7.2二次根式第2课时教学设计
《二次根式(第2课时)》精品教案

第2课时二次根式的化简1.掌握积的算术平方根的性质,并会根据性质把二次根式化简;(重点) 2.理解最简二次根式的概念,并会把二次根式化为最简二次根式.(重点,难点)一、情境导入计算:(1)4×9,4×9;(2)16×25,16×25.观察计算结果,上述每组式子计算结果有什么关系?由此你能猜想什么结论成立?二、合作探究探究点一:积的算术平方根的性质【类型一】利用积的算术平方根的性质进行二次根式计算或化简化简:(1)196×0.25;(2)(-19)×(-6481);(3)225a6b2(a≥0,b≥0).解析:利用积的算术平方根的性质,把它们化为几个二次根式的积,(2)小题中先确定符号.解:(1)196×0.25=196×0.25=14×0.5=7;(2)(-19)×(-6481)=19×6481=19×6481=13×89=827; (3)225a 6b 2=225·a 6·b 2=15a 3b .方法总结:利用积的算术平方根的性质进行计算或化简,其实质就是把被开方数中的完全平方数或偶次方开出来,要注意的是,如果被开方数是几个负数的积,先要把符号进行转化,如(2)小题.【类型二】 利用积的算术平方根的性质确定字母的取值范围若a 2-a 3=a 1-a 成立,则a 的取值范围是( )A .a ≥0B .a >0C .a ≥1D .0≤a ≤1 解析:a 2-a 3=a 2(1-a )=a 2·1-a =|a |·1-a ,又a 2-a 3=a 1-a ,所以⎩⎨⎧a ≥0,1-a ≥0.解得0≤a ≤1,故选D. 方法总结:利用积的算术平方根的性质确定字母的取值范围时,根据积的算术平方根的性质得出的每一个因式(包括被开方数)都是非负数,再列不等式(组)求解.【类型三】 逆用积的算术平方根的性质比较大小比较大小:35与5 3.解析:把根号外的因式移到根号内,比较两个被开方数的大小.解:∵35=32×5=45,53=52×3=75,∵75>45,∴35<5 3.方法总结:比较两个二次根式的大小,可以逆用积的算术平方根的性质,把根号外的因式移到根号内,直接比较两个被开方数的大小,对于两个正数,被开方数大的数较大.探究点二:最简二次根式【类型一】最简二次根式的判定下列二次根式中,最简二次根式是( ) A.8a B.3aC.a3D.a2+a2b解析:A选项中8a含能开得尽方的因数4,不是最简二次根式;B选项是最简二次根式;C选项a3中含有分母,不是最简二次根式;D选项a2+a2b中被开方数用提公因式法因式分解后得:a2+a2b=a2(1+b)含能开得尽方的因数a2,不是最简二次根式;故选B.方法总结:最简二次根式必须同时满足下列两个条件:①被开方数中不含能开得尽方的因数或因式;②被开方数不含分母.判定一个二次根式是不是最简二次根式,就是看是否同时满足最简二次根式的两个条件,同时满足的就是最简二次根式,否则就不是.【类型二】二次根式的化简把下列各式化成最简二次根式.(1)500;(2)3a2b3;(3)2512;(4)23ab2.解析:(1)先将500分解质因数,再根据积的算术平方根的性质,把能够开尽方的因数100移到根号外;(2)根据积的算术平方根的性质,把能够开尽方的因式a2b2移到根号外;(3)把被开方数的分子、分母同时乘以3,把分母化为一个完全平方数,再把能开得尽方的部分移到根号外;(4)把被开方数的分子、分母同时乘以3a,把分母化为一个数的平方,再把分母移到根号外.解:(1)500=100×5=105;(2)3a2b3=3b·a2b2=|a|b3b;(3)2512=25×312×3=563;(4)23ab2=2×3a3ab2·3a=6a3ab.方法总结:把二次根式化成最简二次根式时,如果被开方数不含分母,则把被开方数尽量写成一个数的平方的形式,再利用积的算术平方根的性质化简;如果被开方数含有分母,可把分子、分母同乘以一个数,把分母化为一个数或式的平方的形式,再把分母开方后移到根号外,与此同时,分子中能开方的也要移到根号外.三、板书设计1.积的算术平方根的性质2.最简二次根式通过积的算术平方根与算术平方根的积的运算引入积的算术平方根的性质,让学生归纳总结出结论,并运用于化简.对于被开方数含有分母的二次根式化为最简二次根式是本节课的难点,引导学生根据分式的基本性质把分母化为一个数或式的平方,并让学生加强训练.。
二次根式第二课时教案

二次根式第二课时教案教学目标:1. 理解二次根式的性质和运算法则。
2. 能够进行二次根式的化简、加减、乘除运算。
3. 能够应用二次根式解决实际问题。
教学重点:1. 二次根式的性质和运算法则。
2. 二次根式的化简、加减、乘除运算。
教学难点:1. 二次根式的化简和运算。
教学准备:1. 教学PPT。
2. 练习题。
教学过程:一、导入(5分钟)1. 复习一次根式的性质和运算法则。
2. 引入二次根式的概念,引导学生思考二次根式的性质和运算法则。
二、新课讲解(15分钟)1. 讲解二次根式的性质,如:二次根式中的被开方数相同,则两个二次根式相等;二次根式的乘除法法则,如:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$,$\sqrt{a} \div \sqrt{b} = \sqrt{\frac{a}{b}}$。
2. 讲解二次根式的化简方法,如:$\sqrt{a^2} = |a|$,$\sqrt{a^3} = a\sqrt{a}$。
三、案例分析(10分钟)1. 分析案例:化简二次根式$\sqrt{16}$。
解答:$\sqrt{16} = 4$。
2. 分析案例:计算二次根式的加减法$\sqrt{3} + \sqrt{5}$。
解答:无法合并,保持原样。
3. 分析案例:计算二次根式的乘除法$\sqrt{2} \times \sqrt{6}$。
解答:$\sqrt{2} \times \sqrt{6} = \sqrt{12} = 2\sqrt{3}$。
四、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
五、总结与反思(5分钟)1. 总结二次根式的性质和运算法则。
2. 反思自己在解题过程中的优点和不足。
教学延伸:1. 二次根式的混合运算。
2. 应用二次根式解决实际问题。
教学反思:本节课通过导入、新课讲解、案例分析、课堂练习和总结与反思等环节,让学生掌握了二次根式的性质和运算法则。
在教学过程中,要注意引导学生主动思考,培养学生的动手能力。
《二次根式》第2课时示范课教学设计【人教八数下册】

《二次根式》教学设计
第2课时
一、教学目标
1. 探究二次根式的性质,并理解其意义;;
2. 会运用二次根式的性质进行化简计算;
3. 在探究、讨论的过程中学会由特殊到一般地归纳方法;
4. 在解决实际问题中培养分类讨论的思想.
二、教学重难点
重点:理解二次根式的性质.
难点:二次根式性质的灵活运用.
三、教学用具
多媒体课件等.
四、教学过程设计
【探究】填空:
观察等式的两边,你能得到什么启示?
()()
222
2
12=______0.1=______22=______0=______3⎛⎫ ⎪⎝⎭
; ; ; ;
性质2: .
答案:(1)2;0.1;(2)2
3;0.
启示:性质2:()2
0a a a =≥
做一做: 计算下列各式:
()(
)
()()
()2
2
10.142330.0004.--; ;
()
(
)
2
10.14
=0.14解:;
()()
()2
2
23=13=3-
-⨯;
()()
2
30.0004=0.02=0.02.-
-
-
归纳:代数式的概念
形如5、a 、a +b 、ab 、、-x 3、
、
(a ≥0)的
式子,它们都是用基本运算符号(包括____、____、____、____、____和____)把数或表示数的字母连接起来的式子,称为代数式.
答案:加、减、乘、除、乘方、开方 【例1】计算:。
7.2二次根式的加减法教学设计

7.2二次根式的加减法【学习目标】1、通过自主探究概括同类二次根式的概念及二次根式加减法法则。
2、了解同类二次根式的概念,会识别同类二次根式。
3、会利用法则进行二次根式的加减运算。
【学习重点】同类二次根式的概念及二次根式加减运算法则。
【学习难点】熟练进行二次根式加减法的运算。
【教学过程】一、复习回顾1、同类项的特点?如何合并同类项?2、如何进行整式的加减运算?3、计算:(1)a +2b -b +2a , (2)2223a b ba ab +-二、自主学习(一)问题:1、什么是同类二次根式?2、判断是否同类二次根式时应注意什么?3、如何进行二次根式的加减运算?根据上面三个问题,自学课本第10页至11页例1以上的内容。
三、合作探究根据自学内容,完成下面的题目,未解决的小组合作解决。
1、试观察下列各组式子,哪些是同类二次根式:(1)2322与 (2)32与(3)205与 (4)1218与2、判断:被开方式不同的几个二次根式,一定不是同类二次根式。
( )3、下列二次根式中,哪些是同类二次根式?4、几个二次根式化成_______________后,如果它们的________相同,那么这几个二次根式称为同类二次根式。
同类二次根式可以像________那样进行合并。
5、二次根式相加减,应先把各个二次根式化成___________,然后把_____________分别合并。
四、自主学习(二)例1、计算:例2、五、有效训练1、做课本第11页练习2.2、计算:(1)((2)2(3六、精讲点拨1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断。
2、二次根式的加减分三个步骤:①化成最简二次根式;②找出同类二次根式;③合并同类二次根式,不是同类二次根式的不能合并。
七、拓展提升教师节到了,为了表达对老师的敬意,八(一)班做了两张大小不同的正方形壁画送给老师,其中一张面积为800平方厘米,另一张面积为450平方厘米,该班团支书小芳想如果再用金彩带把壁画的边镶上会更漂亮,她现在有一条长1.2米的金彩带,请你帮忙算一算,她的金彩带够用吗?若不够用,还需要购买多长的金彩带?八、总结反思学生总结本节课主要学习了哪些内容?并说出应注意什么问题,解决问题的步骤是什么?九、达标测试:1、选择题(1中,与是同类二次根式的是().A.①和② B.②和③ C.①和④ D.③和④(2与3m-)1.414,≈结果保留整数位)A.m=2,n=2 B.m=2,n=1 C.m=1,n=2 D.m=6,n=1(3)若x y==则x+y的值为().A..C.a+b D.a-b(4)下列计算:=;②2+=;③=;④=)A.1 B.2 C.3 D.42、计算:(1)38550(2)112130.5327十、作业A组(必做):课本11习题A组1、2、3题。
最新冀教版八年级数学上册《二次根式第2课时》教学设计(精品教案)

15.1 二次根式(第2课时)〖教学目标〗(-)知识目标1.探究二次根式的性质2.根据二次根式的性质将二次根式化简.3.了解最简二次根式的概念.(二)能力目标1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识. (三)情感目标通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心〖教学重点〗1.二次根式的性质及运用.〖教学难点〗二次根式的化简.〖教学过程〗一、课前布置自学:阅读课本P93~P94,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).二、师生互动1.理解积的算术平方根的性质,必须注意:(1)被开方数的每一个因子或因式必须是非负数,没有这个条件,性质不成立.(2)这个公式的作用是化简二次根式,如果被开方数中有的因式(或因子)能开得尽方,a (a ≥0),将这些因式(或因子)开出来,因此化简二次根式时,一般先将被开方数进行因式分解或因子分解.(3)积的算术平方根的性质对于当因子是三个或三个以上时仍然成立. 如:abcd = a ·b ·c ·d (a ≥0,b ≥0,c ≥0,d ≥0).(4)积的算术平方根的性质反过来,就得到二次根式的乘法公式,即a ·b =ab (a ≥0,b ≥0),运用这个公式可以进行简单的二次根式的乘法运算.2. 二次根式的性质:ab =a ·b (a ≥0,b ≥0),b a =ba (a ≥0,b>0). (三)利用性质化简[师]利用你自学的知识,说一说什么样的二次根式需要化简[生]被开方数中能分解因数.且有些因数能开出来.这时就需要对其进行化简.[生]被开方数中含有分母,需要化简,化简后被开方数中没有了分母. 如:22424221=== [师]如果被开方数中含有分母,要把分子分母同时乘以某一个数,使得分母变成一个能开出来的数,然后把分母开出来,使被开方数中没有了分母.(鼓励学生讲解教师提供的例题)如: ;339393333131===⨯⨯= .2272249224924910495104952=⨯=⨯==⨯=⨯ .3191182182;214112131213;66666621622=====⨯=⨯=⨯=⨯=巩固练习:化简:(1)27; (2)45;(3)128;(4)54;(5)932;(6)16125. (四)最简二次根式[师生共析]最简二次根式所满足的条件:条件一,即为被开方数不含分母;条件二,即为被开方数的每一个因子或因式的指数都小于根指数.要判断一个根式是否为最简二次根式,两个条件缺一不可(五)引导学生小结:1.化二次根式为最简二次根式的方法:(1)如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简.(2)如果被开方数是整数或整式,先将它分解因子或因式,然后把能开得尽方的因子或因式开出来,从而将式子化简.2. 二次根式的化简应注意以下问题:(1)被开方数含有带分数,通常化成假分数.(2)被开方数是和、差的形式,应把它分解因式,化成积的形式.(3)根号内的分子或分母移到根号外时,应保留其对应的位置(即原来是分母的移到根号外后还是分母).(4)在整个化简过程中应注意符号问题,特别是注意被开方数是非负数这个隐含条件.练习:1 下列各式中哪些是最简二次根式?哪些不是?并说明理由.(1)3.0;(2) x 27;(3) 22y x +;(4)b a 28; (5)2a ;(6)x -(x≤0);(7) 42a a + 本题考查最简二次根式的定义,解题思路是根据二次根式的定义逐个判断.1.解 只有(3)、(5)、(6)是最简二次根式.理由: (1)3.0中的0.3不是整数,所以3.0不是最简二次根式; (2) x 27中的27x =32·3x ,因数含有能开得尽方的因数,所以不是最简二次根式. (3) b a 28的8a 2b =(2a)2·2b ,因式含有能开得尽方的因数,所以不是最简二次根式; (4) 42a a +中的a 2+a 4=a 2(1+a 2),因式含有能开得尽方的因数,所以不是最简二次根式;总结 本题的易错点是误认为22y x +,2a 不是最简二次根式,误认为3.0是最简二次根式.三、补充练习〖巩固练习〗1. 下列各式:38,327-,)4(-,42a ,4,122++a a ,12-a (a<21),22+a 中是二次根式的有. 2. x 为何值时,下列各式在实数范围内有意义. (1)32+x ; (2)x 31-; (3)2)5(-x .3. 计算下列各式: (1)(15)2; (2)251⎪⎭⎫ ⎝⎛-; (3)(2x )2.〖答案提示〗1.分析:本题考查二次根式的定义,解题思路是根据二次根式的定义去判断.解 ∵ 38,327-,42a 的根指数不是2,∴ 它们不是二次根式.∵ 在)4(-中,被开方数-4<0,∴ )4(-不是二次根式. ∵ 在12-a 中的被开方数2a-1有可能小于0,∴ 12-a 不是二次根式.∵ 在4中,被开方数4>0,∴ 4是二次根式.∵ 在122++a a =2)1(+a 中被开方数(a+1)2≥0,∴122++a a 是二次根式.∵ 在22+a 中被开方数a 2+2>0,∴ 22+a 是二次根式. 总结 本题的易错点是忽视二次根式中被开方数是非负数的隐含条件,注意这个隐含条件是本题的解题关键.2.解 (1)2x+3≥0,即x ≥-23.∴ 当x ≥-23时,32+x 有意义. (2)1-3x ≥0,即x ≤31.∴ 当x ≤31时,x 31-有意义. (3)∵ x 不论取何实数,总有(x-5)2≥0,∴ x 为任意实数,2)5(-x 有意义.3.分析:(1)由(a )2=a(a ≥0)直接可得,(2)要注意应先计算251⎪⎭⎫ ⎝⎛-,然后再求算术平方根,(3)根据积的乘方法则,这里2也要平方.解 (1)(15)2=15; (2)251⎪⎭⎫ ⎝⎛-=251=51; (3)(2x )2=22×(x )2=4x.[总结 本题的易错点是第(3)小题的2不平方,错成(2x )2=2x.四、作业布置:P94 习题1、2、3五、教学反思:。
数学人教版八年级下册《二次根式(2)》教学案

1 / 2优质资料---欢迎下载16章《二次根式》二次根式(2)备课:马勇 审核:赵帅,刘明清,李勇,陈士健学习目标:a≥02=a (a≥0),并利用它们进行计算和化简.通a≥0)是一个非负数,用具体)2=a (a≥0);最后运用结论严谨解题. 学习过程: 一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a≥0a<0时,有意义吗? 老师点评(略). 二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;2=_______;2=______;)2=_______;2=______;2=_______;)2=_______.是4是一个平方等于4)2=4.同理可得:2=2,2=9,2=3,2=13,)2=72,)2=0,所以例1 计算1.22.(23.24.)2分析)2=a (a≥0)的结论解题.解:)2 =32,(2 =32·2=32·5=45,2=56,)274=.三、巩固练习计算下列各式的值:22 (4)2)2()2 22-四、应用拓展例2 计算1.2(x≥0)2.23.24.)2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的42=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥0,∴(2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥0)2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.)2=a(a≥0);反之:a=)2(a≥0).六、布置作业1.教材P5复习巩固2.(1)、(2)7.2/ 2。
7.2 二次根式(第2课时)教学设计

第二章 实数7.二次根式(第2课时)教学目标:1.通过对公式的反向运用,达到化简的目的.学会一种特殊的思考方法.3.在探究、合作活动中,发展学生探究能力和合作意识.4.通过对公式的逆运用,感受数学的严谨性以及数学结论的确定性. 教学过程第一环节:复习引入内容:复习算术平方根的概念,并提出问题:下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算率解释它吗?点明本节课研究课题 第二环节:知识探究1.在上一课时探究的公式的基础上明晰二次根式乘除的运算法则:b a b a ⋅=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0). 2.提出问题:能否根据该公式将8化成22?例3 计算:(1)326⨯;(2)236⨯;(3)52。
说明:常常把要被开方数的分子与分母同乘以一个适当的数,使得分母成为一个平方数.第三环节:巩固练习例4 计算:(1)3322⨯(2)5312-⨯;(3)2)15(+;(4))313)(313(-+;面积面积(5)3)3112(⨯-;(6)2188+。
解:(1)3322⨯=32⨯⨯32⨯=66;(2)5312-⨯=5312-⨯=536-=6-5=1;(3)2)15(+=152)5(2++=5+52+1=6+52;(4))313)(313(-+=223)13(-=4;(5)3)3112(⨯-516136331312=-=-=⨯-⨯=; (6)2188+5329421828=+=+=+=。
例5 计算:(1(2)515-;(3) 课堂练习1:1.化简:(1)18;(2)25;(3)7533-;(4)2112-.(5)6)334(⨯+ 第四环节:知识拓展﹡课堂练习2:化简:(1)128; (2)9000; (3)48122+;(4)325092-+; (5)5145203--; (6)3223+. 第五环节:课堂小结在进行根式乘除运算时,你有哪些体会与收获?。
二次根式第2课时教学设计

2.7.2二次根式一、板书课题二、出示目标1.使学生能够利用积和商的算术平方根性质的反用进行二次根式的加减乘除运算.2.让学生理解实数的运算法则和运算律对于二次根式同样适用.3.学会运用把不是最简二次根式的要化成最简二次根式,如果被开方数相同,应当将这些项合并.三、自学指导自学指导认真看课本4543-P “随练”以上的内容,要求:1.二次根式的乘法法则和除法法则是什么?2.例3各题分别运用了什么原则?3.例4第一步各运用了什么运算律和公式4.例5中最后一步是否最简(5分钟后检测)四、学1.自学五、测与导1.问题一:二次根式的乘除法法则分别是什么?(用字母表示))0,0(≥≥=⋅b a ab b a )0,0(>≥=b a ba b a2、依据上面的法则,下面的式子你会计算吗?例3计算:教师引导学生尝试着直接运用法则进行二次根式的乘除法运算,可以作适当点拨.师:在二次根式的运算中,能约分的可以先约分,运算结果必须都是最简二次根式即:根号中不含分母;分母中不含根号;被开方数中不含能开得尽方的因数或因式.同样的,二次根式也可以进行加减运算,它和以前学过的实数的运算法则、运算律仍然适用.下面的计算不妨试一试?有困难的可以和同学交流.3、学生板演例4计算:教师引导对于有些二次根式的运算可以运用完全平方公式和平方差公式使计算简便,这就要在解题之前观察式子的特点。
注:对于化简运算的结果中,如果被开方数相同,应当将这些项合并.根号前面是带分数的要化成假分数.4、学生板演例5计算:5、小结六、练P随堂练习必做题45P知识技能1选做题45教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 实数
7.二次根式(第2课时)
一、学生起点分析
在前面,学生已经掌握了实数的概念,实数的运算法则;学会了利用公式:b a b a ⋅=⋅(a ≥0,b ≥0),b
a b a
=(a ≥0,b >0)进行简单的实数四则运算.本课时更多的是反用上面的公式,因此,上一课时知识成为本课时很好的知识基础。
二、教材任务分析
二次根式(第2课时)是义务教育课程标准北师大版实验教科书八年级上册
第二章《实数》第7节内容.本节内容分为3个课时,本课时是第2课时,基于第1课时二次根式的性质得到二次根式乘除的法则以及加减运算的法则,进而利用它们进行二次根式的运算,经历本节课的学习,学生将对实数的运算,有较全面的了解,同时进一步熟练实数的运算,为今后的学习打下坚实的基础.本节课的教学目标是:
1.通过对公式的反向运用,达到化简的目的.学会一种特殊的思考方法.
3.在探究、合作活动中,发展学生探究能力和合作意识.
4.通过对公式的逆运用,感受数学的严谨性以及数学结论的确定性.
三.教学过程设计
本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究; 第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;
第一环节:复习引入
内容:复习算术平方根的概念,并提出问题:下面正方形的边长分别是多少?
这两个数之间有什么关系,你能借助什么运算法则或运算率解释它吗?
点明本节课研究课题 面积8 面积2
意图:借助复习,在巩固旧知的同时,导入新课。
第二环节:知识探究
1.在上一课时探究的公式的基础上明晰二次根式乘除的运算法则:b a b a ⋅=⋅(a ≥0,b ≥0),b a b a =(a ≥0,b >0). 2.提出问题:能否根据该公式将8化成22?
例3 计算:
(1)326⨯;(2)2
36⨯;(3)52。
解:
(1)略
(2)23
6⨯=236⨯=236⨯=9=3 (3)52
==52=5
552⨯⨯=510 说明:常常把要被开方数的分子与分母同乘以一个适当的数,使得分母成为一个平方数.
第三环节:巩固练习
例4 计算:
(1)3322⨯(2)5312-⨯;(3)2)15(+;(4))313)(313(-+;
(5)3)3112(⨯-;(6)2
188+。
解:(1)3322⨯=32⨯⨯32⨯=66;
(2)5312-⨯=5312-⨯=536-=6-5=1;
(3)2)15(+=152)5(2++=5+52+1=6+52;
(4))313)(313(-+=223)13(-=4;
(5)3)3112(⨯-51613633
1312=-=-=⨯-⨯=;
(6)2188+5329421828=+=+=+=。
意图:从本例开始,正式进行二次根式的加减乘除运算,但设计时注意了题目的梯度。
本例还侧重于乘除法运算,只是已经开始考虑有关运算律和公式的运用了(如交换律、结合律、分配率、乘法公式等);教学中,注意体会这些题目之间的层次性,教学中务必循序渐地开展相关技能训练,让更多的学生感受到成功的喜悦,循序渐进地发展学生的学力。
例5 计算:
(1)483+;(2)5
15-;(3)4(3)63+⨯。
解:(1)483+=1633⨯+=1633⨯+=433+=53;
(2)515-=2555-=2555-=555-=554; (3)4(3)63
+⨯46368182232523=⨯+⨯=+=+=。
课堂练习1:
1.化简:(1)18;(2)2
5;(3)7533-;(4)2112-.(5)6)334(⨯+ 第四环节:知识拓展
﹡课堂练习2:
化简:(1)128; (2)9000; (3)48122+;
(4)325092-+; (5)5145203--; (6)3223+. 解:(1)2828264264128=⨯=⨯=⨯=;
(2)1030103010900109009000=⨯=⨯=⨯=;
(3)48122+
=34322316342316342⨯+⨯⨯=⨯+⨯⨯=⨯+⨯
383434=+=;
(4)32509
2-+ =234242532216225322162259
2
=-+=⨯-⨯+=⨯-⨯+; (5)5145203-
- =551455535625
55954325559543=--=-⨯-⨯⨯=-⨯-⨯; (6)66536269
64696463223=+=+=+=+. 第五环节:课堂小结
在进行根式乘除运算时,你有哪些体会与收获?
五、教学反思
本节课提出了最简二次根式,给出了二次根式化简成最简二次根式的常用方法.同学们需通过练习认真体会各类方法,做到能灵活运用.为今后的学习打下基础.
本节课的教学设计中考虑了学生的层次不同,对知识的要求也不同,因此增加了知识拓展的内容,供层次高一些的学生及班级选用.。