【精品课件】复合材料层合度分析
复合材料层合结构强度比分析与评价

系 数 最 小 2 0 . 5 2 9 . 6 6 l 1 . 6 3 l l _ 3 2 2 0 . 5 2 1 . 4 7 9 . 0 3 强 度
工程上 , 对于大型储罐 的设计 , 用 国内的最大应力准则比较准确 , 安全。国外 A S ME标 准中的强度 比为 1 . 6的标
准 要 谨 慎 运用 。 关键 词 : 复 合 材 料 强度 准 则 最 小 强度 比 最小 安 全 系 数 中图 分 类 号 : T B 3 3 2 文 献标 识 码 : A 文章 编 号 : 1 0 0 7 — 3 9 7 3 ( 2 0 1 3 ) 0 0 2 - 0 3 0 - 0 2
1 引言
例如: 在 针对 储 罐 设 计 时 , 国 内的一 般 按 结 构 的 层 合 板 的 复合材料越来越被人重视 ,应用 也越来越广 。在复合材 表 观 强度 与实 际表 观应 力之 比进 行 分析 , 一般取 l 0倍 。而 美
料结构设计 中, 结构 的安全性是一个很重要的因素, 也是设计 国的A MS E 标准 , 当容器不在极端条件使用时, 层合板的结构 者 非 常 重 视 的 问题 。 我们 通 常 用 强度 比和 安 全 系数 来 衡 量 结 层 的各 层 在各 种 荷 载 组合 下 的最 小 强度 比 为 1 . 6 , 在 极 端 条 件 构 的安 全 状 况 。 时各 层 最 小 强度 比需 为 2 ,而 内衬 的强 度 比一 般 取 8 ~ 1 0 。这 然而 , 目前 国内外相关标准中有关复合材料层合结构强 两种 强 度 准 则有 很 大 的 区别 。 度 比的准则并不 同。 目前 国外使用的相关准则为“ 蔡. 吴准 则” , 针 对 这 种现 状 , 本 文通 过 建 立 两种 不 同 的有 限 元 模 型 : 一 而 国 内 主要 采 用 最 大 应 力 和最 大 应 变 准 则 。但 是 , 目 前 并 没 类是以层合结构的表观参数输入 的氧化塔筒体的有 限元模型 有专门的理论知识来介绍这两类强度准则的联系与差别。
复合材料PPT课件

随着科技的不断进步和环保意识的提高,未来复合材料将 更加注重环保、可再生、高性能等方向的发展,同时其在 智能制造、新能源等领域的应用也将不断拓展。
02
CATALOGUE
复合材料的组成与结构
基体材料
01
02
03
定义
基体材料是复合材料中连 续相,起粘结、保护增强 材料并传递载荷到增强材 料上的作用。
生物相容性
某些复合材料具有良好的生物相容性 ,可用于医疗器械、人体植入物等领 域。
05
CATALOGUE
复合材料的应用实例
航空航天领域应用
飞机结构
复合材料用于制造飞机机翼、机身和尾翼等结构部件,具 有轻质高强、耐腐蚀、耐疲劳等优点,可提高飞行器的性 能和燃油经济性。
航天器结构
复合材料在航天器结构中也有广泛应用,如卫星、火箭和 空间站等,其轻质高强的特性有助于减轻发射重量和提高 有效载荷。
美观、舒适、环保等特点。
03
动力系统
复合材料可用于制造汽车发动机罩、进气歧管等动力系统部件,具有优
异的耐高温性能和力学性能。
建筑领域应用
建筑结构
复合材料可用于制造建筑结构中的梁、板、柱等承重部件,具有轻质高强、耐腐蚀、耐疲 劳等优点,有助于提高建筑物的抗震性能和耐久性。
建筑装饰
复合材料也可用于制造建筑装饰材料,如墙板、吊顶、隔断等,具有美观、环保、易安装 等特点。
某些复合材料在受到冲击时能 够吸收大量能量,表现出良好
的抗冲击性能。
物理性能
低密度
相对于金属材料,复合材料通常具有较低的 密度,有利于实现轻量化设计。
优异的电绝缘性
某些复合材料具有极佳的电绝缘性能,适用 于电气和电子设备。
材料导论第十四章复合材料ppt课件

复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维
料
编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等
复合材料层合板分析.ppt

NAS121, Workshop , May 6, 2002
WS-3
Problem Description (cont.)
The composite plies are graphite/epoxy tape with a thickness of 0.0054 in. The elastic and strength properties are shown on the right. The failure theorem to be used is Hill.
WORKSHOP Define a Composite Material
NAS121, Workshop , May 6, 2019
WS-1
Problem Description
A 1 in. x 1 in. composite plate is loaded with 2000 #/in. in the Y direction on the top edge, 1000 #/in. in both the X direction and Y direction on the right hand side edge.
c. Click Apply d. Click the Show Label icon
a b
c
NAS121, Workshop , May 6, 2002
WS-7
Step 2. Use mesh seeds to define the mesh density
E11 20e6 E22 2e6 U12 .35
G12 1e6 G13 1e6 G23 1e6 Xt 120 ksi Xc 110 ksi Yt 13 ksi Yc 16 ksi S 14 ksi Sb 5 ksi
第11章复合材料层合板的强度分析

第11章 复合材料层合板的强度力分析复合材料层合板中单层板的铺叠方式有多种,每一种方式对应一种新的结构形式与材料性能。
层合板的应力状态也可以是无数种,因此各种不同应力状态下层合板的强度不可能靠实验来确定.只能通过建立一定的强度理论,将层合板的应力和基本强度联系起来。
由于层合板中各层应力不同,应力高的单层板先发生破坏,于是可以通过逐层破坏的方式确定层合板的强度。
因此,复合材料层合板的强度是建立在单层板强度理论基础上的。
另外,由层合板的刚度特性和内力可以计算出层合板各单层板的材料主方向上的应力。
这样就可以采取和研究各向同性材料强度相同的方法,根据单层板的应力状态和破坏模式,建立单层板在材料主方向坐标系下的强度准则。
本章主要介绍单层板的基本力学性能、单层板的强度失效准则,以及层合板的强度分析方法。
§11.1单层板的力学性能由层合板的结构可知,层合板是若干单向纤维增强的单层板按一定规律组合而成的。
当纤维和基体的性质、体积含量确定后,单层板材料主方向的强度与和其工程弹性常数一样,是可以通过实验唯一确定的。
11.1.1单层板的基本刚度与强度材料主方向坐标系下的正交各向异性单层板,具有4个独立的工程弹性常数,分别表示为:纤维方向(方向1)的杨氏模量1E ,垂直纤维方向(方向2)的杨氏模量2E ,面内剪切模量12G ;另外,还有两个泊松比2112,νν,但它们两个 不是独立的。
这4个独立弹性常数表示正交各向异性单层板的刚度。
单层板的基本强度也具有各向异性,沿纤维方向的拉伸强度比垂直于纤维方向的强度要高。
另外,同一主方向的拉伸和压缩的破坏模式不同,强度也往往不同,所以单层板在材料主方向坐标系下的强度指标共有5个,称为单层板的基本强度指标,分别表示为:纵向拉伸强度X t (沿纤维方向),纵向压缩强度X c (沿纤维方向),横向拉伸强度Y t (垂直纤维方向),横向压缩强度Y c (垂直纤维方向),面内剪切强度S (在板平面内)。
第三讲:复合材料层合板的刚度与强度分析

0 xy
k
xy
等号右边第一项表示层合板中面应变 等号右边第二项表示层合板中面曲率
经典层合板理论
中面的应变为:
aa
u0
0 x
0 y
0 xy
x
aa
v0 y
u0
v0
dz
k 1
zk zk 1
x
y
xy
dz
M
x
M y
M
xy
h
2
x
N
h
2
y xy
zdz
k 1
zk zk 1
x
y
xy
zdz
经典层合板理论
经典层合板理论
经典层合板理论-层合板的合力
层合板上的合力 Nx, Ny , 及Nxy合力矩 是指单位长度上的力或力矩)
(都 M x , M y , M xy
经典层合板理论
合力及合力矩的定义式为:
N
x
Ny
N
xy
h
2
x
N
h
2
y xy
y)
z
w( x, x
y)
v
v0
(
x,
y)
z
w( x, y
y)
式中的 u0,v0,表w 示中面的位移分量,并且只是 坐标 的x,函y 数,其中 为挠w 度函数
5 第五章 复合材料层合板的强度解析

? Xc ? s ? Yc ? sT | ? LT |? S
L ? Xt ? Yt
?? ? ??
(5.1)
3. 蔡—希尔(Tsai-Hill)失效判据
蔡—希尔失效判据是各向同性材料的冯·米塞斯(Von·Mises)屈服失效判
据在正交各向异性材料中的推广。希尔假设了正交各向异性材料的失效判据
具有类似于各向同性材料的米塞斯(Mises)准则,并表示为
? ?Lc
? ?L
?
?
Lt
? ?
? ?T c ? ?T ? ?T t ?(5.2)
由于单层的应力-应变关系一直到破坏都是 线性的,所以式(5.2)中的极限应变可以用相 应的基本强度来表示,即:
| ? LT |? ? LTS
? ?
? Lt
?
Xt , EL
? Lc
?
Xc , EL
?Tt
?
Yt ET
,
?Tc
F ?s2
?
? s 3 2
?
G?s3
?
? s1 2
?
H ?s1
?
? s2 2
?
2L?
2 23
?
2M?
2 31
?
2 N?122
?
1
式中,s1,s2,s3,?23,?31,?12是材料主方向
上的应力分量(见图5.1),F,G,H,L,M,
(5.5)
N称为强度参数,与材料主方向的基本强度有
关。假设该材料的拉压强度相等,材料方向基
? ?s L ?
0
? ?
??s T
? ?
(3.5)
1
? ??? LT ?? ?
GLT ?
复合材料层合板的湿热效应课件

06
复合材料层合板湿热效 应的工程应用案例分析
工程应用背景介绍
复合材料层合板在航 空航天、汽车、船舶 等领域的广泛应用
复合材料层合板湿热 效应的研究意义
湿热环境对复合材料 层合板性能的影响
工程应用案例分析
案例一:航空航天领域中的应 用
复合材料层合板在飞机机身、 机翼等部位的应用
湿热环境对飞机性能的影响及 复合材料层合板的性能变化
数据处理
对实验数据进行整理、分析和处 理,提取关键参数,如吸湿率、
膨胀率、力学性能等。
结果解释
根据实验数据,分析复合材料层 合板在湿热环境下的性能变化规 律,探讨其影响因素,如温度、
湿度、材料组成等。
图表绘制
绘制各种性能参数随环境条件变 化的图表,直观展示复合材料层
合板的湿热效应。
实验结果的优化与应用
。
国外研究现状
国外对于复合材料层合板的湿热效 应研究较早,积累了丰富的经验和 成果,为国内研究提供了有益的借 鉴。
发展趋势
随着科技的不断发展,复合材料层 合板的湿热效应研究将更加深入, 涉及的领域将更加广泛。
主要研究方法与技术手段
研究方法
主要包括实验研究、数值模拟和 理论分析等方法。
技术手段
主要包括X射线衍射、扫描电子显 微镜、红外热像仪等先进技术手 段。
材料力学性能变化机制
湿度和温度都会影响材料的力学性能,包括弹性模量、屈 服强度、拉伸强度等。这些性能变化可能会影响材料在使 用过程中的安全性和可靠性。
03
复合材料层合板的湿热 效应研究现状
国内外研究现状及发展趋势
国内研究现状
国内对于复合材料层合板的湿热 效应研究起步较晚,但近年来发 展迅速,取得了一系列重要成果
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度降低后(3)、(4)中结果可得
x y xy
1,3
5.9401 0.4653 0
Nx h
(MPa)
x
y
xy
2
0 0.0933 0
Nx h
(MPa)
在
作用下层合板1,3板应力
2
计算,由第二步(3)中
x 1,3 82.0697 5.9401
Nx (MPa), h
y 1,3 4.3223 0.4653
Nx (MPa) h
xy 1,3 0
代入校验公式,计算出
Nx 45.53(MPa) h 1,3
将其代入第二步(6)的结果中,得 为
2
x
y xy
1,3
2
352.52
试求三层正交各向异性层合板图示载荷
二、问题分析
由正交各向异性单层板平面问题的广义胡克定律可得:
(2)由n层复合材料单层板构成的复合材料层合板自然坐标系内力、内力矩-应 变、曲率关系(见教材P167)可计算层合板拉伸刚度矩阵A
24.42 4.58 0
A
n
Qk (zk
zk
1)
h
4.58
48.78
0
(GPa)
k 1
0 0 8.62
0.0417 0.0039 0
A1
1 h
0.0039 0
0.0209 0
0
(GPa
1)
0.1160
0 x
0 y
0 xy
A1
Nx Ny N xy
0.0417 103
0.0039
103
0
Nx h
式中,Nhx的单位是Mpa;Aij1的单位是 GPa1
0.1508%
第三步,第一次刚度降低后层合板性能的确定 当 Nx 36.17MPa时,外层1,3单层板未发生破坏,其单层板刚度举证保持不变
h
内层板2在该层板层内横向(层内x轴方向)破坏,但纵向仍然有刚度:
0
0
0
0
0
0
0
0
E1 1 12
0
21
0
0
G12
2
0
54.87 0
0 (GPa) 0 2
各单层板的应力计算:
x
y
xy
1,3
A1,3
0 x
0 y
0 xy
1,3
2.269 0.1195 0
Nx h
(MPa)
x
y
xy
2
A2
0 x
0 y
0 xy
0.7465 0.0230 0
Nx h
(MPa)
层合板内第一次单层板破坏载荷的确定: 对层合板内单层板采用蔡-希尔理论的强度条件式(5.4.13)P186 (1)外层1,3板。
0
(GPa
1)
0.6944
0 x
0 y
0 xy
0.1084 103
0.0017
103
0
Nx h
第一次刚度降低后,外层破坏与否检验。当 单层板1,2,3的应力将增加为:
时,当层板2的刚度降低,
x
y
xy
1,3
5.9401 0.4653 0
Nx h
(MPa)
x
y
xy
2
0 0.0933 0
Nx h
(MPa)
对单层板1,3采用蔡-希尔强度理论条件式5.4.13P146可计算得 Nx 1,3 57.6961MPa h
对单层板2采用蔡-希尔强度理论条件式5.4.13P146可计算得
Nx 11.08MPa h2
显然在第一次刚度降低之后,并没有发生连锁破坏,层合板仍然具有承受载荷 的能力。
x
y
xy
1,3
1
82.0697
4.3223
0
1
(MPa)
x
y
xy
2
1
27.0009
0.8320
0
1
(MPa)
0 x
0 y
0.1508 102
0.0141102
0 xy
0
结果表明,当
Nx h
36.17MPa时, x
1
正是由于复合材料层合板的强度分析的复杂性,工程计算一 般只确定其极限载荷。下面将通过一个实例来说明复合材 料层合板极限载荷的确定。
经典层合板基本理论
一:问题提出:
如下图6.16所示三层复合材料层合板,其总厚度为h=12t,顶层单 层板1和底层单层板3的厚度为t,中间等层板2的厚度为10t,所有 层合板材料均为玻璃/环氧树脂增强复合材料,其性能为:
第一次刚度降低后,计算层合板拉伸刚度矩阵A
9.15 0.76 0
A
n
Qk (zk
zk1
)
h
0.76
48.78
0
(GPa)
k 1
0 0 1.44
(3)第一次刚度降低后,层合板拉伸刚度逆矩阵 A1、应变列矩阵 0的计
算
0.1084 0.0017 0
A1
1 h
0.0017 0
0.0205 0
25.51
(MPa)
0
显然,外层单层板1,3中 y =25.51MPa,基本接近 x =352.52MPa,远小
于 Xt 1034MP,A由此断定单层板1,3是横向(y方向)的破坏
复合材料层合板强度分析实例
复合材料层合板作为构成复合材料单层板按一定方式粘合而 成的整体结构单元,其强度主要是通过构成复合材料单层 板的强度来预测的。即:将构成复合材料单层板的强度作 为已知,以构成复合材料单层板的强度为基础,从而实现 复合材料层合板的强度分析。
复合材料单层板的强度分析与各向同性金属材料的分析不同 ,其主要原因是复合材料层合板的非均质性和各向异性使 得其强度分析十分复杂;某已构成复合材料单层板的破坏 ,虽然使得层合板刚度下降,但并不一定导致层合板整体 结构单元的破坏。
x
1,3
2.269
Nx h
(MPa),
y
1,3
0.1195
Nx h
(MPa), xy
1,3
0
0 ,
2 x
X
2 t
x
X2 tyFra bibliotek2 y
Yt 2
1
代入相关数值进行计算,容易求得:
Nx
203.49MPa
h 1,3
(2)内层2单层板,仿照上步中的方法,可得:
N x 36.17MPa h2
以1,3上破计坏算,结显果然表,明层当合N板hx 第36.一17M次Pa 破时坏,载内荷层为2单36层.1板7M破Pa坏。;此当时N对hx 应203的.49M个Pa单时层,板外应层力板, 应变的计算如下:
1
及上式
x
y xy
1,3
2
x
y xy
1,3
1
x
y
xy
1,3
82.0697 5.9401
4.3223
0.4653
0 1 0
Nx (MPa h
第四步,外层发生破坏时内力增量 ( N)1 的确定 对单层板1,3采用蔡-希尔理论的强度条件式(5.4.13),可得