专题:动量守恒和能量守恒定律综合应用
高中物理动量守恒定律动量守恒与能量守恒的综合应用应用力学的大观点解题物理

(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
12/13/2021
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
12/13/2021
一般来说,用动量观点和能量观点比用力的观点解题简便, 因此在解题时优先选用这两种观点;但在涉及加速度问题时就必 须用力的观点.有些问题,用到的观点不止一个,特别像高考中 的一些综合题,常用动量观点和能量观点联合求解,或用动量观 点与力的观点联合求解,有时甚至三种观点都采用才能求解,因 此,三种观点不要绝对化.
12/13/2021
四、力学“三大观点”灵活选择 研究某一物体所受力的瞬时作用与物体运动状态的关系(或 涉及加速度)时,一般用力的观点解决问题;研究某一物体受到 力的持续作用发生运动状态改变时,一般选用动量定理,涉及功 和位移时优先考虑动能定理;若研究的对象为一物体系统,且它 们之间有相互作用时,优先考虑两大守恒定律,特别是出现相对 路程的则优先考虑能量守恒定律.
★★★★★
题型六:动量、能量、平抛综合
★ห้องสมุดไป่ตู้★
题型七:动量守恒、能量守恒、动能定理综合
★★★★
12/13/2021
题型透析
12/13/2021
动量守恒、能量守恒综合 例 1 质量 m1=1 kg 的木板放在光滑水平地面上,质量 m2 =0.2 kg 的木块置于木板的右端,木板与木块之间的动摩擦因数 μ=0.3.某时刻二者同时开始运动,木板的初速度 v01=3 m/s,水 平向右,木块的初速度 v02=1 m/s,水平向左,如图所示.已知 重力加速度 g=10 m/s2,小木块可视为质点.求:
动量定律和能量守恒定律的综合应用

动量守恒和能量守恒定律的综合应用1.解决该类问题用到的规律动量守恒定律,机械能守恒定律,能量守恒定律,功能关系等。
2.解决该类问题的基本思路(1)认真审题,明确题目所述的物理情景,确定研究对象。
(2)如果物体间涉及多过程,要把整个过程分解为几个小的过程。
(3)对所选取的对象进行受力分析,判定系统是否符合动量守恒的条件。
(4)对所选系统进行能量转化的分析。
例如,系统是否满足机械能守恒,如果系统内有摩擦则机械能不守恒,有机械能转化为内能。
(5)选取所需要的方程列式并求解。
例3.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可看做质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起。
P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ。
求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;(2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p 。
[解析] (1)对P 1、P 2组成的系统,由动量守恒定律得m v 0=2m v 1 解得v 1=v 02 对P 1、P 2、P 组成的系统,由动量守恒定律得2m v 1+2m v 0=4m v 2 解得v 2=34v 0。
(2)对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到最终P 停在A 点,由能量守恒定律得μ·2mg (2L +2x )=12·2m v 20+12·2m v 21-12·4m v 22 解得x =v 2032μg-L 对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到弹簧压缩到最短,此时P 1、P 2、P 的速度均为v 2,由能量守恒定律得μ·2mg (L +x )+E p =12·2m v 20+12·2m v 21-12·4m v 22 解得E p =m v 2016。
2025高考物理总复习力学三大观点的综合应用

台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。
应用力学的“三大观点”解题

分类 力的瞬时
作用 力的空间 积累作用
力的时间 积累作用
对应规律 牛顿第二定律
动能定理 机械能守恒定律
动量定理
动量守恒定律
规律内容 物体的加速度大小与合外力成正比,与质量 成反比,方向与合外力的方向相同 外力对物体所做功的代数和等于物体动能的增量 在只有重力(弹簧弹力)做功的情况下,物体的机械 能的总量保持不变 物体所受合外力的冲量等于它的动量的增量 系统不受外力或所受外力之和为零时,系统的总动 量就保持不变.(在某个方向上系统所受外力之和 为零,系统在这个方向上的动量分量就保持不变)
令 h 表示 B 上升的高度,有 h=v′2g22④ 由以上各式并代入数据得 h=4.05 m⑤ 【答案】 4.05 m
动量、能量、牛顿运动定律、匀变速直线运动综合 例 4 如图的水平轨道中,AC 段的中点 B 的正上方有一探 测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止 在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作.已知 P1、P2 的质 量都为 m=1 kg,P 与 AC 间的动摩擦因数为 μ=0.1,AB 段长 L =4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的碰撞 为弹性碰撞.
(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
【解析】 设物块受到水平冲量后速度为 v0.滑环固定时12 Mv02=MgL 得 v0= 2gL.
运动物体的能量守恒与动量守恒定律分析

运动物体的能量守恒与动量守恒定律分析运动物体的能量守恒与动量守恒定律是物理学中重要的基本原理,它们揭示了物体在运动过程中能量和动量的守恒规律。
本文将从理论和实践两个方面分析这两个定律的原理和应用。
一、能量守恒定律能量守恒定律是指在一个封闭系统中,能量的总量在任何时刻都保持不变。
对于运动物体而言,其能量守恒定律可以分为动能守恒和势能守恒两个方面。
动能守恒是指物体在运动过程中,其动能的总量保持不变。
动能的大小与物体的质量和速度有关,可以用公式E=1/2mv²表示,其中E为动能,m为物体的质量,v为物体的速度。
当物体在运动过程中没有受到外力的作用时,动能守恒定律成立。
例如,一个自由落体的物体在下落过程中,只受到重力的作用,没有其他外力的干扰,其动能将保持不变。
势能守恒是指物体在运动过程中,其势能的总量保持不变。
势能是由物体所处位置决定的,常见的有重力势能、弹性势能等。
在没有外力做功的情况下,势能守恒定律成立。
例如,一个弹簧被压缩后释放,弹簧的势能会转化为物体的动能,当物体再次回到原来位置时,其势能又会恢复到原来的大小。
能量守恒定律在日常生活中有着广泛的应用。
例如,我们乘坐电梯上楼时,电梯的势能会转化为我们的动能,使我们能够上升到目标楼层。
再例如,我们玩弹球游戏时,弹球在碰撞过程中动能的转化使得游戏更加有趣。
二、动量守恒定律动量守恒定律是指在一个封闭系统中,物体的总动量在任何时刻都保持不变。
动量的大小与物体的质量和速度有关,可以用公式p=mv表示,其中p为动量,m为物体的质量,v为物体的速度。
当物体在运动过程中没有受到外力的作用时,动量守恒定律成立。
动量守恒定律在碰撞过程中有着重要的应用。
碰撞可以分为弹性碰撞和非弹性碰撞两种情况。
弹性碰撞是指碰撞物体在碰撞过程中动能守恒,并且碰撞前后物体的动量大小和方向都保持不变。
例如,两个弹球碰撞后,它们的动量之和仍然保持不变。
非弹性碰撞是指碰撞物体在碰撞过程中动能不守恒,但总动量仍然保持不变。
专题6动力学、动量和能量观点的综合应用

考题一 动量定理和能量观点的综合应用1.动量定理公式:Ft =p ′-p 说明:(1)F 为合外力①恒力,求Δp 时,用Δp =Ft②b.变力,求I 时,用I =Δp =mv 2-mv 1③牛顿第二定律的第二种形式:合外力等于动量变化率 ④当Δp 一定时,Ft 为确定值:F =Δptt 小F 大——如碰撞;t 大F 小——缓冲(2)等式左边是过程量Ft ,右边是两个状态量之差,是矢量式.v 1、v 2是以同一惯性参照物为参照的.Δp 的方向可与mv 1一致、相反或成某一角度,但是Δp 的方向一定与Ft 一致. 2.力学规律的选用原则单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.例1 据统计人在运动过程中,脚底在接触地面瞬间受到的冲击力是人体自身重力的数倍.为探究这个问题,实验小组同学利用落锤冲击的方式进行了实验,即通过一定质量的重物从某一高度自由下落冲击地面来模拟人体落地时的情况.重物与地面的形变很小,可忽略不计.g 取10 m/s 2.下表为一次实验过程中的相关数据.重物(包括传感器)的质量m /kg重物下落高度H /cm 45 重物反弹高度h /cm 20 最大冲击力F m /N 850 重物与地面接触时间t /s(1)请你选择所需数据,通过计算回答下列问题: ①重物受到地面的最大冲击力时的加速度大小;②在重物与地面接触过程中,重物受到的地面施加的平均作用力是重物所受重力的多少倍. (2)如果人从某一确定高度由静止竖直跳下,为减小脚底在与地面接触过程中受到的冲击力,可采取什么具体措施,请你提供一种可行的方法并说明理由. 解析 (1)①重物受到最大冲击力时加速度的大小为a 由牛顿第二定律:a =F m -mgm解得a =90 m/s 2②重物在空中运动过程中,由动能定理mgh =12mv 2重物与地面接触前瞬时的速度大小v 1=2gH 重物离开地面瞬时的速度大小v 2=2gh重物与地面接触过程,重物受到的平均作用力大小为F ,设竖直向上为正方向 由动量定理:(F -mg )t =mv 2-m (-v 1) 解得F =510 N ,故F mg=6因此重物受到的地面施加的平均作用力是重物所受重力的6倍.(2)可以通过增加人与地面接触时间来减小冲击力(如落地后双腿弯曲),由动量定理Ft =Δmv 可知,接触时间增加了,冲击力F 会减小. 答案 (1)①90 m/s 2②6倍 (2)见解析 变式训练1.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长量,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) +mg -mg +mg -mg答案 A解析 由自由落体运动公式得人下降h 距离时的速度为v =2gh ,在t 时间内对人由动量定理得(F -mg )t =mv ,解得安全带对人的平均作用力为F =m 2ght+mg ,A 项正确. 2.一质量为 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图1所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止.g 取10 m/s 2.图1(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为 s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 答案 (1) (2)130 N (3)9 J解析 (1)对小物块从A 运动到B 处的过程中 应用动能定理-μmgs =12mv 2-12mv 20代入数值解得μ=(2)取向右为正方向,碰后滑块速度v ′=-6 m/s 由动量定理得:F Δt =mv ′-mv 解得F =-130 N其中“-”表示墙面对物块的平均作用力方向向左. (3)对物块反向运动过程中应用动能定理得 -W =0-12mv ′2解得W =9 J.考题二动量守恒定律和能量观点的综合应用1.动量守恒定律(1)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(2)动量守恒条件:①理想守恒:系统不受外力或所受外力合力为零.②近似守恒:外力远小于内力,且作用时间极短,外力的冲量近似为零,或外力的冲量比内力冲量小得多.③单方向守恒:合外力在某方向上的分力为零,则系统在该方向上动量守恒.动量守恒定律应用要注意的三性(1)矢量性:在一维运动中要选取正方向,未知速度方向的一律假设为正方向,带入求解.(2)同时性:m1v1和m2v2——作用前的同一时刻的动量m1v1′和m2v2′——作用后的同一时刻的动量(3)同系性:各个速度都必须相对于同一个惯性参考系.定律的使用条件:在惯性参考系中普遍适用(宏观、微观、高速、低速)2.力学规律的选用原则多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.例2 如图2所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R= m,物块A以v0=6 m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L= m,物块与各粗糙段间的动摩擦因数都为μ=,A、B的质量均为m=1 kg(重力加速度g取10 m/s2;A、B视为质点,碰撞时间极短).图2(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 解析 (1)从A →Q 由动能定理得 -mg ·2R =12mv 2-12mv 2解得v =4 m/s >gR = 5 m/s在Q 点,由牛顿第二定律得F +mg =m v 2R解得F =22 N.(2)A 撞B ,由动量守恒得mv 0=2mv ′ 解得v ′=v 02=3 m/s设摩擦距离为x ,则-2μmgx =0-12·2mv ′2解得x = m 所以k =x L=45.(3)AB 滑至第n 个光滑段上,由动能定理得 -μ·2mgnL =12·2mv 2n -12·2mv ′2所以v n =错误! m/s (n <45). 答案 (1)4 m/s 22 N (2)45 (3)v n =错误! m/s (n <45) 变式训练3.如图3,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图3答案 (5-2)M ≤m <M解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,由动量守恒定律得mv 0=mv 1+Mv 2由机械能守恒定律得12mv 20=12mv 21+12Mv 22可得v 1=m -M m +M v 0,v 2=2m m +Mv 0 要使得A 与B 能发生碰撞,需要满足v 1<0,即m <MA 反向向左运动与B 发生碰撞过程,有 mv 1=mv 3+Mv 412mv 21=12mv 23+12Mv 24 整理可得v 3=m -M m +M v 1,v 4=2mm +Mv 1 由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2 即2m m +M v 0≥m -M m +M v 1=(m -M m +M)2v 0 整理可得m 2+4Mm ≥M 2解方程可得m ≥(5-2)M 另一解m ≤-(5+2)M 舍去所以使A 只与B 、C 各发生一次碰撞,须满足 (5-2)M ≤m <M .考题三 电学中动量和能量观点的综合应用系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).例3 如图4所示,直角坐标系xOy 位于竖直平面内,x 轴与绝缘的水平面重合,在y 轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m 2=8×10-3kg 的不带电小物块静止在原点O ,A 点距O 点l = m ,质量m 1=1×10-3kg 的带电小物块以初速度v 0= m/s 从A 点水平向右运动,在O 点与m 2发生正碰并把部分电量转移到m 2上,碰撞后m 2的速度为 m/s ,此后不再考虑m 1、m 2间的库仑力.已知电场强度E =40 N/C ,小物块m 1与水平面的动摩擦因数为μ=,取g =10 m/s 2,求:图4(1)碰后m 1的速度;(2)若碰后m 2做匀速圆周运动且恰好通过P 点,OP 与x 轴的夹角θ=30°,OP 长为l OP = m ,求磁感应强度B 的大小;(3)其他条件不变,若改变磁场磁感应强度的大小,使m 2能与m 1再次相碰,求B ′的大小. 解析 (1)设m 1与m 2碰前速度为v 1,由动能定理 -μm 1gl =12m 1v 21-12m 1v 20代入数据解得:v 1= m/sv 2= m/s ,m 1、m 2正碰,由动量守恒有: m 1v 1=m 1v 1′+m 2v 2代入数据得:v 1′=- m/s ,方向水平向左 (2)m 2恰好做匀速圆周运动,所以qE =m 2g 得:q =2×10-3C由洛伦兹力提供向心力,设物块m 2做圆周运动的半径为R ,则qv 2B =m 2v22R轨迹如图,由几何关系有:R =l OP 解得:B =1 T(3)当m 2经过y 轴时速度水平向左,离开电场后做平抛运动,m 1碰后做匀减速运动.m 1匀减速运动至停止,其平均速度大小为: v =12|v 1′|= m/s>v 2= m/s ,所以m 2在m 1停止后与其相碰由牛顿第二定律有:F f =μm 1g =m 1am 1停止后离O 点距离:s =v 1′22a则m 2平抛的时间:t =s v 2平抛的高度:h =12gt 2设m 2做匀速圆周运动的半径为R ′,由几何关系有:R ′=12h由qv 2B ′=m 2v 22R ′,联立得:B ′= T答案 (1)- m/s ,方向水平向左 (2)1 T (3) T 变式训练4.如图5所示,C 1D 1E 1F 1和C 2D 2E 2F 2是距离为L 的相同光滑导轨,C 1D 1和E 1F 1为两段四分之一的圆弧,半径分别为r 1=8r 和r 2=r .在水平矩形D 1E 1E 2D 2内有竖直向上的匀强磁场,磁感应强度为B .导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速度释放,则:图5(1)求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);(2)若P 、Q 不会在轨道上发生碰撞,棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;(3)若P 、Q 不会在轨道上发生碰撞,且两者到达E 1E 2瞬间,均能脱离轨道飞出,求回路中产生热量的范围.答案 (1)2BL grR,方向逆时针 (2)3gr(3)3mgr ≤Q ≤4mgr解析 (1)导体棒P 由C 1C 2下滑到D 1D 2,根据机械能守恒定律:mgr 1=12mv 2D ,v D =4gr导体棒P 到达D 1D 2瞬间:E =BLv D回路中的电流I =E 2R =2BL grR方向逆时针(2)棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,此时对Q :mg =mv 2Q r 2,v Q =gr设导体棒P 离开轨道瞬间的速度为v P ,根据动量守恒定律:mv D =mv P +mv Q 代入数据得,v P =3gr(3)由(2)知,若导体棒Q 恰能在到达E 1E 2瞬间飞离轨道,P 也必能在该处飞离轨道.根据能量守恒,回路中产生的热量:Q 1=12mv 2D -12mv 2P -12mv 2Q =3mgr若导体棒Q 与P 能达到共速v ,回路中产生的热量最多,则根据动量守恒:mv D =(m +m )v ,v =2gr回路中产生的热量:Q 2=12mv 2D-12(m +m )v 2=4mgr 综上所述,回路中产生热量的范围是3mgr ≤Q ≤4mgr .专题规范练1.如图1所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R = m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m = kg 的物块A 自圆弧形轨道的顶端静止释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为x =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:图1(1)BP 间的水平距离x BP ;(2)判断物块B 能否沿圆轨道到达M 点; (3)物块A 由静止释放的高度h . 答案 (1) m (2)不能 (3) m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时其竖直速度为v y =2gR同时v y v D=tan 45°,解得v D =4 m/s设平抛用时为t ,水平位移为x ,则有R =12gt 2x =v D t解得x = m物块B 碰后以初速度v 0=6 m/s ,加速度大小a =-4 m/s 2减速到v D ,则BD 间的位移为x 1=v 2D -v 202a= m故BP 之间的水平距离x BP =x +x 1= m(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,则有12mv 2M -12mv 2D =-22mgR设轨道对物块的压力为F N ,则F N +mg =m v 2MR解得F N =(1-2)mg <0,即物块不能到达M 点. (3)对物块A 、B 的碰撞过程,有:m A v A =m A v A ′+m B v 012m A v 2A =12m A v A ′2+12m B v 20 解得:v A =6 m/s设物块A 释放的高度为h ,则mgh =12mv 2A ,解得h = m2.如图2所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆形轨道组成,Q 点为圆形轨道最低点,M 点为最高点,圆形轨道半径R = m.水平轨道PN 右侧的水平地面上,并排放置两块长木板c 、d ,两木板间相互接触但不粘连,长木板上表面与水平轨道PN 平齐,木板c 质量m 3= kg ,长L =4 m ,木板d 质量m 4= kg.质量m 2= kg 的小滑块b 放置在轨道QN 上,另一质量m 1= kg 的小滑块a 从P 点以水平速度v 0向右运动,沿圆形轨道运动一周后进入水平轨道与小滑块b 发生碰撞,碰撞时间极短且碰撞过程中无机械能损失.碰后a 沿原路返回到M 点时,对轨道压力恰好为0.已知小滑块b 与两块长木板间动摩擦因数均为μ0=,重力加速度g =10 m/s 2.图2(1)求小滑块a 与小滑块b 碰撞后,a 和b 的速度大小v 1和v 2;(2)若碰后滑块b 在木板c 、d 上滑动时,木板c 、d 均静止不动,c 、d 与地面间的动摩擦因数μ至少多大(木板c 、d 与地面间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力)(3)若不计木板c 、d 与地面间的摩擦,碰后滑块b 最终恰好没有离开木板d ,求滑块b 在木板c 上滑行的时间及木板d 的长度.答案 (1)4 m/s m/s (2) (3)1 s m解析 (1)根据题意可知:小滑块a 碰后返回到M 点时:m 1v 2M R=m 1g 小滑块a 碰后返回到M 点过程中机械能守恒:12m 1v 21=12m 1v 2M +m 1g (2R ) 代入数据,解得:v 1=4 m/s取水平向右为正方向,小滑块a 、b 碰撞前后:动量守恒:m 1v 0=-m 1v 1+m 2v 2机械能守恒:12m 1v 20=12m 1v 21+12m 2v 22 代入数据,解得:v 0= m/s ,v 2= m/s(2)若b 在d 上滑动时d 能静止,则b 在c 上滑动时c 和d 一定能静止μ(m 2+m 4)g >μ0m 2g解得μ>m 2m 2+m 4μ0≈ (3)小滑块b 滑上长木板c 时的加速度大小:a 1=μ0g = m/s 2此时两块长木板的加速度大小:a 2=μ0m 2m 3+m 4g = m/s 2 令小滑块b 在长木板c 上的滑行时间为t ,则:时间t 内小滑块b 的位移x 1=v 2t -12a 1t 2 两块长木板的位移x 2=12a 2t 2 且x 1-x 2=L解得:t 1=1 s 或t 2=103 s(舍去) b 刚离开长木板c 时b 的速度v 2′=v 2-a 1t 1= m/sb 刚离开长木板c 时d 的速度v 3=a 2t 1= m/sd 的长度至少为x :由动量守恒可知:m 2v 2′+m 4v 3=(m 2+m 4)v解得:v =2 m/sμ0m 2gx =12m 2v 2′2+12m 4v 23-12(m 2+m 4)v 2 解得:x = m3.如图3所示,两个圆形光滑细管在竖直平面内交叠,组成“8”字形通道,在“8”字形通道底端B 处连接一内径相同的粗糙水平直管AB .已知E 处距地面的高度h = m ,一质量m =1 kg 的小球a 从A 点以速度v 0=12 m/s 的速度向右进入直管道,到达B 点后沿“8”字形轨道向上运动,到达D 点时恰好与轨道无作用力,直接进入DE 管(DE 管光滑),并与原来静止于E 处的质量为M =4 kg 的小球b 发生正碰(a 、b 均可视为质点).已知碰撞后a 球沿原路返回,速度大小为碰撞前速度大小的13,而b 球从E 点水平抛出,其水平射程s = m.(g =10 m/s 2)图3(1)求碰后b 球的速度大小;(2)求“8”字形管道上下两圆的半径r 和R ;(3)若小球a 在管道AB 中运动时所受阻力为定值,请判断a 球返回到BA 管道时,能否从A 端穿出答案 (1)1 m/s (2) m m (3)不能解析 (1)b 球离开E 点后做平抛运动h =12gt 2,s =v b t ,解得v b =1 m/s(2)a 、b 碰撞过程,动量守恒,以水平向右为正方向,则有: mv a =-m ×13v a +Mv b解得v a =3 m/s碰前a 在D 处恰好与轨道无作用力,则有:mg =m v 2a rr = mR =h -2r 2= m (3)小球从B 到D ,机械能守恒:12mv 2B =12mv 2a +mgh 解得:12mv 2B = J 从A 到B 过程,由动能定理得:-W f =12mv 2B -12mv 20 解得:W f = J从D 到B ,机械能守恒:12m (v a 3)2+mgh =12mv B ′2 解得:12mv B ′2= J<W f 所以,a 球返回到BA 管道中时,不能从A 端穿出.4.如图4所示,整个空间中存在竖直向上的匀强电场,经过桌边的虚线PQ 与桌面成45°角,其上方有足够大的垂直纸面向外的匀强磁场,磁感应强度为B ,光滑绝缘水平桌面上有两个可以视为质点的绝缘小球,A 球对桌面的压力为零,其质量为m ,电量为q ;B 球不带电且质量为km (k >7).A 、B 间夹着质量可忽略的火药.现点燃火药(此时间极短且不会影响小球的质量、电量和各表面的光滑程度).火药炸完瞬间A 的速度为v 0.求:图4(1)火药爆炸过程中有多少化学能转化为机械能;(2)A 球在磁场中的运动时间;(3)若一段时间后A 、B 在桌上相遇,求爆炸前A 球与桌边P 的距离.答案 (1)k +12k mv 20 (2)3πm 2qB (3)2k -2-3π2k +1·mv 0qB解析 (1)设爆炸之后B 的速度大小为v B ,选向左为正方向,在爆炸前后由动量守恒可得:0=mv 0-kmv BE =12mv 20+12kmv 2B =k +12kmv 20(2)由A 球对桌面的压力为零可知重力和电场力等大反向,故A 球进入电场中将会做匀速圆周运动,如图所示则T =2πm qB 有几何知识可得:粒子在磁场中运动了34个圆周 则t 2=3πm 2qB(3)由0=mv 0-kmv B 可得:v B =v 0k由qv 0B =m v 20R 知,R =mv 0qB 设爆炸前A 球与桌边P 的距离为x A ,爆炸后B 运动的位移为x B ,时间为t B则t B =x A v 0+t 2+R v 0,x B =v B t B由图可得:R =x A +x B联立上述各式解得:x A =2k -2-3π2k +1·mv 0qB .。
动量、动能定理、机械能守恒、能量守恒综合运用

图5-3-1动能、动量、机械能守恒 综合运用 动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ. 解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.图5-3-2Lhs图5-3-3(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。
动量守恒和能量守恒定律的综合应用

动量守恒和能量守恒定律的综合应用
宁鹏程
【期刊名称】《高中数理化(高三)》
【年(卷),期】2007(000)009
【摘要】动量守恒和能量守恒定律的综合应用是高中物理的主干知识,也是高考的热点,解决此类问题务必在充分理解题意的基础上将整个物理过程仔细分解为若干个“子过程”,同时将每个子过程与学过的基本模型相对照,列出相应物理规律的方程,要抓住关键词,学会“分割”战术。
【总页数】3页(P29-31)
【作者】宁鹏程
【作者单位】河南省巩义市第五高级中学
【正文语种】中文
【中图分类】O4
【相关文献】
1.例析动量守恒定律和能量守恒定律及其应用 [J], 李金根;
2.动量守恒定律和能量守恒定律及解读相关高考题 [J], 张小平;
3.解析动量守恒定律和能量守恒定律在解题中应用 [J], 薛银玲;
4.近十年高考动量与能量守恒定律综合应用考题归类分析 [J], 蔺立昌
5.高考中对于动量守恒定律与能量守恒定律结合应用的分析 [J], 于昊彤
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题名称】
专题:动量守恒和能量守恒定律综合应用 课型 新授课 课时 1 【学习目标】
1.掌握应用动量守恒定律解题的方法和步骤
2.运用动量定理和动量守恒、动能定理和能量守恒定求解有关问题 【学习重点】
应用动量守恒定律和机械能守恒定律解决有关力学问题的方法 【学习难点】 守恒条件的判断,系统和过程的选择,力和运动的分析
【学法指导】 合作探究、归纳总结;
【导学过程】 (学习方式、学习内容、学习程序、问题) 【预习导学笔记】
一.课前预习,自主学习 1.动能定理: 2.动量定理: 3.动量守恒定律: 4.能量守恒定律: 二.合作探究 ,讨论交流 【探究一】碰撞多过程综合问题 【例题1】光滑的水平面上,用弹簧相连的质量均为2kg 的A 、B 两物块都以v 0=6m/s 的速度向右运动,弹簧处于原长,质量也为2kg 的物块C 静止在前方,如图所示。
B 与C 碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为 J 时,物块A 的速度是 m/s 。
【练习1】质量均为2kg 的B 、C 两物块用弹簧相连,弹簧处于原长. 静止在光滑的水平面上的质量也为2kg 的物块C 以v 0=6m/s 的速度向右运动,如图所示。
A 与B 碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为 J 时,物块A 的速度是 m/s 。
【例题2】长度1m 的轻绳下端挂着一质量为9.99kg 的沙袋,一颗质量为10g 的子弹以500m/s 的速度水平射入沙袋,求①在子弹射入沙袋后不穿出的 瞬间,悬绳的拉力是多大?(设子弹与沙袋的接触时间很短,g 取 10m/s 2)②设子弹射入沙袋后不穿出,子弹随沙袋一起向右摆动的 最大高度H. 【练习2】两块厚度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为k g m A 5.0=,k g m B 3.0=。
另有一质量k g m C 1.0=
的滑块C ,与AB 间有摩擦,以s m v C /25=
的初速度滑到A 的上表面,由于摩擦作用,C 最后与B 以相同的速度s m v /0.3=运动,求:
(1)木块A 的最大速度A v (2)滑块C 离开A 时的速度C v '
复习动量守恒定
律的内容
学会分析综合类的问题
V 0 A B C
V 0 V 0 【探究二】子弹打木块模型
【例题3】如图所示,质量为m 的子弹以速度υ0水平射入放在光滑水平地面上质量为M 的木块,并留在木块中。
假设木块对子弹的阻力F 恒定不变,求 ①子弹和木块最终的速度v. ②子弹和木块构成的系统损失的动能 ③子弹射入木块的深度d.
【练习3】上题中,若子弹穿过木块后木块获得动能为E k ,仅木块或子弹的质量发生变化,但子弹仍能穿过木块,则( )
A .M 不变,m 变小,则E k 一定变大
B .M 不变,m 变小,则E k 可能变大
C .m 不变,M 变小,则E k 一定变大
D .m 不变,M 变小,则
E k 可能变大
【探究三】能量与动量综合问题
【例题4】一长为l ,质量为M 的木板静止在光滑的水平面上,一质量为m 的滑块的初速度0v 滑到木板上,木板长度至少为多少才能使滑块不滑出木板。
(设滑块与木板间动摩擦因数为μ) 【练习4】如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v 0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:
①A 、B 最后的速度大小和方向; ②要使最后A 不会滑离B ,则平板车B 至少要多长? ③A 向左能到达的最远距离(以地为参照物) ④从开始运动到A 、B 相对静止,A 、B 系统产生的热量Q 【练习5】 如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB 是光滑的,圆弧半径为R.在最低
点B 与水平轨道BC 相切,BC 的长度是10R,整个轨道处于同一竖直平面内.可视为质点的物块从A 点正上方某处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行至轨道末端C 处恰好没有滑出.已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落
入圆弧轨道时的能量损失(2m/s 10=g ).求:
(1)物块开始下落的位置距水平轨道BC 的竖
直高度H
(2)物块与水平轨道BC 间的动摩擦因数μ.
通过例题和练习题体会子弹物块模型的分析方法
学习处理综合问题的一般方法
V m M。