数字图像处理第3章_图像直方图

合集下载

第三章.图像灰度直方图变换

第三章.图像灰度直方图变换

第三章图像灰度直方图变换在数字图像处理中,灰度直方图是最简单且最有用的工具,可以说,对图像的分析与观察直到形成一个有效的处理方法,都离不开直方图。

直方图的定义:一个灰度级别在范围[0,L-1]的数字图象的直方图是一个离散函数p(rk)= nk/nn 是图象的像素总数,nk是图象中第k个灰度级的像素总数,rk 是第k个灰度级,k = 0,1,2,…,L-直方图的性质1)灰度直方图只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像素的位置信息。

2)一幅图像对应唯一的灰度直方图,反之不成立。

不同的图像可对应相同的直方图。

直方图的应用:用来判断图像量化是否恰当灰度变换一、对比度展宽的目的:是一点对一点的灰度级的影射。

设新、旧图的灰度级分别为g 和f,g和f 均在[0,255]间变化。

目的:将人所关心的部分强调出来。

对比度展宽方法:二、灰级窗:只显示指定灰度级范围内的信息。

如: α=γ=0三、灰级窗切片:只保留感兴趣的部分,其余部分置为0。

直方图均衡化算法:设f、g分别为原图象和处理后的图像。

求出原图f的灰度直方图,设为h。

h为一个256维的向量。

求出图像f的总体像素个数Nf=m*n (m,n分别为图像的长和宽)计算每个灰度级的像素个数在整个图像中所占的百分比。

hs(i)=h(i)/Nf (i=0,1, (255)3)计算图像各灰度级的累计分布hp。

4)求出新图像g的灰度值。

作业1. 在图像灰度变换处理中,请总结出线性变换,非线性变换的适应性及各自的特点?. 已知一幅图像为:∑==ikkhihp)()(255,...,2,1=i⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=22789321227881112388712439881228291010636921001001073910101002552547120025520010022525551f请对其进行灰度直方图的均衡化处理。

遥感数字图像处理复习资料(1-4章)

遥感数字图像处理复习资料(1-4章)

第一章概论1、按图像的明暗程度和空间坐标的连续性,可以分为数字图像和模拟图像。

数字图像:可用计算机存储和处理,空间坐标和灰度均不连续。

模拟图像:计算机无法直接处理,空间坐标和明暗程度连续变化。

2遥感数字图像中的像素值称为亮度值(灰度值/DN值),它的高低由传感器所探测到的地物电磁波的辐射强度决定。

2、遥感数字图像处理的主要内容包括以下三个方面:图像增强、图像校正、信息提取。

1)图像增强:用来改善图像的对比度,突出感兴趣的地物信息,提高图像大的目视解译效果,它包括灰度拉伸、平滑、锐化、滤波、变换(K—L/K—T)、彩色合成、代数运算、融合等。

图像显示:为了理解数字图像中的内容,或对处理结果进行对比。

图像拉伸:为了提高图像的对比度(亮度的最大值与最小值的比值),改善图像的显示效果。

2)图像校正(恢复/复原):为了去除和压抑成像过程中由各种因素影响而导致的图像失真。

注意:图像校正包括辐射和几何校正,前者通过辐射定标和大气校正等处理将像素值由灰度级改变为辐照度或反射率,后者利用已有的参照系修改像素坐标,使得图像能够与地图匹配或多景图像之间可以相互匹配。

3)信息提取:从校正后的遥感数据中提取各种有用的地物信息。

包括图像分割、分类等。

图像分割:用于从背景中分割出感兴趣的地物目标。

分割的结果可作为监督分类的训练区。

图像分类:按照特定的分类系统对图像中像素的归属类别进行划分。

3、遥感数字图像处理系统:硬件系统(输入、存储、处理、显示、输出),软件系统。

4、数字图像处理的两种观点:离散方法(空间域)、连续方法(频率域)2.遥感图像的获取和存储1、遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程。

遥感的实施依赖于遥感系统2、遥感系统是一个从地面到空中乃至整个空间,从信息收集、储存、传输、处理到分析、判读、应用的技术体系,主要包括遥感试验、信息获取(传感器、遥感平台)、信息传输、信息处理、信息应用等5个部分。

数字图像处理_课件_3

数字图像处理_课件_3
s cr c 1
21
航拍图像的幂律变换增强
数第 字三 图章 像灰 处度 理变
换 与 空 间 滤 波
a. 原始图像
b. C=1, =3.0 c. C=1, =4.0 (最佳) d. C=1, =5.0
s cr c 1
22
电子显微镜扫描
3.2.4 对比度拉伸
的 放 大 约 700 倍 的花粉图像
➢ 因此,归一化后的直方图由 p(rk ) nk / MN 给 出,其中k=0, 1, …, L-1。
29
数第 字三
➢ p(rk)是灰度级rk在图像中出现的概率的一
图 章 个估计。
像灰
处 度 ➢ 归一化直方图的所有分量之和应等于1。
理变
换 与
➢ 直方图是多种空间域处理技术的基础。




30
数第 字三 图章 像灰 处度 理变
换 与 空 间 滤 波
4. 一般情况下,从输入图像的左上角开始处理,以 水平扫描的方式逐像素地处理,每次一行
5. 当该邻域的原点位于图像的边界上时,部分邻域 将位于图像的外部。此时,可以用0或者其它指定 的灰度值填充图像的边缘,被填充边界的厚度取 决于邻域的大小。
以上处理称为空间滤波,邻域与预定义的操作一 起称为空间滤波器。
与 为输出中较宽范围的灰度值,可以扩展图像
空 间
中暗像素的值,同时压缩高灰度级的值。
滤 波
➢ 反对数变换的作用与此相反。
17
傅里叶频谱及其对数变换
数第
字三
图章
像灰
处度
理变



间 滤
傅立叶频谱的对数变换,s

c

数字图像处理(岗萨雷斯第三版)课后习题答案

数字图像处理(岗萨雷斯第三版)课后习题答案

数字图像处理(岗萨雷斯第三版)课后习题答案第3章3.6原题:试解释为什么离散直⽅图均衡技术⼀般不能得到平坦的直⽅图?答:假设有⼀副图像,共有像素个数为n=MN(M⾏N列),像素灰度值取值范围为(0~255),那么该图像的灰度值的个数为L=256,为了提⾼图像的对⽐度,通常我们都希望像素的灰度值不要都局促到某⼀个狭窄的范围,也就是我们通常说的图像灰度值的动态分布⼩。

最好是在有效灰度值取值范围上,每个灰度值都有MN/L个像素,这个时候我们就可以得到⼀张对⽐度最理想的图像,也就是说像素的取值跨度⼤,像素灰度值的动态范围⼤。

因为直⽅图是PDF(概率密度函数)的近似,⽽且在处理中,不允许造成新的灰度级,所以在实际的直⽅图均衡应⽤中,很少见到完美平坦的直⽅图。

因此,直⽅图均衡技术不能保证直⽅图的均匀分布,但是却可以扩展直⽅图的分布范围,也就意味着在直⽅图上,偏向左的暗区和偏向右的亮区都有像素分布,只是不能保证每个灰度级上都有像素分布。

(百度答案:)由于离散图像的直⽅图也是离散的,其灰度累积分布函数是⼀个不减的阶梯函数。

如果映射后的图像仍然能取到所有灰度级,则不发⽣任何变化。

如果映射的灰度级⼩于256,变换后的直⽅图会有某些灰度级空缺。

即调整后灰度级的概率基本不能取得相同的值,故产⽣的直⽅图不完全平坦。

3.8原题:在某些应⽤中,将输⼊图像的直⽅图模型化为⾼斯概率密度函数效果会是⽐较好的,⾼斯概率密度函数为:其中m和σ分别是⾼斯概率密度函数的均值和标准差。

具体处理⽅法是将m和σ看成是给定图像的平均灰度级和对⽐度。

对于直⽅图均衡,您所⽤的变换函数是什么?答:直⽅图均衡变换函数的⼀般表达式如下:在回答这个问题时,有两点⾮常重要,需要学⽣表达清楚。

第⼀,这个表达式假定灰度值r只有正值,然⽽,⾼斯密度函数通常的取值范围是-∞~∞,认识到这点是⾮常重要的,认识到这点,学⽣才能以多种不同的⽅式来解决问题。

对于像标准差这样的假设,好的答案是,需要⾜够⼩,以便于当r为⼩于0时,在p r(r)曲线下的⾯积可以被忽略。

数字图像处理与机器视觉-基于MATLAB实现 第3章 MATLAB数字图像处理基础

数字图像处理与机器视觉-基于MATLAB实现 第3章 MATLAB数字图像处理基础
第3章 MATLAB数字图像处理基础
➢ 3.1 图像的基本概念 ➢ 3.2 图像的数字化及表达 ➢ 3.3 图像的获取与显示 ➢ 3.4 像素间的基本关系 ➢ 3.5灰度直方图 ➢ 3.6图像的分类
第三章 数字图像处理基础知识
数字图像处理技术历经70余年的发展已经取得了长足的进步,在许多应用领域受 到广泛重视并取得了重大的开拓性成就,如:航空航天、生物医学工程、工业检测、 机器人视觉等,使图像处理成为一门引人注目、前景远大的新型学科。
一般来说,采样间隔越大,所得图像像素数越少,空间分辨率越低,质量差, 严重时出现马赛克效应;采样间隔越小,所得图像像素数越多,空间分辨率越高, 图像质量好,但数据量大。同时采样的孔径形状,大小与采样方式有关。如图3-6所 示。
图3-6 图像采样示意图
3.3 图像的获取与显示
3.3.2 采样点的选取
图3-8 灰度级的量化
3.3 图像的获取与显示
一幅数字图像中不同灰度值的个数称为灰度级数。一幅大小为M×N,灰度级数 为的图像,其图像数据量为M×N×g(bit),量化等级越多,图像层次越丰富,灰 度分辨率越高,图像质量就越好,数据量大;反之,量化等级越少,图像层次欠丰 富,灰度分辨率越低,会出现假轮廓现象,图像质量就越差,数据量小。如图3-9所 示(但由于减少灰度级可增加对比度,所以在极少数情况下,减少灰度级可改善图 像质量)。所以量化等级对图像质量至关重要,在对图像量化时要根据需求选择合 适的量化等级。
2022年6月5日10时44分长征2号运载火箭托举着神舟十四号载人飞船从酒泉卫星 发射中心拔地而起奔赴太空,这是中国人的第9次太空远征。神舟载人飞船返回舱是 航天员在飞船发射、交会对接以及返回地面阶段需要乘坐的飞船舱。与在轨的空间站 不同,返回舱和地面之间的通信链路资源极其有限,传统的视频通信技术影响返回舱 图像的分辨率和画质。如图3-1所示,在神舟十三号及以前的飞船中,返回舱图像的 有效分辨率仅为352×288,难以适应目前高分辨率、大屏显示的画面要求。

数字图像处理3-直方图均衡,直方图匹配,空间滤波相关等

数字图像处理3-直方图均衡,直方图匹配,空间滤波相关等

Timg(原图) im_1(MATLAB均衡处理) im_2(ps均衡处理)原图的rgb直方图r通道直方图(原图)g通道直方图(原图)b通道直方图(原图)r通道直方图(im_1)g通道直方图(im_1)b通道直方图(im_1)r通道直方图(im_2)g通道直方图(im_2)b通道直方图(im_2)这里找到了一张对比度较低的图像timg,其原本的对比度很低。

之后分别用MATLAB和ps对其进行了直方图均衡,生成了im_1与im_2,可见其处理的效果是有区别的。

MATLAB处理的结果色彩更加艳丽但是相对于原图来说其每个区域的颜色和旁边的区域颜色差别会很巨大,就是使得边界更明显,同时对比度提高了很多。

而ps处理的结果可以看出新的直方图和原直方图相比产生了很多形状上的差别,可见ps的直方图均衡采用了更为复杂的算法。

同时图像对比度以及颜色艳丽的程度得到了提升,但是没有MATLAB处理的效果明显,保持了原图的色调以及部分颜色关系。

Ps中直方图均衡可以一键实现,因此在此不做重点描写,我们来看如何用MATLAB实现这种操作。

MATLAB代码如下:主程序:im=imread('timg.jpg');im_r=change(im(:,:,1));im_g=change(im(:,:,2));im_b=change(im(:,:,3));im1(:,:,1)=im_r;im1(:,:,2)=im_g;im1(:,:,3)=im_b;figure;imshow(im1);imwrite(im1,'im1.jpg');Change函数:function [n] = change(m)n=m;sum=0;for i=0:255for j=1:407for k=1:500if(m(j,k)==i)sum=sum+1;endendendchan=sum/(407*500);chan1=fix(chan*255+0.5);for j=1:407for k=1:500if(m(j,k)==i)n(j,k)=chan1;endendendend[x,xout] = hist(n(:), 0:255);figure;bar(xout, x); xlim([0 255]);MATLAB其实本身有实现直方图均衡效果的函数,这里为了理解算法自己做了这个函数。

《数字图像处理》习题参考答案与解析

《数字图像处理》习题参考答案与解析

《数字图像处理》习题参考答案第1 章概述1.1 连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。

这样,数字图像可以用二维矩阵表示。

将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。

图像的数字化包括离散和量化两个主要步骤。

在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。

1.2 采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。

(1)处理精度高。

(2)重现性能好。

(3)灵活性高。

2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。

3.数字图像处理技术适用面宽。

4.数字图像处理技术综合性强。

1.3 数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。

1.4 讨论数字图像处理系统的组成。

列举你熟悉的图像处理系统并分析它们的组成和功能。

答:如图1.8,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。

图像处理系统包括图像处理硬件和图像处理软件。

图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。

软件系统包括操作系统、控制软件及应用软件等。

图1.8 数字图像处理系统结构图11.5 常见的数字图像处理开发工具有哪些?各有什么特点?答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。

两种开发工具各有所长且有相互间的软件接口。

数字图像处理(直方图).

数字图像处理(直方图).

An
Combining
DFRT( n )
Renewed output images An exp(j n ) Cn
IDFRT( n )
Several input images Rn an exp(jn )
1 1 an , 0 n n n Updated input images a0 exp(j0 ) a0
15
按列统计的直方图
histc(pascal(3),1:6) produces the array [3 1 1; 0 1 0; 0 1 1; 0 0 0; >> pascal(3) 0 0 0; ans = 0 0 1]
1 1 1 1 2 3 1 3 6
每列目标数据的个数 统计
16
其他类型的统计图
条状图:bar x = 1:5; y = [0.2,0.3,0.1,0.8,0.9; 0.5,0.6,0.2,0.7,0.1]; bar(x,y');
20
其他类型的统计图
累加式条状图:barh rand('state',0); figure; barh(rand(10,5),'stacked'); colormap(cool)
6
彩色图像直方图
axes(‘Position’,*0.1,0.1,0.8,0.2+);% 生成坐标轴 stem(0:255,h1,'Marker','None','Color','r'); set(gca,'YColor','r','Xlim',[0,255]); axes('Position',[0.1,0.3,0.8,0.2]); stem(0:255,h2,'Marker','None','Color',[0,0.6,0]); set(gca,'YColor',[0,0.6,0],'Ytick',[0.005,0.01],'Xlim',[0,255]); axes('Position',[0.1,0.5,0.8,0.2]); stem(0:255,h3,'Marker','None','Color','b'); set(gca,'YColor','b','Ytick',[0.01,0.02],'Xlim',[0,255]);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原图像的直方图
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g(x,y)10
f(x,y)T f(x,y)T
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
第3章 图像灰度直方图
内容: ✓ 灰度直方图的基本概念 ✓ 灰度直方图的性质 ✓ 灰度直方图的应用
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当 ✓ 用于确定图像二值化的阈值 ✓ 当物体部分的灰度值比其他部分灰度值大时,可利用 直方图统计图像中物体的面积 ✓ 计算图像信息量H(熵)
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 统计图像中物体的面积
当物体部分的灰度值比其他部分灰度值大时,可利用 直方图统计图像中物体的面积
3 图像灰度直方图
彩色图像的分波段直方图
v i
计算(1) [纵轴:相对数量] 该图像像元总数为8*8=64, i=[0,7]
v0=5/64
vi
01321321
v1=12/64
05762567
v2=18/64
16063512 26753650 32272416
v3=8/64 v4=1/64
22562760
v5=5/64
i
12321212
v6=8/64
31231221
v7=5/64
计算(2) [纵轴:绝对数量] 该图像像元总数为8*8=64, i=[0,7]
N0=5
Ni
01321321
N1=12
05762567
N2=18
16063512 26753650 32272416
N3=8 N4=1
22562760
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当
数字化获取的图像应该利用全部可能的灰度级
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
v i
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
v i
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
N5=5
i
12321212
N6=8
31231221
N7=5
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
✓ 只能反映图像的灰度分布情况,而不能反映图像像素 的位置
✓ 一幅图像对应惟一的灰度直方图,反之不成立 ✓ 一幅图像分成多个区域,多个区域的直方图之和即为
Anvi iT
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 计算图像信息量H (熵)
假设一幅数字图像的灰度范围为[0, L-1],各灰度级像素出现的 概率为P0,P1,P2,…,PL-1,根据信息论可知,各灰度级像素具有 的信息量分别为:-log2P0,-log2P1,-log2P2,…,-log2PL-1。
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
灰度直方图的定义:
反映一幅图像中各灰度级与各灰度级像素出 现 的频率之间的关系。
灰度直方图的绘制: 以灰vi度 级为横坐标,纵坐标为灰度级的频率,绘 制频率同灰度级频率的关系图。 Nhomakorabea频率的计算:
vi
ni n
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
则该幅图像的平均信息量(熵)为:
L1
H Pi log2 Pi i0
熵反映了图像信息丰富的程度,在图像编码处理中具有重要意义。
1. 有一胶片图象,在背景明亮的天空衬托 下,有一亮色屋顶的深色谷仓.
在下述各种情况下,试指出直 方图看起来将是什么样子:如果该图象被(a) 正确数字化;(b)数字化时增益调整过低; (c)数字化时增益调整过高;(d)数字化 时偏置过大;(e)数字化时偏置过小;(f) 数字化时增益和偏置均过大。假设0为暗, 255为亮。
相关文档
最新文档