单相正弦波波逆变器的设计与实现开题报告
单相正弦波变频电源设计开题报告

毕业设计(论文)开题报告单相正弦波变频电源设计
系部:
专业:
学生姓名:
指导教师:
开题时间:2012 年3月26 日
一、总体说明
在开题报告中要求给出你对课题的理解,类似的研究在国内外的进展情况,你对系统设计的初步设想,主要需要解决的技术难题和解决思路,同时应给出课题的时间安排。
二、开题报告内容
1.毕业设计(论文)课题的目的、意义、国内外现状及发展趋势
2.课题主要工作(设计思想、拟采用的方法及手段)
3.完成课题的实验条件、预计设计过程中可能遇到的问题以及解决的方法和措施
4.毕业设计(论文)实施计划(进度安排)
5.参考文献
三、撰写要求
1.报告字数不少于3000字
2.报告内容一律用A
纸打印
4
3. 上交时间为毕业设计第三周周末。
全国大学生电子设计竞赛设计报告单相正弦逆变电源

单相正弦逆变电源摘要:本作品设计了由STM32输出SPWM信号控制的逆变电源,实现以12V 直流电源输入,36V正弦交流电输出。
本电源采用Boost升压和全桥逆变两级变换,在前级Boost升压电路中,采用UC3842芯片进行PWM控制。
逆变部分采用IR2110驱动芯片及MOS开关管进行全桥逆变,可直接通过程序进行SPWM调制,从而改变交流输出频率。
输出交流信号通过AD637进行有效值转换后,再由STM8单片机进行模数转换,并将电压值等工作状态显示在LCD12864上。
在电路保护上,采取了过压过流保护,增强了该电源的可靠性和安全性。
经测试,该电源输出信号稳定、效率高,有良好的人机交互界面,是理想的单相正弦逆变电源解决方案。
关键词:单相正弦波逆变、SPWM、Boost升压、全桥逆变Single Phase Sine Inverter Power SupplyAbstract: this work was designed by STM32 output SPWM control signal of inverterpower supply, implementation to the 12 v dc power input, 36 v sinusoidal alternating currentoutput. The power supply adopts the Boost booster and full bridge inverter two-stagetransformation, in the first level Boost booster circuit, using UC3842 PWM control chip. Inverterpart driven by IR2110 chip to the full bridge inverter and MOS switch tube, can be directlyprogrammed for SPWM modulation, which changes ac output frequency. Output ac signalthrough the AD637 RMS conversion after, again by STM8 modulus conversion, single-chip andvoltage value on work status display LCD12864, etc. On the circuit protection, adopted theover-voltage and over-current protection, enhance the reliability and security of the powersupply. After test, the power supply output signal stability, high efficiency, has the goodhuman-computer interaction interface, is the ideal single-phase sine inverter power supplysolutions.Keywords: Single-phase sine wave inverter, SPWM, Boost booster, Full bridge inverter目录3 1. 设计任务及要求 ......................................................................................................1.1 设计任务 (3)1.2 设计要求 (3)4 2. 总体方案设计 ..........................................................................................................2.1 方案论证与选择 (4)2.1.1 DC-DC变换器方案论证及选择 (4)2.1.2 DC-AC变换器方案论证及选择 (5)2.1.3 辅助电源方案论证及选择 (5)2.2 整体方案 (6)7 3. 单元模块设计 ..........................................................................................................3.1 DC-DC变换器设计 (7)3.2 DC-AC逆变器设计 (8)3.3 SPWM设计 (9)3.3.1 SPWM波的原理 (9)3.3.2 实现方法 (10)3.4 真有效值转换电路设计 (11)3.5 辅助电源设计 (12)13 4. 控制程序设计 ........................................................................................................4.1 STM8控制及状态显示程序流程 (13)4.2 STM32 SPWM控制程序流程 (14)14 5. 系统调试 ................................................................................................................5.1 软件调试 (14)5.2 硬件调试 (15)16 6. 系统功能及指标参数 ............................................................................................6.1 测试仪器 (16)6.2 测试项目及结论 (16)7. 设计总结 ................................................................................................................1617参考文献 .....................................................................................................................1. 设计任务及要求1.1 设计任务设计并制作输出电压为36VAC的单相正弦波逆变稳压电源。
单相正弦波逆变电源设计简易报告

单相正弦波逆变电源设计简易报告一、任务设计并制作输出电压为36V AC 的单相正弦波逆变电源,输入为12VDC 电源,负载为阻性。
结构框图如下图所示。
DC/AC 变换滤波器U iU oI i I o R L二、要求:2.1 基本要求(1)在额定输入电压U i =10~14.5V 下,输出电压U ORMS =36±0.5V ,频率0.5Hz 50±=O f ,额定满载输出功率50W ;(2)输出正弦波电压,THD ≤3%; (3)满载情况下,逆变效率η≥83%;(4)具有输入过压、欠压保护功能,欠压保护点9±0.5V ,过压保护点16±0.5V 。
当满足过压、欠压条件时,关闭输出;(5)输出过流保护功能,动作电流I o =1.6±0.1A 。
2.2 发挥部分(1)进一步提高逆变器效率,η≥95%; (2)输出正弦波电压THD ≤1%; (3)输出频率可调20~100Hz ;(4)具有输出短路保护功能,可自恢复,具有工作及保护指示; (5)其他。
三、说明1. 输入电源可来自直流稳压电源,或者采用调压器+隔离变压器+整流+滤波得到;2. 系统供电全部采用U i 供给,不得另外提供其他电源。
3. 不得使用电源类产品改制,不得采用各种电源和逆变模块,不得采用各类集成功率放大电路。
4. 不得采用SPWM 专用芯片。
5. 注意作品制作工艺,留出测试端口。
6. 尽可能降低制作成本。
7. 测试开始后,不允许对电路进行任何调整。
四、评分标准项目评分报告1. 方案论证2.关键技术指标的设计保证措施及关键技术分析等。
3.单元电路的工作原理,必要的理论计算等。
4. 测试方法及测试数据分析等。
5. 报告的完整性和规范性30分基本部分完成(1)21分完成(2)10分完成(3)10分完成(4)6分完成(5)3分发挥部分完成(1)12分完成(2)12分完成(3)12分完成(4)9分完成(5)5分。
正弦波逆变电源的研究与设计的开题报告

正弦波逆变电源的研究与设计的开题报告一、选题背景逆变电源是将稳定的直流电源转化为交流电源的一种电力设备,是电源中的一种重要成员。
任何电子产品,无论是工业生产领域,还是家庭日常用品,逆变电源都有广泛的应用。
当前,逆变电源的研究方向主要包括普通逆变电源、正弦波逆变电源和多电平逆变电源等三个类型。
其中,正弦波逆变电源拥有较高的输出质量及电效率,越来越成为研究的热点。
二、选题意义1、极大提高交流电质量:在工业控制系统、计算机、通信设备等电子设备中,电源的电质量往往对设备自身和周围设备都具有很大的影响,因此,如何提高逆变电源的质量是正弦波逆变电源开发的必经之路。
2、环保:正弦波逆变电源可以减少非线性负载对电网污染的影响,从而减少环境损害的发生,提高电网质量。
三、研究内容本文研究主要包括:1、正弦波逆变电源的基本原理及其技术特点2、正弦波逆变电源的设计与实现3、正弦波逆变电源的性能测试与分析四、研究方法1、采用理论分析法,对正弦波逆变电源的基本原理、电路结构和特点进行分析;2、采用计算机仿真方法,模拟和验证正弦波逆变电源的实际性能;3、采用实验测试法,对正弦波逆变电源的电压、电流波形、功率因数、失真度等参数进行测试。
五、预期成果1、掌握正弦波逆变电源的基本原理和设计方法;2、实现正弦波逆变电源的硬件搭建;3、对比测试不同负载下正弦波逆变电源的性能表现,分析其性能优缺点;4、提出正弦波逆变电源的进一步研究和改进方向。
六、论文结构第一章:绪论1、研究背景和意义;2、研究现状和进展;3、研究内容和方法;4、预期成果和论文结构。
第二章:正弦波逆变电源的基本原理及技术特点1、正弦波逆变电源的概念和分类;2、正弦波逆变电源的基本原理;3、正弦波逆变电源的技术特点。
第三章:正弦波逆变电源的设计与实现1、正弦波逆变电源的设计思路和流程;2、正弦波逆变电源的硬件设计;3、正弦波逆变电源的控制电路设计。
第四章:正弦波逆变电源的性能测试与分析1、测试环境和测试仪器介绍;2、正弦波逆变电源的测试结果;3、正弦波逆变电源的性能分析和改进措施。
单相正弦波逆变电源-设计

单相正弦波逆变电源-设计单相正弦波逆变电源摘要:本单相正弦波逆变电源的设计,以12V蓄电池作为输入,输出为36V、50Hz的标准正弦波交流电。
该电源采用推挽升压和全桥逆变两级变换,在控制电路上,前级推挽升压电路采用SG3525芯片控制,闭环反馈;逆变部分采用驱动芯片IR2110进行全桥逆变,采用U3990F6完成SPWM的调制,后级输出采用电流互感器进行采样反馈,形成双重反馈环节,增加了电源的稳定性;在保护上,具有输出过载、短路保护、过流保护、空载保护等多重保护功能电路,增强了该电源的可靠性和安全性;输出交流电压通过AD637的真有效值转换后,再由STC89C52单片机的控制进行模数转换,最终将电压值显示到液晶12864上,形成了良好的人机界面。
该电源很好的完成了各项指标,输入功率为46.9W,输出功率为43.6W,效率达到了93%,输出标准的50Hz 正弦波。
关键词:单相正弦波逆变DC-DC DC-AC SPWMAbstract: The single-phase sine wave inverter power supply design, battery as a 12V input and output for the 36V, 50Hz standard AC sine wave. The use ofpush-pull power booster and two full-bridge inverter transform,in the control circuit, the pre-boost push-pull circuit using SG3525 chip control,closed-loop feedback;inverter driver IC IR2110 in part to the use of full-bridge inverter using SPWM modulation U3990F6 completed,level after the use of current transformer output sampling feedback. The feedback link in the formation of a double and increase the stability of power. In protection, with output overload, short circuit protection, over current protection, the protection of multiple no-load protection circuit,which enhancing the reliability of the power supply and safety.AC voltage output of the AD637 True RMS through conversion, and then from the control of single-chip STC89C52 analog-digital conversion, the final value of the voltage to the liquid crystal display 12864 on the formation of a good man-machine interface. The completion of the power good indicators, input power to 46.9W, output power of 43.6W, the efficiency reached 93%, 50Hz sine wave output standards.Key words: Single-phase sine wave inverter DC-DC DC-AC SPWM目录1.系统设计 (4)1.1设计要求 (4)1.2总体设计方案 (4)1.2.1设计思路 (4)1.2.2方案论证与比较 (5)1.2.3系统组成 (8)2.主要单元硬件电路设计 (9)2.1DC-DC变换器控制电路的设计 (9)2.2DC-AC电路的设计 (10)2.3 SPWM波的实现 (10)2.4 真有效值转换电路的设计 (11)2.5 保护电路的设计 (12)2.5.1 过流保护电路的设计 (12)2.5.2 空载保护电路的设计 (13)2.5.3 浪涌短路保护电路的设计 (14)2.5.4 电流检测电路的设计 (15)2.6 死区时间控制电路的设计 (15)2.7 辅助电源一的设计 (15)2.8 辅助电源二的设计 (15)2.9 高频变压器的绕制 (17)2.10 低通滤波器的设计 (18)3.软件设计 (18)3.1 AD转换电路的设计 (18)3.2液晶显示电路的设计 (19)4.系统测试 (20)4.1测试使用的仪器 (20)4.2指标测试和测试结果 (21)4.3结果分析 (24)5.结论 (25)参考文献 (25)附录1 使用说明 (25)附录2 主要元器件清单 (25)附录3 电路原理图及印制板图 (28)附录4 程序清单 (39)1.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。
逆变器开题报告

逆变器波形质量分析1课题来源本课题为逆变器波形质量分析,旨在寻求高质量的脉宽波形,提高逆变器性能,来源于实际应用。
2 研究的目的和意义2.1促进新能源的开发和利用随着电力电子技术的迅猛发展,逆变技术广泛应用于航空、航天、航海等国防领域和电力系统,交通运输、邮电通信、工业控制等民用领域。
特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。
利用新能源的关键技术----逆变技术,能将蓄电池、太阳能电池和燃料电池等其他新能源转化的直流电能变换成交流电能与电网并网发电。
因此,逆变技术在新能源的开发和利用领域有着至关重要的地位。
2.2提高供电质量国民经济的高速发展和国内外能源供应日益紧张,电能的开发和利用显得更为重要。
目前,国内外都在大力开发新能源,如太阳能发电、风力发电、潮汐发电等。
一般情况下,这些新型发电装置输出不稳定的直流电,不能直接供给需要交流电的用户使用。
为此,需要将直流电变换成交流电,需要时可并入市电电网。
这种DC-AC变换需要逆变技术来完成。
用电设备对市电电网造成严重的污染,反过来,被污染的市电电网也会使用电设备工作不正常,用电设备之间通过市电电网相互干扰。
为解决此问题,必须提高市电电网的供电质量,以逆变技术为基础的电力有源滤波器和电能质量综合补偿器可以净化市电电网,使其为用电设备提供高质量电能。
逆变器是一种重要的DC/AC变换装置,而衡量其性能的一个重要指标就是输出电压波形质量,通过本项目的研究与实践,研究逆变器波形产生的方法、调制规律、以及其波形的评价指标,寻求高质量的脉宽波形的获得方法,对所学知识进行纵深挖掘,加深相关知识的理解。
3 国内外的研究现状和发展趋势逆变技术的发展可以分为如下两个阶段:1956-1980年为传统发展阶段,这个阶段的特点是,开关器件以低速器件为主,逆变器的开关频率较低,波形改善以多重叠加法为主,体积重量较大,逆变效率低。
1980年到现在为高频化新技术阶段,开关器件以高速器件为主,逆变器开关频率高,波形改善以脉宽调制为主,体积重量小,逆变效率高。
单相正弦波变频电源开题报告

[10]李辈,同步整流技术在通信电源模块中的应用[D.电子产品世界,2002.2
[11]吴金桥.种车载电源双向DCDC变换器的硕究.合肥工业大学硕士论文2006.[50]阳勇關会光电耦合器在电源技术中的应用(D.国外电子元器件2002.5
第十四周修改设计说明书
第十五周修改设计说明书
第十六周论文答辩
8、参考文献:
[1]刘胜利现代高频开关电源实用技术1北京:电子工业出版社,2001
[2]张占松,蔡宣三开关电源的原理与设计1北京:电子工业出版社,1999
[3]洪奇,张继红.开关电源中的有源功率因数校正技术[M].北京:机械工业出版社2010.
[4]侯振义,侯传教1U C3854功率因数校正I C及其应用设计1西安:电源技术应用,1998
[5] Power Insegration, INC.Flyback Design Methodology Aplicaion Nole AN-16,13-22[41]郭小苏基于同步整流技术的反激变换器的研究[D]华中科技大学硕士论文,2007
目前市场上正弦波逆变电源中功率管多采用双极型晶体管,追求提高开关频率,这就需要采用高速开关器件,正弦波逆变电源将朝着高频化方向发展。且逆变电源需要适应各种不同类型的负载,各种负载对逆变电源输出电能的性能指标提出了更高的要求。同时电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。
3、研究/设计的目标:
[12] Yie-Tone Chen, Dan Y.Chen Yan-Pei Wu. Small Signal Modeling of Multiple OutputForward Converters With Current-Mode Control. IEEE PESC, Record 1994.
6单相正弦波脉宽调制(SPWM)逆变电路实验报告

实验报告课程名称:现代电力电子技术实验项目:单相正弦波脉宽调制(SPWM)逆变电路验实验时间:实验班级:总份数:指导教师:朱鹰屏自动化学院电力电子实验室二〇〇年月日广东技术师范学院实验报告学院:自动化学院专业:电气工程及其自动化班级:成绩:姓名:学号:组别:组员:实验地点:电力电子实验室实验日期:指导教师签名:实验(六)项目名称:单相正弦波脉宽调制(SPWM)逆变电路实验1.实验目的和要求(1)熟悉单相交直交变频电路原理及电路组成。
(2)熟悉ICL8038的功能。
(3)掌握SPWM波产生的基理。
(4)分析交直交变频电路在不同负载时的工作情况和波形,并研究工作频率对电路工作波形的影响。
2.实验原理采用SPWM正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。
实验电路由三部分组成:即主电路, 驱动电路和控制电路。
主电路部分:AC/DC (整流) DC/AC (逆变)图4-1 主电路结构原理图如图4-1所示, 交直流变换部分(AC/DC)为不可控整流电路(由实验挂箱DJK09提供);逆变部分(DC/AC)由四只IGBT管组成单相桥式逆变电路,采用双极性调制方式。
输出经LC低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出。
本实验设计的负载为电阻性或电阻电感性负载,在满足一定条件下,可接电阻启动式单相鼠笼式异步电动机。
(2)驱动电路:如图4-2(以其中一路为例)所示,采用IGBT管专用驱动芯片M57962L,其输入端接控制电路产生的SPWM信号,其输出可用以直接驱动IGBT管。
其特点如下:①采用快速型的光藕实现电气隔离。
②具有过流保护功能,通过检测IGBT管的饱和压降来判断IGBT是否过流,过流时IGBT 管CE结之间的饱和压降升到某一定值,使8脚输出低电平,在光藕TLP521的输出端OC1呈现高电平,经过流保护电路(见图4-3),使4013的输出Q端呈现低电平,送控制电路,起到了封锁保护作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.LC电路设计。本设计选用的电感是高频电感,对于电容采用非极性的CBB电容,通过计算,实验确定电感电容参数。
2.本课题主要设计单相逆变电路的设计,现已具有的实验场地为:邵阳学院电力系统综合实验室、邵阳学院创新实验室;实验仪器有功率MOSFET、MOSFET驱动模块、单片机开发系统、数字示波器、各类互感器等,为项目课题的实施提供了前期的实验条件。
3.参考资料
[1]王兆安.电力电子技术[M].机械工业出版社,2009年第五版:97-184.
逆变电源出现于电力电子技术飞速发展的20世纪60年代,逆变电源的发展是和电力电子器件的发展联系在一起的,器件的发展带动着逆变电源的发展。最初的逆变电源采用晶闸管(SCR)作为逆变器的开关器件,称为可控硅逆变电源。由于SCR是一种没有自关断能力的器件,因此必须通过增加换流电路来强迫关断SCR,SCR的换流电路限制了逆变电源的进一步发展。随着半导体制造技术和变流技术的发展,自关断的电力电子器件脱颖而出,相继出现了电力晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极型晶体管(IGBT)等等。自关断器件在逆变器中的应用大大提高了逆变电源的性能。从而逆变桥输出电压中低次谐波的频率比较高,使输出滤波器的尺寸得以减小,而且对非线性负载的适应性得以提高。最初,对于采用全控型器件的逆变电源在控制上普遍采用带输出电压有效值或平均值反馈的PWM控制技术,其输出电压的稳定是通过输出电压有效值或平均值反馈控制的方法实现的。随着电力电子技术的飞速发展和各行各业对逆变器控制性能要求的提高,逆变电源也得到了深入的发展,目前,逆变电源的发展趋势主要集中在高频化、高性能化、并联及模块化、小型化、高输入功率因数化、数字化智能化。目前市面上的逆变器主要是SANTAKUPS NB系列和三科系列,主要利用12V、24V、等逆变,并通过变压器控制相应的交流电源。
五、指导教师审查意见
指导教师(签名)
年月日
六、教研室审查意见
教研室主任(签名)
年月日
七பைடு நூலகம்系审查意见
系主任(签名)
年月日
备注
3.熟悉伟福,keil开发环境,熟悉在proteus软件中利用元件建立仿真模型,进行仿真并得到详细的仿真结果。.
4.整理资料,撰写毕业论文,论文要求符合邵阳学院本科毕业设计要求。
三、现有基础和具备的条件:
1.本课题已经基本具备了人力、物力和实验条件,此次设计的一些相关技术也已相当成熟。指导老师唐博士在这方面有着较强的理论基础和工程设计经验,为课题的顺利开展提供了指导方向上的保障。本人在大学期间系统地学习了《单片机原理及其应用》、《电力电子技术》、《数字信号处理》等专业课程。并基本学会了visio、protues等制图工具。也在校图书馆和校外图书城广泛地查阅了大量的资料文献,基本上掌握了课题的设计思路和设计流程,为课题的实施提供了前期准备。
2.设计逆变电源的主电路、驱动电路和控制电路,给出各部分电路的详细设计过程。本设计主电路采用四个IRFP460组成的单相全桥逆变电路,驱动电路采用的是具有独立的低端和高端输入通道,悬浮电源采用自举电路的并带有自带隔离的IR2110,控制电路采用ILC8038产生正弦波和三角波通过LM339比较形成的SPWM。
[10]谢力华,苏彦民.正弦波逆变电源的数字控制技术[J].电力电子技术,2001.
[11]陈威.基于数字控制的正弦波逆变电源的研究[D].江苏:南京理工大学,2009:10-40.
[12]殷浩.数字信号处理器芯片新发展[J].电子工程,2000:31-32.
[13]刘宗田等译.C++编程思想(第2版)[M].机械工业出版社,2002:10-50.
3.设计单片机监测电路,监测电源运行参数,并给出利用单片机设计监测电路的电路原理图、程序流程和程序源代码。硬件设计包括自带A/D转换STC单片机最小系统及外围电路,采集电路电压、电流互感器以及电源电路设计和显示电路的设计。
4.正弦波逆变电源输出波形无畸变,且能实现调频和调幅功能。利用LC滤波装置把高频滤掉,留下适合的低频频率。通过调节SPWM中调制波的幅值和载波的频率来调节输出信号的幅值和频率。
5.提供实物装置和完整的电子版论文,并完成实验,给出实验结果。
本课题主要采用实验的研究方法。为了实现设计目标,完成毕业设计任务,拟采取以下措施:
1.阅读相关文献和书籍,了解国内外的发展现状,熟悉逆变电路相关概念以及逆变组成和功能。.
2.了解各项基本原理后画出系统框图,进行方案论证,完成整体方案设计,搭建好实验平台。
6.完成实验验证。主要是完成电压,电流采集实验和模拟控制实验。
设计进度安排:
1.利用三周时间查找与课题相关的资料,阅读文献,熟悉本课题的设计要求。
2.利用四周时间熟悉单片机,并了解MOSFET和MOSFET驱动器的工作原理。
3.利用一周时间熟悉单相电压型逆变器的工作原理。,
4.利用三周时间完成主电路、驱动电路和保护电路设计、参数计算及实验。
5.利用三周时间整理、撰写毕业论文。
6.利用一周时间准备、进行答辩。
预期结果:
通过本次课题的实施,有望取得以下结果:
1.1.设计单片机最小系统及其外围电路。
2.2.给出电路原理图、做出逆变电路的主电路、驱动电路和控制电路模块。
3.3.完成电压、电流采集实验和模拟控制信号实验,并对模块进行调试。
4.4.提供完整的电子版论文。
[2]刘湘涛.单片机原理及其应用[M].电子工业出版社,2005年第一版:158-160.
[3]冯玉生.电力电子变流装置典型应用实例[M].机械工业出版社,2008年第一版:88-129.
[4]祝常红.数据采集与处理技术[M].电子工业出版社,2008第二版:32-36.
[5]唐杰.串联谐振式DBD型臭氧发生器电源的研究与开发[D].湖南:湖南大学,2004:72-74.
二、课题研究的主要内容、研究方法或工程技术方案和准备采取的措施
本课题主要设计单相正弦波逆变电路设计,其主要内容包括:
1.了解单相正弦波逆变电源在工业领域的应用情况,熟悉电压型逆变器的特点及工作原理和控制方式。采用逆变技术的目的是为了获取不同稳定或变化形式的交流正弦波。在目前的逆变技术中主要用于不间断电源系统,交流电动机变频调速,太阳能、风力发电,车载逆变电源,电子镇流器等。对于电压型逆变器:①直流侧为电压源,或并联大电容器,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗;②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗无关;③当交流侧为阻感性负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。对于本课题采用的是单相全桥逆变电路,把桥臂1和4作为一对,桥臂2和3作为另一对,成对的两个桥臂同时导通,两对交替各导通180°,对于控制采用的是SPWM控制。
[6]杨凤彪.RC缓冲电路的优化设计[J].电气开关,2008.
[7]余运江.单相光伏并网逆变器的研究[D].浙江:浙江大学,2008.1-30.
[8]魏伟.正弦波逆变电源的研究现状和发展趋势[J].电气技术,2008.
[9]周志敏.逆变电源实用技术-设计与应用[M].北京电力出版社,2005年第二版:20-40.
[14]戴佳.51单片机C语言应用程序设计实例精讲[M].电子工业出版社,2006:11-60.
四、总的工作任务,进度安排以及预期结果
工作任务:
1.完成逆变电源的主电路、驱动电路和控制电路设计。根据逆变电路的技术指标及功能设计逆变电路的整体方案,给出设计的整体方案图,并详细分析逆变电路各个组成部分的工作原理如主电路采用四个IRFP460组成的单相全桥逆变电路,驱动电路采用IR2110,控制电路采用SPWM。
一、课题的来源、目的意义(包括应用前景)、国内外现状及水平
本课题来源于邵阳学院电气自动化研究所实验室。
现如今各种化石能源逐年减少,人类必须找寻新的替代能源。太阳能作为一种可再生清洁能源得带了人们的青睐。太阳能光伏并网发电已经成为新能源开发利用的领域的一个重要方向。而光伏并网的主要技术在于逆变器的设计。本课题围绕DC-AC变换和对其调频调幅的设计,适用不同的并网发电。传统的DC-AC变换采用的是分立元件进行模拟控制,只要求输出50HZ的正弦波,这样的设计可靠性比较低,功能比较简单,处理能力比较差,一般不采用,本课题结合电力电子在逆变中的设计应用,采用集成度高的控制单元,驱动单元以及主电路和LC滤波电路于一体的设计,此电路具有较好的调频,调幅功能,能很好的满足工业的要求,此外该电路利用单片机对其进行采集,实时监控,具有较高的可靠性。
2.完成单片机最小系统及其外围电路设计。本设计选择STC单片机作为处理器芯片,因此只要完成单片机外部加上电源、复位电路和晶振电路即构成最小系统。对于外围电路主要还包括液晶显示。
3.数据采集部分设计。主要包括主电路的信号采集、A/D转换电路设计。由于STC单片机自带A/D,故可以不设计。对于信号采集采用高精度的电压互感器和电流互感器并通过AD637把交流电变成直流电通过单片机的采集使其在液晶上显示。