数是8+1=9, 所以这个三位数为 36×9+8=332
六年级奥数优胜教育第12讲:数字谜与数阵图含答案

第十二讲数字谜与数阵图例1:将2、3、4、5、6、8、11、12这8个数填在图1的□中,使它们组成图1中的4个等式。
例2:将1~11填入图2内,使相邻两个或三个数字组成的横竖斜行的和为14。
例3: 9○13○7=100 21○7○2=□把“+、-、×、÷”分别填在适当的圆圈中(运算符号只能用一次),并在方框中填上适当的整数,使上面的两个等式成立。
例4:由1,2,3…,9组成如下算式,已给出四个数字,请补上其他数字。
例5:把下面的算式补充完整。
例6:把下面除法算式中缺少的数字补上。
A1.在 内填入适当的数字,使下列加法竖式成立:2.在 内填入适当的数字,使下列加法竖式成立:3.在图中空格里填入适当的数字,使竖式成立.4.在图6-11的方框内填入适当数字,使减法竖式成立.8 8 2+22 85.补齐下边的算式。
B6.如图是一个加减混合运算的竖式,在空格内填入适当数字使竖式成立.7.在如图所示的算式里,4张小纸片各盖住了一个数字.那么被盖住的4个数字总和是多少?8.□□□+□□□=1492,方块内所填数字的总和最大为多少?9. □▲+▲▲=□□●,相同符号代表相同数字,不同符号代表不同数字,请问算式的和为多少?10.用1至9这9个数字可以组成一个五位数和一个四位数,使得两数之差是54321,请将图6-14中的空格补充完整.C11.在下面的式子中添入括号(大、中、小括号都可),使计算出来的结果最大:(1)(17-2-5) (3+10)-2-4 最大的结果是。
2 73668-(2)(1+2)⨯(3+4)÷(5-4)⨯[3-(2-1)] 最大的结果是。
12.在下面的数之间添上适当的运算符号或括号,使等式成立。
÷9 = 209+9 +(9 + 9)1 ⨯(2+3 -4)= 11 -2 +3 +4 -5 = 11 ⨯(2 + 3)⨯ 4 ⨯ 5 = 10013.在下面错误的式子里加上括号,使其正确5 + 7⨯8 + 12÷4 -2 = 205 + 7⨯8 + 12÷4 -2 = 1025 + 7⨯8 + 12÷4 -2 = 255 + 7⨯8 + 12÷4 -2 = 12014.在下面算式中合适的地方添上运算符号,使算式成立。
小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)内容概述数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用。
数字谜一般分为横式数字谜和竖式数字谜。
横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等。
例题分析【例1】(☆☆)请在下列各式中分别插入一个数字,使之成为等式:⑴ 111111111111=⨯⨯⑵ 377377377773=⨯⨯分析:⑴ 1221111111=⨯⨯, 1001111111111⨯=⨯⨯=711111111911311⨯⨯=⨯,说明需要改动的数应在等式左边,所以应将等式左边的1改成91。
⑵ 37777131001377377377⨯⨯=⨯=,所以应将等式左边的3改成13。
【例2】(☆☆)在下面的四个□中填入同一个数,使得“迎”、“新”、“世”、“纪”四个字所代表的各数之和等于2000。
那么□中应填多少?□-1=迎,□+9=新,□×9=世,□÷9=纪分析:设“纪”所代表的数为x ,那么□=9x ,迎=9x -1,新=9x +9,世=9x ×9=81x ,根据题意有9x-1+9x+9+81x+x=2000,整理得1992100=x ,92.19=x ,那么□28.179992.19=⨯=。
【例3】(☆☆)如图,横、竖各12个方格,每个方格都有一个数,已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3,5,8和x 四个数,那么x 代表的数是 。
分析:竖列上任意三个相邻数之和为21,就是竖列上任意三个相邻数都是由三 个同样的数组成(只不过顺序不同),这样我们可把“3”向下每隔两格地“移动”,由此得出中间的一格应填21-3-8=10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学《数字谜与数阵图》练习题(含答案)数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜来解答.解题技巧:(一)解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位、重复数字以及位数的差异. (二)要根据不同的情况逐步缩小范围,并进行恰当的估算.(三)当题目中涉及多个字母或汉字时,要注意利用不同符号代表不同数字这一条件来排除若干可能性.(四)注意结合进位及退位来考虑.(五)有时可运用到数论中的分解质因数等方法.【例1】右式中不同的汉字代表1~9中不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?【分析】显然,“新”=9.因为要使“中国”尽量大,所以可以假定“中”=8.因为十位加法(含个位加法进位)等于20,所以“北+奥”在1~7中的取值有三种可能:7,5;7,4;6,5.再考虑到“国+京+运”的个位数是8,经试算,只有“北”、“奥”等于7,5,“国”、“京”、“运”等于1,3,4.“国”取l,3,4中最大的4,得到“中国”最大是84.【例2】下图的等式中,不同的汉字表示不同的数字,如果“巧+解+数+字+谜=30”,那么,“数字谜”所代表的三位数是_______.【分析】谜字只能取0或5.如果谜=0,字也要取0,不合题目要求,所以谜=5.3个字加上2是10的倍数,所以字=6. 2个数加上2是10的倍数.所以数=4或9,如果数=4,那么解+1=10,所以解=9.但这时巧=30-9-4—6—5=6与字相同,不合题意.因此数=9,解+2=10,所以解=8,巧=30-8-9-6-5=2,所以“数字谜”所代表的三位数是965.【巩固】在下面的算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于多少?【分析】根据加法规则,“第”=1.“届”+“赛”=6或“届”+“赛”=16.若“届”+“赛”=6,只能是“届”、“赛”分别等于2或4,此时“一”+“杯”=10 只能是“一”、“杯”分别为3或7.此时“十”+“华”=9,“十”、“华’’分别只能取 (1,8),(2,7),(3,6),(4,5).但l,2,3,4均已被取用,不能再取.所以,“届”+ “赛”=6填不出来,只能是“届”+“赛”=16.这时“届”、“赛”只能分别取9和7.这时只能是“一”+“杯”+1=10,且“十”+“华”+1=10,也就是“一”+“杯”=9,同时“十”+“华”=9.所以它们可以分别在(3,6),(4,5)两组中取值.因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35.【例3】在图所示的乘法算式中,每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,这个乘法算式的最后乘积是多少?【分析】问题中出现的都是末位数.而且都是奇数,故应先从末位数开始考虑.第三行的末位为1,共有三种可能的组合:1×1,3×7,9×9.由于第二行数的每一位与第一行相乘后都得到五位数,故第二行的各位数字不会为1.故1×1、9×9均不满足条件.第一行和第二行末位数为3、7或者7、3.分两种情况来讨论:若第一行末位为3,第二行末位为7,由末位的9推知第二行的数应为3337,由第三行的十位应为0知第一行的十位为4.从而得到第四、五、六行的十位皆为2,进而有第三行的百位应该是8,于是推出第一行的百位为5.这样便立刻得到第四、五、六行的百位为6,从而由第三行的4位为1得到第一行的千位为4.于是有4543×3337=15159991,满足条件.若第一行末位为7,第二行末位为3,同样的方法立刻有第二行数应为7773.依次推得第一行的十位、百位、千位分别为6、4、0,不符合题目要求.于是本题答案为15159991.评注:本题采用了枚举的方法,对可能的有限种情况分别讨论,从而求解出问题.在数字谜的求解中常常用到这种方法.【例4】内填入适当的数字,使下列竖式成立,并使商尽可能小:【分析】由右式知d=8,所以c=3或8.当a=2时,由bc×a=□5□,推出c不等于3,所以c=8,故推出b=7;因为除数是两位数,它与商的各个数位的乘积都是三位数,所以商的最小可能值为262.数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵. 幻方是特殊的数阵图,一般地,将九个不同的数填在3×3(即三行三列)的方格中,使每行、每列、及二条对角线上的三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. n阶幻方的定义与三阶幻方相仿!【例5】请你把1~7这七个自然数,分别填在右图的圆圈内,使每条直线上的三个数的和都相等.应怎样填?【分析】关键在于确定中心数a和每条直线上几个圆圈内数的和k. 为了叙述方便,先在各圆圈内填上字母,设每条直线上的数字和为k.根据题意可得:2a+(1+2+3+4+5+6+7)=3k,2a+28=3k,由于28与2a的和为3的倍数,a又为1~7中的数字,经过尝试可知:a为1、4或7.答案如下:(1)当a=1,时2+7=5+4=3+6,得到第一种答案。
(2)当a=4,时1+7=5+3=2+6,得到第二种答案。
(3)当a=7,时1+6=4+3=2+5,得到第三种答案。
【例6】将1~7这七个数分别填入右图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等.【分析】所有的数都是重叠数,中心数重叠两次,其它数重叠一次. 所以三条边及两个圆周上的所有数之和为:(1+2+…+7)×2+中心数=56+中心数.因为每条边及每个圆周上的三数之和都相等,所以这个和应该是5的倍数,再 由中心数在1至7之间,所以中心数是4. 每条边及每个圆周上的三数之和等于(56+4)÷5=12.中心数是4,每边其余两数之和是12-4=8,两数之和是8的有1,7;2,6;3,5. 于是得到右上图的填法.【例7】 将九个数填入下图(1)的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k ,则中心方格中的数必为3k .请你说明理由!(2)将九个数填入下图(2)的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有:2a b e +=.请你说明理由!(3)将九个数填入下图(3)的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有:2a b c +=.请你说明理由!【分析】(1)因为每行的三数之和都等于k ,共有三行,所以九个数之和等于3k.如右图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k ,四条虚线上的所有数之和等于4k ,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有:九数之和+中心方格中的数×3=4k ,3k+中心方格中的数×3=4k ,中心方格中的数=3k (2)和=3e ,a+e+b=和=3e ,所以a+b=2e ,即得:2a b e +=.(3)设中心数为d. 每行、每列、每条对角线上的三个数之和都等于3d. 由此可得右图, 那么有:c +(2d-b )= a +(2d-c ),由此可得:2a b c +=. 值得注意的是,这个结论对于a 和b 并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同.【巩固】在右图的每个空格中,填入不大于12且互不相同的八个自然数,使得每行、每列、每条对角线上的三个数之和都等于21 .【分析】中央一数必定是21÷3=7.从而一条对角线为8,7,6.另两个角上的数,和为14=2+12=3+11=4+10=5+9,不难验证只有3、11与4、10两种符合要求.于是填法有:【例8】将1,3,5,7,9,11,13,15,17填入3×3的方格内,使其构成一个幻方.【分析】(法1):易得中心数为9,然后将剩余那么其余8个数分为4组,每组两个数的和是18,把它们分别填入图中关于中心格对称的格子内,实验可得结果,如右上图. 答案不唯一,仅供参考.(法2):其实会学习的小朋友就知道理利用已经学习过的一些典型题目结果加以变形得到新题答案.事实上我们可以把结果中的幻方看作是1~9填图的幻方相应位置数字乘2减1得来的.推广开来可以知道等差数列填图的三阶幻方几乎都具有相似的形式.【拓展】如图(1)的3×3的阵列中填入了l~9的自然数,构成大家熟知的三阶幻方.现在另有一个3×3的阵列,如图(2),请选择9个不同自然数填人9个方格中,使得其中最大者为20,最小者大于5,且要求横加、竖加、对角线方式相加的3个数之和都相等.【分析】①观察原表中的各数是从1~9不同的九个自然数,其中最大的数是9,最小的数是1,且横加、竖加、对角线方式相加结果相等.②根据题意,要求新制的幻方最大数为20,而9+11=20,因此,如果原表中的各数都增加11,就能符合新表中的条件了.【例9】在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4.【分析】如下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图.【例10】在1~13这十三个自然数中选十二个填在图中的空格内,使每横行四数之和相等,每数列三数之和相等.【分析】由和的整除性质,首先确定使用哪十二个数填图.由于每横行四数之和相等.每竖行三数之和相等知十二个数之和既是3的倍数也是4的倍数,因此是12的倍数,由此可知不用填图的数字是7,所选十二个数和为:[(1+13)×1 3÷2]-7=84,每横行四个数和为:84÷3=28,每竖行三个数和为:84÷4=21.由于竖行和为21,因此可知1,2,3,4在不同竖行,而5只能跟3或4在同一竖行,由此可确定竖行分组有如下两种情况:(1,8,12),(2,9,10),(3,5,13),(4,6,11)或(1,9,11),(2,6,13),(3,8,10),(4,5,12).再根据横行和为28,易得如上结果:【例11】下图是大家都熟悉的奥林匹克的五环标志. 请将1~9分别填入五个圆相互分割的九个部分,并且使每个圆环内的数字之和都相等.【分析】设每个圆内的数字之和为k,则五个圆内的数字之和是5k,它等于1~9的和45,再加上两两重叠处的四个数之和. 而两两重叠处的四个数之和最小是1+2+3+4=10,最大是6+7+8+9=30,所以,5k≤45+30=75且5k≥45+10=55,即11≤k≤15 .当k=11,13,14时可得四种填法(见下图),k=12,15时无解.【附1】在右面的□内,各填一个合适的数字,使算式成立.【分析】从被乘数个位上的□里填什么数字入手及竖式中□×6=()4,是本题的突破口.这里有两种情况:4×6=24或9×6=54,都可使□×6=()4成立.也就是说,被乘数个位上的数字可能是4,也可能是9.先考虑被乘数个位上的数字是9的可能性,因为在乘数十位上找不出任何数字与9相乘得“整十数”,所以被乘数个位上的数字不可能是9.如果被乘数个位上的数字是4,很容易推出乘数十位上的数字应是5,才能与4相乘得“整十数”.由被乘数乘以乘数十位上的5得270,也很容易推出被乘数十位上的数字是5,进而可推出其它各数字.【附2】在□内填入适当的数字,使下列乘法竖式成立:【分析】(1)17×64=1088;(2)5283×39=206037;(3)734×619=454346,被乘数是6606和4404的三位数的公约数.【附3】右面算式中,相同的汉字表示相同的数,不同的汉字表示不同的数,其中“新”>4.清补残缺的数字,那么“新年好”代表的数字是 .【分析】“新年好”代表的数字是691.如右下式,“新”一定小于7,否则A是2大了,是l又小了.不论“新”,是5或6,由于乘法第一行首位是“新”,一定有B=9.如果“新”=5,第二行百位是4,A无合适的值,因此“新”=6,而A=2.“年”≥7,对7,8,9三数算一下可知,只有“年”=9合适,如式(3)所示.【附4】(1994年小学数学奥林匹克初赛A卷)在下面残缺的算式中,只写出五个3,那么这个算式的商数是___________.【分析】为了便于说明,用英文字母来表示几个关键的数(见下式)从除式的第一层看,商的百位数字a,只能是1,3,7,9.第三层被除数的百位数字c明显是9,因此第二层中的b大于3.这样可断定口≠l,a≠3.如果a=9,那么一层中d也是9.但933不是9的倍数.所以.≠9.d被7整除,我们现在来看a=7的情形.由于33可以断定除数是119,d=8.第三层,因为C=9,只有119×8=952满足要求,即f=8.从而b=13-5=8,c=2.所以这个算式的商数是728.被除数是119×728=86632.完整的除式是:【附5】在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除.【分析】标出的八个数是每面四个数和的2倍,是偶数,1~9和为45 ,因此未标出的数是一个奇数,在1,3,5,7,9中选一个数,并使余下八个数之和的一半不能被这个数整除,依此可知未标出的数是7.下面用余下的8个数填图,每面四个数和为:(45-7)÷2=19.如果已知某一面上四个数和为19.那么与其平行的面上四数和也必为19.因此我们只考虑有公共顶点的三个面即可.下面我们考虑以9为公共顶点的三个面.由于8,9不公面,因此8在顶点9的对顶点上,有公共点9的三个面上,每面其余三个数和为10,且每两个面有一个公共顶点.由此试验易得三个面上的数分别为:(6,3,1),(5,4,1),(3,2,5),填图如右下图.1. 在下面的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把下面汉字算式翻译成数字算式.【分析】算式为:9567+1085=10652 .2. 右面式中不同的汉字代表不同的数字,问:“数学好玩”表示的四位数是多少?【分析】由积的千位数知“数”=1,由积的十位数知“学”=0,由积的百位数知“玩”=9.竖式化简为下式.容易求得:“真”=2,“好”=8,“啊”=6.所以,“数学好玩”=1089.3. 在下图两个图的空格中填入不大于15且互不相同的自然数(其中已填好一个数),使每一横行、竖列和对角线上的三数之和都等于30.【分析】首先找出中心数为10,然后设某一个空格数为x,根据横行、竖列、对角线的和都等于30,填上其余各数(含x)再由各数互不相同,且不大于15确定各数.4. 9将1~8填入右图中的○内,要求按照自然数顺序相邻的两个数不能填入有直线段连接的相邻的两个○内.【分析】因为中间两个○分别只与一个○不相邻,只能填1和8,其余数的填法见下图.5. 用2,4,6,12,14,16,22,24,26九个偶数编制一个幻方.【分析】答案如右上图.。