C语言程序设计 链表及其操作和应用

合集下载

c语言中linklist类型

c语言中linklist类型

c语言中linklist类型LinkList类型是C语言中常用的数据结构之一,它是一种线性链表的实现方式。

在计算机科学中,链表是一种常见的数据结构,用于存储和操作一系列元素。

链表由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表中的第一个节点称为头节点,最后一个节点称为尾节点。

链表可以根据需要动态地增加或删除节点,相比于数组,链表的大小可以根据实际需求进行调整。

链表的实现可以使用不同的方式,其中最常见的是单向链表。

在单向链表中,每个节点只有一个指针,指向下一个节点。

这种实现方式简单且高效,适用于大多数场景。

除了单向链表,还有双向链表和循环链表等其他实现方式。

链表的优点是可以快速在任意位置插入或删除节点,而无需移动其他节点。

这是由于链表中的节点通过指针相互连接,而不是像数组那样连续存储。

另外,链表的大小可以根据需要进行动态调整,而数组的大小是静态的。

这使得链表在处理动态数据集合时非常有用。

然而,链表也有一些缺点。

首先,访问链表中的任意节点都需要从头节点开始遍历,直到找到目标节点。

这导致了链表的访问时间复杂度为O(n),而数组的访问时间复杂度为O(1)。

其次,链表需要额外的内存空间来存储指针信息,这会占用更多的存储空间。

在C语言中,可以使用结构体来定义链表节点,例如:```typedef struct Node {int data;struct Node *next;} Node;typedef struct LinkedList {Node *head;Node *tail;} LinkedList;```上述代码定义了一个包含数据和指针的节点结构体Node,以及一个包含头节点和尾节点指针的链表结构体LinkedList。

通过这样的定义,可以方便地进行链表的操作,比如插入、删除和遍历等。

链表的插入操作可以分为三步:创建新节点、修改指针、更新链表的头尾指针。

例如,插入一个新节点到链表末尾的代码如下:```void insert(LinkedList *list, int data) {Node *newNode = (Node *)malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;if (list->head == NULL) {list->head = newNode;list->tail = newNode;} else {list->tail->next = newNode;list->tail = newNode;}}```链表的删除操作也类似,可以分为三步:找到目标节点、修改指针、释放内存。

《C语言程序设计》学习指南

《C语言程序设计》学习指南

学习指南一、学习资源与学习方法C语言程序设计是计算机专业的一门基础课程,本课程主要是培养学生利用计算机处理问题的思维方式和结构化程序设计的基本方法。

掌握C语言进行程序设计,对于理解程序设计的基本方法,以及日后学习计算机学科的其他知识内容都是至关重要的。

在资源建设上,根据学生的学习条件差异和学习基础的差异,提供多种形式的学习资源,如教师全程授课视频、期末辅导光盘、网络交互平台、教材和参考资料。

还提供了一些在深度和广度上有一定扩展的资源,如在每一章中都提供了扩展知识供有能力的学生学习,在一些知识点链接了一些课外阅读资源,从深度和广度上满足不同层次学生的不同需求。

(1)立体化教材及学习资源建设和研制了以国家十一五规划教材为基础,知识点导学系统、电子教案、全程课程录像、网络课件、在线测试、考试系统和试题库、资源库、网上教学支撑软件平台等丰富的立体化教学资源,它们各自自成体系又相互关联,各种媒体互相补充,充分发挥了各自的优势,满足了远程计算机专业学习者的需求。

学习资源全部放在教学网站上,实现资源共享,为每个学生提供一个网络帐号,实现网上交互答疑和交流。

尤其是资源库应用系统,将已有的各种数字媒体资源融合在一起,为学生提供直观的导学;同时还为教师提供教学帮助。

学生可以通过资源库的信息索引快速找到要学习知识点的所有资源列表,从中选择所需媒体。

(2)基于课程知识体系的视频讲授结合网络教育的教学对象为成人、学习方式为业余学习的特点,网络学习者学习时间不连贯、不固定的特征,网络课件的设计都是以知识点为基本单元,采用化整为零的思想,按照课程的每个章、单元、知识点进行课程视频的录制,每个知识点设计10~20分钟左右的时长,保证学习者能够利用零散时间学习。

(3)增加交互性和案例教学考虑到远程教学师生分离,学生以自学为主,因此在教学资源设计上注意增加交互性。

例如,专门做了媒体资源库,包括大量动画演示和视频录像,使课件更加生动。

c链表库函数

c链表库函数

c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。

在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。

为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。

本文将介绍一些常见的C链表库函数及其用法。

一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。

数据域用于存放数据,指针域用于指向下一个节点。

链表的最后一个节点指针域为空(NULL),表示链表的末尾。

常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。

下面我们来看看C语言中常用的链表库函数。

二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。

```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。

常见的插入方式包括头部插入和尾部插入。

```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。

在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。

c语言单链表的基本操作

c语言单链表的基本操作

c语言单链表的基本操作C语言的单链表是一种常见的数据结构,常常用于存放数据的操作。

在实际开发中,掌握C语言单链表的基本操作是非常重要的。

下面,我们将分步骤阐述C语言单链表的基本操作。

第一步:定义单链表节点的结构体单链表的每个节点都有三个部分组成:数据域、指针域和链头。

其结构体如下所示:```struct Listnode{int data; //数据域struct Listnode* next; //指针域};```第二步:创建单链表创建单链表的方法有很多,这里我们介绍一个使用头插法的创建方法。

该方法需要定义一个头节点,然后将新的节点插到头节点后面。

代码如下所示:```struct Listnode * create(){struct Listnode * head = NULL; //定义头节点为空int x; //定义数据变量xprintf("请输入数据:");while (scanf("%d", &x) != EOF) //判断当前输入是否结束{struct Listnode * p = (structListnode*)malloc(sizeof(struct Listnode)); //利用malloc函数为新节点分配内存p->data = x; //将x的值存储进新开辟的节点p->next = head; //将head指向的节点作为p节点的下一个节点head = p; //然后将p作为新的head}return head; //返回头节点}```第三步:遍历单链表遍历单链表需要用到while循环,直到链表中没有节点可以遍历。

遍历的过程中,可以利用指针打印节点的数据值。

代码如下所示:```void traverse(struct Listnode *head){if (head == NULL) //判断链表是否为空printf("链表为空!");struct Listnode * p = head; //定义一个指向head节点的指针 while (p != NULL) //当指针p不为空时{printf("%d ", p->data); //打印节点中的数据p = p->next; //指针p指向下一个节点}}```第四步:插入节点在插入节点前,需要先找到插入位置的前一个节点。

[转载整理]C语言链表实例

[转载整理]C语言链表实例

[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。

单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。

双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。

循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。

此外还有双向循环链表,它同时具有双向链表和循环链表的功能。

单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。

※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。

这是在C中唯⼀规定可以先使⽤后定义的数据结构。

链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。

c语言二路归并链表

c语言二路归并链表

c语言二路归并链表二路归并链表是一种常见的链表操作,它主要用于将两个有序链表合并成一个新的有序链表。

在这篇文章中,我们将通过一个实际的例子来解释二路归并链表的思想和实现方法。

假设我们有两个有序链表,分别是链表A和链表B。

我们的目标是将这两个链表合并成一个新的有序链表。

要实现这个目标,我们可以使用递归或迭代的方法。

我们来看一下递归的方法。

递归的思想是将原问题拆分为多个子问题,然后通过解决子问题来解决原问题。

在二路归并链表中,我们可以将链表A的头节点与链表B的头节点进行比较,较小的节点作为新链表的头节点。

然后,我们将较小节点的下一个节点与另一个链表的头节点进行比较,重复这个过程,直到其中一个链表为空。

最后,我们将非空链表的剩余部分直接连接到新链表的末尾。

接下来,我们来看一下迭代的方法。

迭代的思想是通过循环来解决问题。

在二路归并链表中,我们可以使用两个指针分别指向链表A 和链表B的头节点。

然后,我们比较两个指针指向的节点的值,较小的节点作为新链表的节点,并将指针向后移动一位。

重复这个过程,直到其中一个链表为空。

最后,我们将非空链表的剩余部分直接连接到新链表的末尾。

无论是递归还是迭代的方法,二路归并链表的时间复杂度都是O(n+m),其中n和m分别是链表A和链表B的长度。

这是因为我们需要遍历链表A和链表B的所有节点,并将它们连接到新链表中。

通过以上的描述,我们可以看出,二路归并链表是一种非常实用的链表操作,它可以帮助我们将两个有序链表合并成一个新的有序链表。

无论是递归还是迭代的方法,都可以有效地实现这个目标。

希望通过这篇文章的介绍,读者能够更好地理解和掌握二路归并链表的思想和实现方法。

C语言单链表的基本操作(增删改查)

C语⾔单链表的基本操作(增删改查)这是尾插法单链表,单链表⽐较适合⽤来做队列和栈,因为在链表的头和尾时的增删改查的时间复杂度为O(1),⽽在链表内部的增删改查的平均时间复杂度为O(n)。

#include "stdio.h"#include "stdlib.h"//提供malloc()和free()#include "string.h"#include "time.h"//提供strcpy(),time()等//1.⽤结构体创建链表节点//⼀个⽤来存放数据,另⼀个存放指针struct Node{int data; //数据域struct Node* next; //指针域(指向节点的指针)};//2.全局定义链表头尾指针,⽅便调⽤struct Node* head = NULL;struct Node* end = NULL;//3.向链表添加数据void AddListTill(int a ){//创建⼀个节点struct Node* temp = (struct Node*)malloc(sizeof(struct Node)); //此处注意强制类型转换//节点数据进⾏赋值temp->data = a;temp->next = NULL;//连接分两种情况1.⼀个节点都没有2.已经有节点了,添加到尾巴上if(NULL == head){head = temp;//end=temp;}else{end->next=temp;//end=temp; //尾结点应该始终指向最后⼀个}end=temp; //尾结点应该始终指向最后⼀个}//4.遍历链表并输出void ScanList(){struct Node *temp = head; //定义⼀个临时变量来指向头while (temp != NULL){printf("%d\n",temp->data);temp = temp->next; //temp指向下⼀个的地址即实现++操作}}//5.查找指定的数据是否在链表内struct Node* FindNode(int a ){struct Node *temp = head;while(temp != NULL){if(a == temp->data){return temp;}temp = temp->next;}//没找到return NULL;}//6.删除链表void FreeList(){struct Node *temp = head; //定义⼀个临时变量来指向头while (temp != NULL){struct Node* pt = temp;temp = temp->next; //temp指向下⼀个的地址即实现++操作free(pt); //释放当前}//头尾清空,不然下次的头就接着0x10head = NULL;end = NULL;}//7.在指定位置处插⼊数据void AddListRand(int index,int a){if (NULL == head){printf("链表没有节点\n");return;}struct Node* pt = FindNode(index);if(NULL == pt) //没有此节点{printf("没有指定节点\n");return;}//有此节点//创建临时节点,申请内存struct Node* temp =(struct Node *)malloc(sizeof(struct Node));//节点成员进⾏赋值temp->data = a;temp->next = NULL;//连接到链表上 1.找到的节点在尾部 2.找到的节点在中间if (pt == end){//尾巴的下⼀个指向新插⼊的节点end->next = temp;//新的尾巴end = temp;}else{//先连后⾯(先将要插⼊的节点指针指向原来找到节点的下⼀个) temp->next = pt->next;//后连前⾯pt->next = temp;}}//8.删除链表末尾数据void DeleteListTail(){if (NULL == end){printf("链表为空,⽆需删除\n");return;}//链表不为空//链表有⼀个节点if (head == end){free(head);head = NULL;end = NULL;}else{//找到尾巴前⼀个节点struct Node* temp = head;while (temp->next != end){temp = temp->next;}//找到了,删尾巴//释放尾巴free(end);//尾巴迁移end=temp;//尾巴指针为NULLend->next = NULL;}}//9.删除链表的第⼀个数据void DeleteListHead(){ //记住旧头struct Node* temp = head;//链表检测if (NULL == head){printf("链表为空\n");return;}head = head->next; //头的第⼆个节点变成新的头free(temp);}//10.删除链表指定的数据void DeleteListRand(int a){//链表判断是不是没有东西if(NULL == head){printf("链表没东西\n");return;}//链表有东西,找这个节点struct Node* temp = FindNode(a);if(NULL == temp){printf("查⽆此点\n");return;}//找到了,且只有⼀个节点if(head == end){free(head);head = NULL;end = NULL;}else if(head->next == end) //有两个节点{//看是删除头还是删除尾if(end == temp){DeleteListTail();}else if(temp == head){DeleteListHead();}}else//多个节点{//看是删除头还是删除尾if(end == temp)DeleteListTail();else if(temp == head)DeleteListHead();else//删除中间某个节点{ //找要删除temp前⼀个,遍历struct Node* pt = head;while(pt->next != temp){pt=pt->next;}//找到了//让前⼀个直接连接后⼀个跳过指定的即可 pt->next = temp->next;free(temp);}}}//主函数void main(){struct Node *pFind;srand((unsigned)time(NULL));int i;//创建20个节点for(i = 0; i < 20; i++)AddListTill(i); //添加数据//AddListTill(rand());AddListRand(4,86); //在指定位置4增加节点14//DeleteListHead(); //删除⼀个头结点//DeleteListTail(); //删除⼀个尾结点DeleteListRand(4); //删除4节点ScanList(); //遍历输出链表//FreeList(); //删除链表pFind = FindNode(5); //查找5节点if (pFind != NULL){printf("找到%d\n",pFind->data); //找到节点并且输出该节点数据 }else{printf("No Find!\n");}}以下是排序算法的时间和空间复杂度表:。

C语言_实验九、结构体程序设计

实验九、结构体程序设计一、实验目的1.掌握结构、结构数组、结构指针的定义及使用;2.掌握简单的链表的定义及使用;3.掌握共用体和枚举类型的定义及使用;4.掌握文件的简单的定义、打开、写、关闭等操作。

二、实验内容1.[题目内容]某考点建立一个考生人员情况登记表、表格内容如下:1)根据上表正确定义该表格内容要求的数据类型。

2)分别输入各成员项数据,并打印输出(为简便,假设有3个考生)编程序,然后上机调试运行程序。

2.[题目内容]某单位进行选举,有5位候选人:zhang、wang、li、zhao、liu。

编写一个统计每人得票数的程序。

要求每个人的信息使用一个结构体表示,5个人的信息使用结构体数组。

3.[题目内容]设张三20岁、李四22岁、王平23岁,编程输出3人中年龄最小者的姓名和年龄。

4.[题目内容]定义一个学生成绩结构体类型,包含“学号”、“姓名”、“性别”、“年龄”、“班级”、“英语”、“数学”、“物理”、“总分”、“名次”等信息。

编写6个函数分别用于:(1)使用结构体数组,输入全班10名学生的上述信息;(2)计算每一个学生的总分、平均分;(3)计算每一门课程的平均分;(4)查找成绩有不及格的学生信息;(5)按学生成绩总分降序排序;(6)输出全班学生的学号、总分及名次。

5.[题目内容]利用上一题的结构类型,创建包含10个结点的无序链表。

编写5个函数分别实现下述功能(参考前面第三部分内容):(1)显示链表;(2)添加结点;(3)删除结点;(4)计算每位学生的总分;(5)按英语成绩排序。

三、课后作业(写实验报告)1.学生成绩管理:有5个学生,每个学生的数据包括学号、班级、姓名、三门课成绩。

从键盘输入5个学生数据,要求打印出每个学生三门课的平均成绩,以及每门课程平均分、最高分学生数据(包括学号、班级、姓名、三门课成绩,平均分)。

(1)定义学生结构体。

(2)用一个函数实现5个学生数据的输入,用另一个函数负责求每个学生三门课程的平均成绩,再用一个函数求出平均分最高的学生并输出该学生的数据。

《C语言链表》课件

了解如何删除链表中的指定节点
详细描述
删除链表中的节点需要找到要删除的节点,修改其前一个节点的指针,使其指向要删除节点的下一个 节点,然后将要删除节点的指针置为NULL。如果要删除的是头节点或尾节点,还需要对头指针或尾 指针进行相应的修改。
遍历链表
总结词
了解如何遍历链表中的所有节点
VS
详细描述
遍历链表需要从头节点开始,依次访问每 个节点,直到达到链表的尾部。在遍历过 程中,可以使用一个指针变量来指向当前 节点,每次循环将指针向后移动一个节点 ,即修改指针的next指针。
链表和循环链表的主要区别在于它们的最后一个节点指向的方向。在链表中,最后一个节点指向NULL; 而在循环链表中,最后一个节点指向第一个节点。循环链表具有更好的性能,但实现起来相对复杂一些 。
05
总结与展望
总结链表的重要性和应用场景
总结1
链表作为C语言中一种基本的数据结构,在计算机科学中 有着广泛的应用。通过学习链表,可以更好地理解数据 结构的基本概念,提高编程能力和解决实际问题的能力 。
详细描述
合并两个有序链表可以通过比较两个链表的 节点值来实现。从头节点开始比较,将较小 的节点添加到结果链表中,并将指针向后移 动。重复此过程直到其中一个链表为空。如 果还有剩余的节点,将其添加到结果链表的 末尾。这种方法的时间复杂度为O(n),其中
n为两个链表中节点的总数。
04
常见错误与注意事项
内存泄漏问题
内存泄漏定义
在C语言中,内存泄漏是指在使用动 态内存分配函数(如malloc、calloc 、realloc等)分配内存后,未能正确 释放这些内存,导致程序运行过程中 不断占用越来越多的内存,最终可能 导致程序崩溃或性能下降。

c课程设计链表

c 课程设计链表一、教学目标本节课的学习目标主要包括以下三个方面:1.知识目标:学生需要掌握链表的基本概念,了解链表的原理和结构,熟悉链表的基本操作,如创建、插入、删除和遍历。

2.技能目标:学生能够运用链表知识解决实际问题,具备使用链表编程的能力。

3.情感态度价值观目标:培养学生对计算机科学的兴趣,提高学生分析问题和解决问题的能力,培养学生的团队合作精神。

二、教学内容本节课的教学内容主要包括以下几个部分:1.链表的基本概念和原理:介绍链表的定义、特点和应用场景,让学生了解链表作为一种数据结构的重要性。

2.链表的结构和操作:讲解链表的结构,包括节点结构和链表的创建、插入、删除和遍历等基本操作。

3.链表的应用:通过实例分析,让学生学会如何运用链表解决实际问题,提高编程能力。

三、教学方法为了实现本节课的教学目标,我们将采用以下几种教学方法:1.讲授法:教师讲解链表的基本概念、原理和操作,引导学生掌握链表知识。

2.案例分析法:分析实际案例,让学生学会运用链表解决具体问题。

3.实验法:让学生动手实践,完成链表的创建、插入、删除和遍历等操作,提高编程能力。

4.小组讨论法:分组讨论,培养学生的团队合作精神和沟通能力。

四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:提供相关章节,为学生提供系统的链表知识。

2.参考书:为学生提供更多的学习资料,拓展知识面。

3.多媒体资料:制作PPT等课件,直观展示链表的结构和操作。

4.实验设备:为学生提供电脑等实验设备,进行链表操作实践。

五、教学评估为了全面、客观、公正地评估学生的学习成果,我们将采取以下评估方式:1.平时表现:关注学生在课堂上的参与程度、提问回答、小组讨论等,记录学生的表现,占总成绩的30%。

2.作业:布置与链表相关的编程练习,检查学生的理解和掌握程度,占总成绩的20%。

3.考试:安排一次链表知识考试,测试学生对链表概念、原理和操作的掌握,占总成绩的50%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整版ppt
1
完整版ppt
2
完整版ppt
3
完整版ppt
4
完整版ppt
5
完整版ppt
6
完整版ppt
7
完整版ppt
8
完整版ppt
9
完整版ppt
10
完整版ppt
11
完整版ppt
12
完整版ppt
13
完整版ppt
14
完整版ppt
15
完整版ppt
16
完整版ppt
17
完整版ppt
52
完整版ppt
53
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
35
完整版ppt
36
完整版ppt
37
完整版ppt
38
完整版ppt
39
完整版ppt
40
完整版ppt
41
完整版ppt
42
完整版ppt
43
完整版ppt
44
完整版ppt
45
完整版ppt
46
完整版ppt
47
完整版ppt
48
完整版ppt
49
完整版ppt
50
完整版ppt
51
完整版ppt
18
完整版ppt
19
完整版ppt
20
完整版ppt
21
完整版ppt
22
完整版ppt
23
完整版ppt
24
完整版ppt
25
完整版ppt
Байду номын сангаас
26
完整版ppt
27
完整版ppt
28
完整版ppt
29
完整版ppt
30
完整版ppt
31
完整版ppt
32
完整版ppt
33
完整版ppt
34
完整版ppt
相关文档
最新文档