动量守恒定律及应用练习题

合集下载

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。

动量守恒定律的综合应用练习及答案

动量守恒定律的综合应用练习及答案

1.如图所示,以质量m=1kg 的小物块(可视为质点),放置在质量为M=4kg 的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v ₀=2m/s 向左匀速运动。

在长木板的左侧上方固定着一个障碍物A ,当物块运动到障碍物A 处时与A 发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s ²。

(1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s(2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m ,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2(3)要使物块不会从长木板上滑落,长木板至少为多长?2m2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B 放在斜面上,开始时A,B 之间的距离为1米,B 与C 的距离为0.6米,现将A B 同时由静止释放.已知A 、B 与轨道的动摩擦因数分别为√3/5和√3/2 ,A 、B 质量均为m ,g 取10m/s²,设最大静摩擦力等于滑动摩擦力,A 、B 发生碰撞时为弹性碰撞。

物体A,B 可以看作是质点,不计在斜面与平面转弯处的机械能损失,则(1)经过多长时间滑块A,B 第1次发生碰撞. 1s(2)滑块B 停在水平轨道上的位置与C 点儿的距离是多少?m 1033.如图所示,光滑的轨道固定在竖直平面内,其O 点左边为水平轨道,O 点右边的曲面轨道高度h 等于0.45米,左右两段轨道在O 点平滑连接.质量m=0.10kg 的小滑块a 由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg 的小滑块b 发生碰撞,碰撞后现小滑块a 恰好停止运动,取重力加速度g=10m/s²,求(1)小滑块a 通过O 点时的速度大小3m/s (2)碰撞后小滑块b 的速度大小1m/s(3)碰撞后碰撞过程中小滑块a 、b 组成的系统损失的机械能。

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

(物理)物理动量守恒定律练习题20篇含解析

(物理)物理动量守恒定律练习题20篇含解析

(2)若入射氦核以 v0=3×107m/s 的速度沿两核中心连线方向轰击静止氮核。反应生成的氧 核和质子同方向运动,且速度大小之比为 1:50。求氧核的速度大小。
【答案】(1)吸收能量,1.20MeV;(2)1.8×106m/s
【解析】
(1)这一核反应中,质量亏损:△m=mN+mHe-mO-mp=14.00753+4.00387-17.00454-1.00815=-
考查了动量守恒定律的应用名师点睛要使两车不相撞甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同以甲车球与乙车为系统由系统动量守恒列出等式再以球与乙车为系统由系统动量守恒列出等式联立求解形滑板n滑板两端为半径的14圆弧面
(物理)物理动量守恒定律练习题 20 篇含解析
一、高考物理精讲专题动量守恒定律
【答案】 vB 4m / s hp 0.75m
【解析】
试题分析:(i)B 球总地面上方静止释放后只有重力做功,根据动能定理有
mB gh
1 2
mB vB 2
可得 B 球第一次到达地面时的速度 vB 2gh 4m / s (ii)A 球下落过程,根据自由落体运动可得 A 球的速度 vA gt 3m / s
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
由动量守恒得:2mV2=mv1(1 分)
损失的动能为:ΔE′=

(完整版)动量守恒定律习题及答案

(完整版)动量守恒定律习题及答案

动量守恒定律及答案一.选择题(共32小题)1.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统,动量守恒B.枪和车组成的系统,动量守恒C.因为枪弹和枪筒之间的摩擦力很大,使系统的动量变化很大,故系统动量守恒D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零2.静止的实验火箭,总质量为M,当它以对地速度为v0喷出质量为△m的高温气体后,火箭的速度为()A.B.﹣C.D.﹣3.据新华社报道,2018年5月9日凌晨,我国长征系列运载火箭,在太原卫星发射中心完或第274次发射任务,成功发射高分五号卫星,该卫星是世界上第一颗实现对大气和陆地综合观测的全谱段高光谱卫星。

最初静止的运载火箭点火后喷出质量为M的气体后,质量为m的卫星(含未脱离的火箭)的速度大小为v,不计卫星受到的重力和空气阻力。

则在上述过程中,卫星所受冲量大小为()A.Mv B.(M+m)v C.(M﹣m)v D.mv4.在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端(如图)。

在连续的敲打下,关于这辆车的运动情况,下列说法中正确的是()A.由于大锤不断的敲打,小车将持续向右运动B.由于大锤与小车之间的作用力为内力,小车将静止不动C.在大锤的连续敲打下,小车将左右移动D.在大锤的连续敲打下,小车与大锤组成的系统,动量守恒,机械能守恒5.设a、b两小球相撞,碰撞前后都在同一直线上运动。

若测得它们相撞前的速度为v a、v b,相撞后的速度为v a′、v b′,可知两球的质量之比等于()A.B.C.D.6.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg•m/s,B球的动量是6kg•m/s,A球追上B球时发生碰撞,则碰撞后A、B 两球的动量可能为()A.p A=0,p B=l4kg•m/sB.p A=4kg•m/s,p B=10kg•m/sC.p A=6kg•m/s,p B=8kg•m/sD.p A=7kg•m/s,p B=8kg•m/s7.质量为m1=2kg和m2的两个物体在光滑的水平面上正碰,碰撞时间不计,其χ﹣t(位移﹣时间)图象如图所示,则m2的质量等于()A.3kg B.4kg C.5kg D.6kg8.如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1m/s、v2=2m/s的速度做相向运动,碰撞后两球粘在一起以0.5m/s的速度向左运动,则甲、乙两球的质量之比为()A.1:1B.1:2C.1:3D.2:19.质量为1kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧沿木板上表面水平冲上木板,如图甲所示。

(完整word)动量守恒定律经典习题(带答案)

(完整word)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0。

2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1。

6kg,木块与小车之间的摩擦系数为0。

2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1。

分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=即为所求。

第三章 动量定理 动量守恒定律(习题)

第三章 动量定理 动量守恒定律(习题)

第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。

解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)12257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。

解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。

解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。

2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律习题课教学目标:掌握应用动量守恒定律解题的方法和步骤能综合运用动量定理和动量守恒定律求解有关问题教学重点:熟练掌握应用动量守恒定律解决有关力学问题的正确步骤教学难点:守恒条件的判断,系统和过程的选择,力和运动的分析教学方法:讨论,总结;讲练结合【讲授新课】1、“合二为一”问题:两个速度不同的物体,经过相互作用,最后达到共同速度。

例1、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。

现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。

假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时:(1)两车的速度各为多少?(2)甲总共抛出了多少个小球?分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。

(1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。

设共同速度为V,则:M1V1-M2V1=(M1+M2)V(2)这一过程中乙小孩及时的动量变化为:△P=30×6-30×(-1.5)=225(kg·m/s)每一个小球被乙接收后,到最终的动量弯化为△P1=16.5×1-1.5×1=15(kg·m/s)故小球个数为2、“一分为二”问题:两个物体以共同的初速度运动,由于相互作用而分开后以不同的速度运动。

例2、人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再接到木箱?(已知)解析:人每次推木箱都可看作“一分为二”的过程,人每次接箱都可以看作是“合二为一”的过程,所以本题为多个“一分为二”和“合二为一”过程的组合过程。

设人第一次推出后自身速度为V1,则:MV1=mV,人接后第二次推出,自身速度为V2,则mV+2mV=MV2(因为人每完成接后推一次循环动作,自身动量可看成增加2mV)设人接后第n次推出,自身速度为V n,则mV+2mV(n-1)=MV n ∴V n=(2n-1)V ,若V n≥V ,则人第n次推出后,不能再接回,将有关数据代入上式得n≥8.25,∴n=9。

练习:如图所示,甲乙两小孩各坐一辆冰撬,在水平冰面上游戏,甲和他乘的冰撬质量共为,乙和他乘的冰撬质量也是30kg。

游戏时,甲推着一个质量的箱子,共同以速度滑行,乙以同样大的速度迎面而来,为了避免相撞甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住。

若不计冰面的摩擦。

求甲至少以多大的速度(相对地面)将箱子推出才能避免相撞。

解析:由于摩擦,甲乙两人及冰撬,木箱系统动量守恒。

甲乙两人不相撞的临界条件是有相等的速度,设甲推木箱后,乙抓住木箱后速度为,取甲初速为正。

甲推出木箱速度为3、“三体二次作用过程”问题所谓“三体二次作用”问题是指系统由三个物体组成,但这三个物体间存在二次不同的相互作用过程。

解答这类问题必须弄清这二次相互作用过程的特点,有哪几个物体参加?是短暂作用过程还是持续作用过程?各个过程遵守什么规律?弄清上述问题,就可以对不同的物理过程选择恰当的规律进行列式求解。

例3、光滑的水平面上,用弹簧相连的质量均为2kg的A、B两物块都以V0=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在前方,如图所示。

B与C碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为 J时,物块A的速度是m/s。

ABC分析与解:本题是一个“三体二次作用”问题:“三体”为A、B、C三物块。

“二次作用”过程为第一次是B、C二物块发生短时作用,而A不参加,这过程动量守恒而机械能不守恒;第二次是B、C二物块作为一整体与A物块发生持续作用,这过程动量守恒机械能也守恒。

对于第一次B、C二物块发生短时作用过程,设B、C二物块发生短时作用后的共同速度为V BC,则据动量守恒定律得:(1)对于第二次B、C二物块作为一整体与A物块发生持续作用,设发生持续作用后的共同速度为V,则据动量守恒定律和机械能守恒定律得:m A V0+ (2)(3)由式(1)、(2)、(3)可得:当弹簧的弹性势能达到最大为E P=12J时,物块A的速度V=3 m/s。

4、“二体三次作用过程”问题所谓“二体三次作用”问题是指系统由两个物体组成,但这两个物体存在三次不同的相互作用过程。

求解这类问题的关键是正确划分三个不同的物理过程,并能弄清这些过程的特点,针对相应的过程应用相应的规律列方程解题。

例4、如图所示,打桩机锤头质量为M,从距桩顶h高处自由下落,打在质量为m的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为S,那么在木桩下陷过程中泥土对木桩的平均阻力是多少?分析与解:这是一道联系实际的试题。

许多同学对打木桩问题的过程没有弄清楚,加上又不理解“作用时间极短”的含意而酿成错误。

其实打木桩问题可分为三个过程:其一:锤头自由下落运动过程,设锤刚与木桩接Mm触的速度为V0,则据机械能守恒定律得:Mgh=,所以V0=。

其二:锤与木桩的碰撞过程,由于作用时间极短,内力远大于外力,动量守恒,设碰后的共同速度为V,据动量守恒定律可得:MV0=(M+m)V, 所以V=其三:锤与桩一起向下做减速运动过程,设在木桩下陷过程中泥土对木桩的平均阻力为f,由动能定理可得:(M+m)gS-fS=0-,所以f=(M+m)g+.练习:1、如图所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。

最初木板静止,A、B两木块同时以方向水平向右的初速度V0和2V0在木板上滑动,木板足够长, A、B始终未滑离木板。

求:CABV02V0(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B 所发生的位移;(2)木块A在整个过程中的最小速度。

解:(1)木块A先做匀减速直线运动,后做匀加速直线运动;木块B一直做匀减速直线运动;木板C做两段加速度不同的匀加速直线运动,直到A、B、C三者的速度相等为止,设为V1。

对A、B、C三者组成的系统,由动量守恒定律得:解得:V1=0.6V0对木块B运用动能定理,有:解得(2)设木块A在整个过程中的最小速度为V′,所用时间为t,由牛顿第二定律:对木块A:,对木板C:,当木块A与木板C的速度相等时,木块A的速度最小,因此有:解得木块A在整个过程中的最小速度为:2、如图所示为三块质量均为m,长度均为L的木块。

木块1和木块2重叠放置在光滑的水平桌面上,木块3沿光滑水平桌面运动并与叠放在下面的木块2发生碰撞后粘合在一起,如果要求碰后原来叠放在上面的木块1完全移到木块3上,并且不会从木块3上掉下,木块3碰撞前的动能应满足什么条件?设木块之间的动摩擦因数为。

123V0解:设第3块木块的初速度为V0,对于3、2两木块的系统,设碰撞后的速度为V1,据动量守恒定律得:mV0=2mV1对于3、2整体与1组成的系统,设共同速度为V2,则据动量守恒定律得:2mV1=3mV2(1)第1块木块恰好运动到第3块上,首尾相齐,则据能量守恒有:由联立方程得:E k3=6μmgL(2)第1块运动到第3块木块上,恰好不掉下,据能量守恒定律得:由联立方程得:E k3=9μmgL故:二、课后检测1、小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,用细绳连结于小车的A端并使弹簧压缩,开始时AB与C都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C离开弹簧向B端冲去,并跟B端橡皮泥粘在一起,以下说法中正确的是(BCD)A.如果AB车内表面光滑,整个系统任何时刻机械能都守恒B.整个系统任何时刻动量都守恒C.当木块对地运动速度为v时,小车对地运动速度为vD.AB车向左运动最大位移小于L2、质量为M的小车静止在光滑的水平面上,质量为m的小球用细绳吊在小车上O点,将小球拉至水平位置A点静止开始释放(如图所示),求小球落至最低点时速度多大?(相对地的速度)答案:3、如图所示,在光滑水平面上有两个并排放置的木块A和B,已知m A=0.5 kg,m B=0.3 kg,有一质量为m C=0.1 kg的小物块C以20 m/s的水平速度滑上A表面,由于C和A、B间有摩擦,C滑到B表面上时最终与B以2.5 m/s的共同速度运动,求:(1)木块A的最后速度;(2)C离开A时C的速度。

答案:(1)v A=2 m/s (2)v C=4 m/s4、如图所示甲、乙两人做抛球游戏,甲站在一辆平板车上,车与水平地面间摩擦不计.甲与车的总质量M=100 kg,另有一质量m=2 kg的球.乙站在车的对面的地上,身旁有若干质量不等的球.开始车静止,甲将球以速度v(相对地面)水平抛给乙,乙接到抛来的球后,马上将另一质量为m′=2m的球以相同速率v水平抛回给甲,甲接住后,再以相同速率v将此球水平抛给乙,这样往复进行.乙每次抛回给甲的球的质量都等于他接到的球的质量为2倍,求:(1)甲第二次抛出球后,车的速度大小.(2)从第一次算起,甲抛出多少个球后,再不能接到乙抛回来的球.答案:(1)v,向左(2)5个5 两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,。

另有一质量的滑块C,与AB间有摩擦,以的初速度滑到A的上表面,由于摩擦作用,C最后与B以相同的速度运动,求:(1)木块A的最大速度(2)滑块C离开A时的速度解析:当滑块C滑到A上时,AB一起加速,C减速,水平方向ABC系统动量守恒,当C滑到B上时A达最大速度,C在B上继续减速,B继续加速直到BC等速。

由动量守恒定律得得C刚滑到B上时速度为,B与A等速∴点评:系统动量守恒是系统内物体作用过程中任意时刻动量都与初动量相等。

6 一长为,质量为M的木板静止在光滑的水平面上,一质量为的滑块的初速度滑到木板上,木板长度至少为多少才能使滑块不滑出木板。

(设滑块与木板间动摩擦因数为)解析:滑块与木板相互作用系统动量守恒,滑块不从木板上滑出则滑块与木板有相等的末速度。

设末速度为,滑块滑动中位移为S,则木板滑动位移为,由动量守恒定律得①由动能定理得②③由①得④由②③得把④代入得点评:系统内物体间相互作用力对物体的冲量总是大小相等方向相反,相互作用力对两物体做功数值一般不等。

相关文档
最新文档