一阶系统matlab仿真
Matlab系列之Simulink仿真教程

交互式仿真
Simulink支持交互式 仿真,用户可以在仿 真运行过程中进行实 时的分析和调试。
可扩展性
Simulink具有开放式 架构,可以与其他 MATLAB工具箱无缝 集成,从而扩展其功 能。
Simulink的应用领域
指数运算模块
用于实现信号的指数运算。
减法器
用于实现两个信号的减法 运算。
除法器
用于实现两个信号的除法 运算。
对数运算模块
用于实现信号的对数运算。
输出模块
模拟输出模块
用于将模拟信号输出 到外部设备或传感器。
数字输出模块
用于将数字信号输出 到外部设备或传感器。
频谱分析仪
用于分析信号的频谱 特性。
波形显示器
控制工程
Simulink在控制工程领域 中应用广泛,可用于设计 和分析各种控制系统。
信号处理
Simulink中的信号处理模 块可用于实现各种信号处 理算法,如滤波器设计、 频谱分析等。
通信系统
Simulink可以用于设计和 仿真通信系统,如调制解 调、信道编码等。
图像处理
Simulink中的图像处理模 块可用于实现各种图像处 理算法,如图像滤波、边 缘检测等。
用于将时域信号转换为频域信号,如傅里叶变换、 拉普拉斯变换等。
03 时域变换模块
用于将频域信号转换为时域信号,如逆傅里叶变 换、逆拉普拉斯变换等。
04
仿真过程设置
仿真时间的设置
仿真起始时间
设置仿真的起始时间,通 常为0秒。
步长模式
选择固定步长或变步长模 式,以满足不同的仿真需 求。
应用MATLAB控制系统仿真

01
根据系统性能要求,设计比例、积分、微分控制器参数,优化
系统性能。
状态反馈控制器设计
02
通过状态反馈控制器设计,实现系统的最优控制。
鲁棒控制器设计
03
针对不确定性系统,设计鲁棒控制器,提高系统对参数变化的
适应性。
04
控制系统仿真的动态行为,通过建立和求解微 分方程来模拟系统的动态响应。
性能等。
05
Matlab控制系统仿真实 例
一阶系统仿真
总结词:简单模拟
详细描述:一阶系统是最简 单的控制系统,其动态行为 可以用一个一阶微分方程描 述。在Matlab中,可以使用 `tf`函数创建一个一阶传递函 数模型,然后使用`step`函 数进行仿真。
总结词:性能分析
详细描述:通过仿真,可以 观察一阶系统的响应曲线, 包括超调和调节时间等性能 指标。使用Matlab的绘图功 能,可以直观地展示系统的 动态行为。
THANKS FOR WATCHING
感谢您的观看
适用于模拟数字控制系统、采样控制系统等。
实时仿真
01
在实际硬件上实时模拟控制系统的动态行为,通过将
控制算法嵌入到实际控制系统中进行实时仿真。
02
使用Matlab中的`real-time workshop`等工具箱进
行建模和仿真,可以方便地实现实时仿真。
03
适用于模拟实际控制系统、验证控制算法的正确性和
实时仿真
Matlab支持实时仿真,可以在实 际硬件上运行控制算法,进行系 统测试。
02
控制系统数学模型
线性时不变系统
线性时不变系统(LTI)是指系统的输出与输入之间的关系 可以用线性常数来描述的系统。在控制系统中,LTI系统是 最常见的系统类型之一。
一阶倒立摆控制系统设计matlab

一阶倒立摆控制系统设计matlab一、控制系统简介控制系统是指通过对某些物理系统或过程的改变以获取期望输出或行为的一种系统。
其中涉及到了对系统的建模、分析以及控制方法的选择和设计等多方面的问题。
控制系统可以通过标准的数学和物理模型来描述,并可以通过物理或者仿真实验进行验证。
本文将围绕一阶倒立摆控制系统设计和仿真展开。
主要内容包括:1.一阶倒立摆系统简介2.系统建模3.系统分析4.设计控制器5.仿真实验及结果分析一阶倒立摆(controlled inverted pendulum)是一种比较常见的控制系统模型。
它的系统模型简单,有利于系统学习和掌握。
一般而言,一阶倒立摆系统是由一个竖直的支杆和一个质量为$m$的小球组成的。
假设球只能在竖直方向上运动,当球从垂直平衡位置偏离时,支杆会向相反的方向采取动作,使得小球可以回到平衡位置附近。
为了控制一阶倒立摆系统,我们首先需要对其进行建模。
由于系统并不是非常复杂,所以建模过程相对简单。
假设支杆长度为$l$,支杆底端到小球的距离为$h$,支杆与竖直方向的夹角为$\theta$,小球的质量为$m$,地球重力为$g$,该系统的拉格朗日方程可以表示为:$L =\frac{1}{2}m\dot{h}^{2}+\frac{1}{2}ml^{2}\dot{\theta}^{2}-mgh\cos{\theta}-\frac{1}{2}I\dot{\theta}^{2}$$I$表示支杆的惯性矩,它可以通过支杆的质量、长度以及截面积等参数计算得出。
$h$和$\theta$分别表示小球和支杆的位置。
我们可以通过拉格朗日方程可以得出系统的动力学方程:$b$表示摩擦系数,$f_{c}$表示对支杆的控制力。
由于一阶倒立摆会发生不稳定的倾斜运动,即未受到外部控制时会继续倾斜。
我们需要对系统加上控制力,使得系统保持在稳定的位置上。
在进行控制器设计之前,我们需要对系统进行分析,以便更好地了解系统在不同条件下的特性表现。
控制系统pid参数整定方法的matlab仿真

控制系统PID参数整定方法的MATLAB仿真1. 引言PID控制器是一种常见的控制算法,广泛应用于自动控制系统中。
其通过调节三个参数:比例增益(Proportional gain)、积分时间常数(Integral time constant)和微分时间常数(Derivative time constant),实现对被控对象的稳态误差、响应速度和稳定性等性能指标的调节。
PID参数的合理选择对控制系统的性能至关重要。
本文将介绍PID控制器的经典整定方法,并通过MATLAB软件进行仿真,验证整定方法的有效性。
2. PID控制器的整定方法2.1 手动整定法手动整定法是根据经验和试错法来选择PID参数的方法。
具体步骤如下:1.将积分时间常数和微分时间常数设为零,仅保留比例增益,将比例增益逐渐增大直至系统产生较大的超调现象。
2.根据超调响应的情况,调整比例增益,以使系统的超调量接近所需的范围。
3.逐步增加微分时间常数,观察系统的响应速度和稳定性。
4.增加积分时间常数,以减小系统的稳态误差。
手动整定法的优点是简单易行,但需要经验和反复试验,对控制系统要求较高。
2.2 Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于试探和试错法的自整定方法,该方法通过调整系统的输入信号,观察系统的输出响应,从而确定PID参数。
具体步骤如下:1.将I和D参数设为零,仅保留P参数。
2.逐步增大P参数,直到系统的输出出现大幅度的振荡。
3.记录下此时的P参数值,记为Ku。
4.根据振荡的周期Tp,计算出系统的临界增益Kc = 0.6 * Ku。
5.根据系统的类型选择相应的整定法则:–P型系统:Kp = 0.5 * Kc,Ti = ∞,Td = 0–PI型系统:Kp = 0.45 * Kc,Ti = Tp / 1.2,Td = 0–PID型系统:Kp = 0.6 * Kc,Ti = Tp / 2,Td = Tp / 82.3 Cohen-Coon整定法Cohen-Coon整定法是基于频域曲线拟合的方法,主要应用于一阶和二阶系统的整定。
自动控制原理MATLAB仿真实验(于海春)

自动控制原理MATLAB仿真实验(于海春)实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入imulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个imulink仿真环境常规模板。
图1-1SIMULINK仿真界面图1-2系统方框图3.在imulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击imulink下的“Continuou”,再将右边窗口中“TranferFen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在imulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的imulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击imulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
一阶倒立摆模糊控制matlab仿真

一阶倒立摆模糊控制仿真实验分析报告%mainclearclose all%load table.matglobal Table;global RULE;global UCenter;global Width;global num;global RuleMatch; %前件匹配方式0 取小;1乘积global Defuzzy; %反模糊化方法0: COG ; 1:COA; 2:MAXglobal g0;global g1;global h;x=[0.4,0,0];RuleMatch = 1; %前件匹配方式0 取小;1乘积Defuzzy = 0;%反模糊化方法0: COG ; 1:COA; 2:MAXg0=1.5;g1=0.1;h=1;% u=0;% Table = u;% [m,n]=size(u);% num = (m-1)/2;%u=[];RULE =[2, 2, 2, 1, 0; ...2, 2, 1, 0,-1;...2, 1, 0,-1,-2;...1, 0,-1,-2,-2;...0,-1,-2,-2,-2];%% RULE =[2,2,1,1,0; ...% 2,1,1,0,-1;...% 1,1,0,-1,-1;...% 1,0,-1,-1,-2;...% 0,-1,-1,-2,-2];RULE=RULE + 3*ones(size(RULE));%原始的%UCenter=[-20,-10,0,10,20];%改进的%UCenter=[-25,-15,0,15,25];UCenter=[-20,-15,0,15,20];Width(1)=(UCenter(5)-UCenter(4))/2;Width(2)=(UCenter(5)-UCenter(3));Width(3)=(UCenter(4)-UCenter(3))*2;Width(4)=Width(2);Width(5)=Width(1);x=x';[t,y]= ode45('P_Pendulum',[0,5],x);% [t,y]= ode45('P_Pendulum_tab',[0,10],x);% y2=y.*y;% inty = intnum(t,y2)%% int_e2 = inty(1)+inty(2);% int_u2 = inty(3);%int_y2 = sum(y.^2);%int_e2 = int_y2(1)+int_y2(2);%int_u2 = int_y2(3);figuresubplot(2,1,1)plot(t,y(:,1 ),'r',t,y(:,2),'k')%xlabel('t(sec)')% str1 = sprintf('x(0)=[%2.2f,%2.2f]',x(1),x(2)); % Title(str1,'Interpreter','latex','fontsize',14)%% str1=sprintf('t(sec)---index:$\\int{e^{T}(t)e(t)dt}=$ %f', int_e2);%str1 = '$\int{e^2}dt$'% text(6,0,str1,'Interpreter','latex','fontsize',14)%% xlabel(str1,'Interpreter','latex','fontsize',14)legend('x1(rad)', 'x2(rad/s)')title('输出隶属函数中心值:[-20,-15,0,15,20]')subplot(2,1,2)plot(t,y(:,3),'r')xlabel('t(sec)')ylabel('u(N)')% str1=sprintf('t(sec)--index:$\\int{u^{2}(t)dt}$= %f', int_u2);% %H = Title(str1,'Interpreter','latex','fontsize',14)% xlabel(str1,'Interpreter','latex','fontsize',14)% inverted pendulum stabilized% program on 2006,10,26function xdot = P_Pendulum(t,x)global RULE;global UCenter;global step;global k;global Kc;global QQ;global Width;global RuleMatch; %前件匹配方式0 取小;1乘积global Defuzzy; %反模糊化方法0: COG ; 1:COA; 2:MAXglobal g0;global g1;global h;M = 1;m =0.5;g = 9.8;l = 0.5;a = 1/(m+M);%计算隶属度mu_e= emembershipdegree(-x(1)*g0);mu_de = demembershipdegree(-x(2)*g1);%pausemu_e_id = find(mu_e>0);mu_de_id = find(mu_de>0);eLen= length(mu_e_id);deLen = length(mu_de_id);mu_pre= zeros(1,4);fuzzy_out = zeros(1,4);weight = zeros(1,4);in =1;%规则匹配for (i=1:eLen)for(j=1:deLen)switch RuleMatchcase 0%前件采用取小推理mu_pre(in)= min(mu_e(mu_e_id(i)),mu_de(mu_de_id(j)));case 1%前件采用乘积推理mu_pre(in)= mu_e(mu_e_id(i))*mu_de(mu_de_id(j));end%计算规则匹配度fuzzy_out(in) = RULE(mu_e_id(i),mu_de_id(j));in=in+1;endendnRule = eLen *deLen;u = 0;summu =0;%反模糊化for(i=1:nRule)switch Defuzzycase 0%按照重心法计算(COG)weight(i)= Width(fuzzy_out(i))*(mu_pre(i)-mu_pre(i)*mu_pre(i)/2);case 1% 按照中心平均法weight(i)=mu_pre(i);case 2% 取大法(大中求中)[max_v,max_id] = max(mu_pre);weight(max_id)=1;endu = weight(i)*UCenter(fuzzy_out(i))+u;summu =summu + weight(i);end%u=0;u=h*u/summu;if (u>20)u=20;endif (u<-20)u=-20;endt% if(t>2.5 && t<2.6 )% u=u+20;% end% if (u>20)% u=20;% end%% if (u<-20)% u=-20;% end% xdot(1)=x(2);% xdot(2)=(g*sin(x(1))-a*m*l*x(2)*x(2)*sin(2*x(1))/2-a*cos(x(1))*x(3))/(4*l/3-a*m*l*cos(x(1))*cos(x(1))); % xdot(3)=-100*x(3)+100*u;% x(3) = u;xdot(1)=x(2);xdot(2)=(g*sin(x(1))-a*m*l*x(2)*x(2)*sin(2*x(1))/2-a*cos(x(1))*x(3))/(4*l/3-a*m*l*cos(x(1))*cos(x(1))); xdot(3)=-100*x(3)+100*u;xdot = xdot';y=zeros(1,5);if (x<= -pi/2)y(1) =1 ;elseif (x<=-pi/4)y(1) = abs(x+pi/4)/(pi/4);y(2) = 1-abs(x+pi/4)/(pi/4); elseif (x<= 0)y(2) = 1-abs(x+pi/4)/(pi/4);y(3) = 1- abs(x)/(pi/4);elseif (x<=pi/4)y(3) = 1- abs(x)/(pi/4);y(4) = 1-abs(x-pi/4)/(pi/4); elseif (x<=pi/2)y(4) = 1-abs(x-pi/4)/(pi/4);y(5) = abs(x-pi/4)/(pi/4);elseif (x>pi/2)y(5) =1;endfunction y = demembershipdegree(x) y=zeros(1,5);if (x<= -pi/4)y(1) =1 ;elseif (x<=-pi/8)y(1) = abs(x+pi/8)/(pi/8);y(2) = 1-abs(x+pi/8)/(pi/8); elseif (x<= 0)y(2) = 1-abs(x+pi/8)/(pi/8);y(3) = 1- abs(x)/(pi/8);elseif (x<=pi/8)y(3) = 1- abs(x)/(pi/8);y(4) = 1-abs(x-pi/8)/(pi/8); elseif (x<=pi/4)y(4) = 1-abs(x-pi/8)/(pi/8);y(5) = abs(x-pi/8)/(pi/8);elseif (x>pi/4)y(5) =1;endy=zeros(1,5); if (x<= -30) y(1) =0 ; elseif (x<=-20)y(1) = 1-abs(x+20)/(10); elseif (x<=-10)y(1) = 1-abs(x+20)/(10); y(2) = 1-abs(x+10)/(10); elseif (x<= 0)y(2) = 1-abs(x+10)/(10); y(3) = 1- abs(x)/(10); elseif (x<=10)y(3) = 1- abs(x)/(10); y(4) = 1-abs(x-10)/(10); elseif (x<=20)y(4) = 1-abs(x-10)/(10); y (5) = 1-abs(x-20)/(10); elseif (x>30) elseif (x<=30)y(5) = 1-abs(x-20)/(10); elseif (x>30) y(5) =0; end不同的推理方式,反模糊化方法初始值:x0=[0.1 0]’t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )不同的初始条件前件隶属度函数计算方法:乘积模糊蕴含关系计算方法:取小 反模糊化方法:COGt(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )结论:当初始角达到一定程度时,控制力趋向饱和,系统不稳定。
基于MATLAB自动控制系统时域频域分析与仿真

基于MATLAB自动控制系统时域频域分析与仿真MATLAB是一款强大的数学软件,也是自动控制系统设计的常用工具。
它不仅可以进行时域分析和频域分析,还可以进行相关仿真实验。
本文将详细介绍MATLAB如何进行自动控制系统的时域和频域分析,以及如何进行仿真实验。
一、时域分析时域分析是指对系统的输入信号和输出信号进行时域上的观察和分析,以了解系统的动态特性和稳定性。
MATLAB提供了一系列的时域分析工具,如时域响应分析、稳态分析和步骤响应分析等。
1.时域响应分析通过时域响应分析,可以观察系统对于不同的输入信号的响应情况。
在MATLAB中,可以使用`lsim`函数进行系统的时域仿真。
具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。
-定义输入信号。
- 使用`lsim`函数进行时域仿真,并绘制系统输出信号。
例如,假设我们有一个二阶传递函数模型,并且输入信号为一个单位阶跃函数,可以通过以下代码进行时域仿真:```num = [1];den = [1, 1, 1];sys = tf(num, den);t=0:0.1:10;u = ones(size(t));[y, t, x] = lsim(sys, u, t);plot(t, y)```上述代码中,`num`和`den`分别表示系统的分子和分母多项式系数,`sys`表示系统模型,`t`表示时间序列,`u`表示输入信号,`y`表示输出信号。
通过绘制输出信号与时间的关系,可以观察到系统的响应情况。
2.稳态分析稳态分析用于研究系统在稳态下的性能指标,如稳态误差和稳态标准差。
在MATLAB中,可以使用`step`函数进行稳态分析。
具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。
- 使用`step`函数进行稳态分析,并绘制系统的阶跃响应曲线。
例如,假设我们有一个一阶传递函数模型,可以通过以下代码进行稳态分析:```num = [1];den = [1, 1];sys = tf(num, den);step(sys)```通过绘制系统的阶跃响应曲线,我们可以观察到系统的稳态特性。
一阶系统及二阶系统时域特性MatLab仿真实验报告

实验一 一阶系统及二阶系统时域特性MatLab 仿真实验一、实验目的1、使学生通过实验中的系统设计及理论分析方法,帮助学生进一步理解自动控制系统的设计与分析方法。
2、熟悉仿真分析软件。
3、利用Matlab 对一、二阶系统进行时域分析。
4、掌握一阶系统的时域特性,理解常数T 对系统性能的影响。
5、掌握二阶系统的时域特性,理解二阶系统重要参数对系统性能的影响。
二、实验设备计算机和Matlab 仿真软件。
三、实验内容1、一阶系统时域特性 一阶系统11)(+=Ts s G ,影响系统特性的参数是其时间常数T ,T 越大,系统的惯性越大,系统响应越慢。
Matlab 编程仿真T=0.4,1.2,2.0,2.8,3.6,4.4系统单位阶跃响应。
2、二阶系统时域特性a 、二阶线性系统 16416)(2++=s s s G 单位脉冲响应、单位阶跃响应、单位正弦输入响应的 Matlab 仿真。
b 、下图为具有一微分负反馈的位置随动系统框图,求出系统的闭环传递函数,根据系统瞬态性能指标的定义利用Matlab 分别计算微分反馈时间常数τ为0,0.0125,0.025时系统的上升时间、峰值时间、最大超调量和调整时间。
C 、二阶线性系统3612362++s s ξ,当ξ为0.1,0.2,0.5,0.7,1.0,2.0时,完成单位阶跃响应的Matlab 仿真,分析ξ值对系统响应性能指标的影响。
四、实验要求1、进入机房,学生要严格遵守实验室规定。
2、学生独立完成上述实验,出现问题,教师引导学生独立分析和解决问题。
3、完成相关实验内容,记录程序,观察记录响应曲线,响应曲线及性能指标进行比较,进行实验分析4、分析系统的动态特性。
5、并撰写实验报告,按时提交实验报告。
五、Matlab 编程仿真并进行实验分析1、一阶系统时域特性实验代码:运行曲线:实验分析:由上图分析可知,一阶系统时间常数越大,图像图线越晚达到常值输出,即时间常数T影响系统参数,时间常数越大,系统的惯性越大,系统响应越慢。