电动力学期末复习

合集下载

电动力学期末考试复习知识总结及试题

电动力学期末考试复习知识总结及试题

电动力学期末考试复习知识总结及试题第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。

在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。

完成由普通物理到理论物理的自然过渡。

二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。

②磁场与它激发的电场间关系是电磁感应定律的微分形式。

(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。

② 若空间各点与无关,则为稳恒电流,电流线闭合。

稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。

2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。

2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。

介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。

向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。

4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。

说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。

电动力学复习总结电动力学复习总结答案

电动力学复习总结电动力学复习总结答案

第二章 静 电 场一、 填空题1、若一半径为R 的导体球外电势为b a b ra,,+=φ为非零常数,球外为真空,则球面上的电荷密度为 。

答案: 02aRε2、若一半径为R 的导体球外电势为3002cos cos =-+E R E r rφθθ,0E 为非零常数,球外为真空,则球面上的电荷密度为 . 球外电场强度为 .答案:003cos E εθ ,303[cos (1)sin ]=-+-v v vr R E E e e rθθθ3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。

答案: σφεφσφεφεφφερφ-=∂∂=-=∂∂-∂∂=-=∇nc n n ,,,,1122212 4、设某一静电场的电势可以表示为bz y ax -=2φ,该电场的电场强度是_______。

答案:z y x e b e ax e axy ϖϖϖ+--225、真空中静场中的导体表面电荷密度_______。

答案:0nϕσε∂=-∂6、均匀介质部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ_____的倍。

答案: -(1-εε0) 7、电荷分布ρ激发的电场总能量1()()8x x W dv dv rρρπε''=⎰⎰v v的适用于 情形.答案:全空间充满均匀介质8、无限大均匀介质中点电荷的电场强度等于_______。

答案: 34qRR πεv9、接地导体球外距球心a 处有一点电荷q, 导体球上的感应电荷在球心处产生的电势为等于 . 答案:04q aπε10、无电荷分布的空间电势 极值.(填写“有”或“无”) 答案:无11、镜象法的理论依据是_______,象电荷只能放在_______区域。

答案:唯一性定理, 求解区以外空间12、当电荷分布关于原点对称时,体系的电偶极矩等于_______。

答案:零13、一个外半径分别为R 1、R 2的接地导体球壳,球壳距球心a 处有一个点电荷,点电荷q 受到导体球壳的静电力的大小等于_______。

电动力学总复习[1]

电动力学总复习[1]

D E 0
E
D E 在各向同性介质中

基本解 为
泊松方程
x
1 4

x dV
r
2、 稳恒电流电磁场
j 0 0 t
E 0 t B 0 t D 0 t
B E t D D H j t B 0
3) 电像法 4)格林函数法
5) 泰勒展开法
2) 积分法
若电场已知
1 2 E dl
1
2
4、电磁场能量
1 静电场中的能量 wE 2 E D
1 1 WE E DdV dV 2 2
稳恒电流磁场的能量
1 wB B H 2
W x e x dV
dV
W0 Qe 0
W1 P Ee 0 P e 0
三、 电磁波的传播
1、平面电磁波
1) 真空中电磁场的波动方程
B E t E B 0 0 t
B 0 E 0
1 2 B B 2 2 0 c t
2、电磁波的反射和折射
1) 入射角、反射角、折射角

k
n E2 E1 0
E(r , t ) E0 exp[i(k r t )]
n
入射
y
2
反射 E' (r , t ) E'0 exp[i(k ' r t )]
1
k
x 折射 E'' (r , t ) E''0 exp[i(k '' r t )]
2 2 1 E 2 E 2 2 0 c t

电动力学复习总结电动力学复习总结答案

电动力学复习总结电动力学复习总结答案

第二章 静 电 场一、 填空题1、若一半径为R 的导体球外电势为b a b ra ,,+=φ为非零常数,球外为真空,则球面上的电荷密度为 。

答案:02aRε 2、若一半径为R 的导体球外电势为3002cos cos =-+E R E r rφθθ,0E 为非零常数,球外为真空,则球面上的电荷密度为 . 球外电场强度为 .答案:003cos E εθ ,303[cos (1)sin ]=-+-r R E E e e rθθθ3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。

答案: σφεφσφεφεφφερφ-=∂∂=-=∂∂-∂∂=-=∇nc n n ,,,,1122212 4、设某一静电场的电势可以表示为bz y ax -=2φ,该电场的电场强度是_______。

答案:z y x e b e ax e axy+--225、真空中静场中的导体表面电荷密度_______。

答案:0nϕσε∂=-∂ 6、均匀介质内部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ_____的倍。

答案: -(1-εε0) 7、电荷分布ρ激发的电场总能量1()()8x x W dv dv rρρπε''=⎰⎰的适用于情形.答案:全空间充满均匀介质8、无限大均匀介质中点电荷的电场强度等于_______。

答案:34qRR πε 9、接地导体球外距球心a 处有一点电荷q, 导体球上的感应电荷在球心处产生的电势为等于 .答案:04q aπε10、无电荷分布的空间电势 极值.(填写“有”或“无”) 答案:无11、镜象法的理论依据是_______,象电荷只能放在_______区域。

答案:唯一性定理, 求解区以外空间12、当电荷分布关于原点对称时,体系的电偶极矩等于_______。

答案:零13、一个内外半径分别为R 1、R 2的接地导体球壳,球壳内距球心a 处有一个点电荷,点电荷q 受到导体球壳的静电力的大小等于_______。

电动力学期末复习

电动力学期末复习

第一章一、选择题1、位移电流实质上是电场的变化率,它是(D )首先引入的。

A). 赫兹 B). 牛顿 C). 爱因斯坦 D). 麦克斯韦3、两个闭合恒定电流圈之间的相互作用力,两个电流元之间的相互作用力,上述两个相互作用力,哪个满足牛顿第三定律( C )。

A). 都满足 B). 都不满足 C). 前者满足 D). 后者满足二、填空题1. 麦克斯韦 在理论上预言了电磁波的存在,并指出光波就是一种电磁波。

2.电荷守恒定律的微分形式为 J 0tρ∂∇⋅+=∂ 3、均匀线性介质中电磁场的能量密度w 的表达式为 1()2w E D H B =⋅+⋅。

4、电磁波(电矢量和磁矢量分别为E 和H)在真空中传播,空间某点处的能流密度=S =SE H ⨯5、线性介质的电磁能量密度w =___________,能流密度S =____ _______。

答:w =1()2E D H B ⋅+⋅或2211()2E B +εμ; S =E H ⨯或1E B μ⨯6、电场、磁场的切向分量的边值关系分别为:______________________________.答:21ˆ()0n e E E ⨯-=或21t t E E =;21ˆ()n e H H ⨯-=α或21t t H H -=α三、判断题1.稳恒电流场中,电流线是闭合的。

( )√2.电介质中E Dε=的关系是普遍成立的。

( )×3.跨过介质分界面两侧,电场强度E的切向分量一定连续。

( )√4.电磁场的能流密度S 在数值上等于单位时间流过单位横截面的能量,其方向代表能量传输方向。

( )√5.电流元1、2分别属于两个闭合稳恒电流圈,则电流元1、2之间的相互作用力服从牛顿第三定律。

( )⨯四、简答题1.写出一般形式的电磁场量D 、E 、B 、H 的边值关系。

答: 2102102121212121ˆ() ˆ()0ˆ()0 ˆ() n n n n t t f n D D D D n B B B B n E E E E n H H σσα⎧⋅-=-=⎪⎪⋅-==⎪⎨⨯-==⎪⎪⨯-=⎪⎩或或或2、介质中麦克斯韦方程组的微分形式 答:B D E ; H J ; D ; B 0;t tρ∂∂∇⨯=-∇⨯=+∇⋅=∇⋅=∂∂ 3、写出洛仑兹力密度表达式。

电动力学重点知识总结(期末复习必备)

电动力学重点知识总结(期末复习必备)

电动力学重点知识总结(期末复习必备)电动力学重点知识总结(期末复习必备)电动力学是物理学的重要分支之一,研究电荷之间相互作用导致的电场和磁场的规律。

在这篇文章中,我们将整理电动力学的重点知识,以帮助大家进行期末复习。

一、库仑定律库仑定律是描述电荷之间相互作用的基本定律。

根据库仑定律,电荷之间的力与它们的电量大小和距离的平方成正比。

即$$ F = k\frac{q_1q_2}{r^2} $$其中$F$为电荷之间的力,$q_1$和$q_2$分别为两个电荷的电量,$r$为它们之间的距离,$k$为库仑常数。

二、电场电场是描述电荷对周围空间产生影响的物理量。

任何一个电荷在其周围都会产生一个电场,其他电荷受到这个电场的力作用。

1. 电场强度电场强度$E$定义为单位正电荷所受到的电场力。

即$$ E =\frac{F}{q} $$电场强度的方向与电场力方向相同。

2. 电荷在电场中的受力当一个电荷$q$在电场中时,它受到的电场力$F$为$F = qE$,其中$E$为电场强度。

3. 电场线电场线是一种用于表示电场分布的图形。

电场线从正电荷发出,或者进入负电荷。

电场线的密度表示电场强度大小,电场线越密集,电场强度越大。

三、高斯定律高斯定律是用于计算电场分布的重要工具。

它描述了电场与通过闭合曲面的电通量之间的关系。

1. 电通量电通量是电场通过曲面的总电场线数。

电通量的大小等于电场强度与曲面垂直方向的投影之积。

电通量的计算公式为$$ \Phi = \int \mathbf{E} \cdot \mathbf{dA} $$其中$\mathbf{E}$为电场强度,$\mathbf{dA}$为曲面元。

2. 高斯定律高斯定律表示电通量与包围曲面内所有电荷之和的比例关系。

即$$ \Phi = \frac{Q_{\text{内}}}{\epsilon_0} $$其中$\Phi$为通过曲面的电通量,$Q_{\text{内}}$为曲面内的总电荷,$\epsilon_0$为真空介电常数。

电动力学复习总结电动力学复习总结答案

电动力学复习总结电动力学复习总结答案

第二章 静 电 场一、 填空题1、若一半径为R 的导体球外电势为b a b ra,,+=φ为非零常数,球外为真空,则球面上的电荷密度为 。

答案: 02aRε2、若一半径为R 的导体球外电势为3002cos cos =-+E R E r rφθθ,0E 为非零常数,球外为真空,则球面上的电荷密度为 . 球外电场强度为 .答案:003cos E εθ ,303[cos (1)sin ]=-+-r R E E e e rθθθ3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。

答案: σφεφσφεφεφφερφ-=∂∂=-=∂∂-∂∂=-=∇nc n n ,,,,1122212 4、设某一静电场的电势可以表示为bz y ax -=2φ,该电场的电场强度是_______。

答案:z y x e b e ax e axy+--225、真空中静场中的导体表面电荷密度_______。

答案:0nϕσε∂=-∂6、均匀介质内部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ_____的倍。

答案: -(1-εε0) 7、电荷分布ρ激发的电场总能量1()()8x x W dv dv rρρπε''=⎰⎰的适用于 情形.答案:全空间充满均匀介质8、无限大均匀介质中点电荷的电场强度等于_______。

答案: 34qRR πε9、接地导体球外距球心a 处有一点电荷q, 导体球上的感应电荷在球心处产生的电势为等于 . 答案:04q aπε10、无电荷分布的空间电势 极值.(填写“有”或“无”) 答案:无11、镜象法的理论依据是_______,象电荷只能放在_______区域。

答案:唯一性定理, 求解区以外空间12、当电荷分布关于原点对称时,体系的电偶极矩等于_______。

答案:零13、一个内外半径分别为R 1、R 2的接地导体球壳,球壳内距球心a 处有一个点电荷,点电荷q 受到导体球壳的静电力的大小等于_______。

电动力学复习题库

电动力学复习题库

一、单项选择题1. 学习电动力学课程的主要目的有下面的几条,其中错误的是( D )A. 掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解B. 获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础C. 更深刻领会电磁场的物质性,加深辩证唯物主义的世界观D. 物理理论是否定之否定,没有绝对的真理,世界是不可知的2. =⨯⋅∇)(B A ( C )A. )()(A B B A ⨯∇⋅+⨯∇⋅B. )()(A B B A ⨯∇⋅-⨯∇⋅C. )()(B A A B ⨯∇⋅-⨯∇⋅D. B A ⨯⋅∇)(3. 下列不是恒等式的为( C )。

A. 0=∇⨯∇ϕ B. 0f ∇⋅∇⨯= C. 0=∇⋅∇ϕ D. ϕϕ2∇=∇⋅∇4. 设222)()()(z z y y x x r '-+'-+'-=为源点到场点的距离,r 的方向规定为从源点指向场点,则( B )。

A. 0=∇r B. r r r ∇= C. 0=∇'r D. r r r'∇= 5. 若m 为常矢量,矢量3m R A R ⨯= 标量3m R R ϕ⋅= ,则除R=0点外,A 与ϕ应满足关系( A ) A. ▽⨯A =▽ϕ B. ▽⨯A =ϕ-∇ C. A =ϕ∇ D. 以上都不对6. 设区域V 内给定自由电荷分布)(x ρ,S 为V 的边界,欲使V 的电场唯一确定,则需要给定( A )。

A.S φ或S n ∂∂φ B. S Q C. E 的切向分量 D. 以上都不对 7. 设区域V 内给定自由电荷分布()ρx ,在V 的边界S 上给定电势s ϕ或电势的法向导数sn ϕ∂∂,则V 内的电场( A )A . 唯一确定 B. 可以确定但不唯一 C. 不能确定 D. 以上都不对 8. 导体的静电平衡条件归结为以下几条,其中错误的是( C )A. 导体内部不带电,电荷只能分布于导体表面B. 导体内部电场为零C. 导体表面电场线沿切线方向D. 整个导体的电势相等9. 一个处于x ' 点上的单位点电荷所激发的电势)(x ψ满足方程( C )A. 2()0x ψ∇=B. 20()1/x ψε∇=-C. 201()()x x x ψδε'∇=-- D. 201()()x x ψδε'∇=-10. 对于均匀带电的球体,有( C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章一、选择题1、位移电流实质上是电场的变化率,它是(D )首先引入的。

A). 赫兹 B). 牛顿 C). 爱因斯坦 D). 麦克斯韦3、两个闭合恒定电流圈之间的相互作用力,两个电流元之间的相互作用力,上述两个相互作用力,哪个满足牛顿第三定律( C )。

A). 都满足 B). 都不满足 C). 前者满足 D). 后者满足二、填空题1. 麦克斯韦 在理论上预言了电磁波的存在,并指出光波就是一种电磁波。

2.电荷守恒定律的微分形式为 J 0tρ∂∇⋅+=∂r 3、均匀线性介质中电磁场的能量密度w 的表达式为 1()2w E D H B =⋅+⋅r r r r。

4、电磁波(电矢量和磁矢量分别为E ρ和H ρ)在真空中传播,空间某点处的能流密度=S ρ =S ρE H ⨯r r5、线性介质的电磁能量密度w =___________,能流密度S r=____ _______。

答:w =1()2E D H B ⋅+⋅r r r r 或2211()2E B +εμ; S r =E H ⨯r r 或1E B μ⨯r r6、电场、磁场的切向分量的边值关系分别为:______________________________.答:21ˆ()0n e E E ⨯-=r r r 或21t t E E =;21ˆ()n e H H ⨯-=r r r r α或21t t H H -=α三、判断题1.稳恒电流场中,电流线是闭合的。

( )√2.电介质中E D ρρε=的关系是普遍成立的。

( )×3.跨过介质分界面两侧,电场强度E ρ的切向分量一定连续。

( )√4.电磁场的能流密度S r在数值上等于单位时间流过单位横截面的能量,其方向代表能量传输方向。

( )√5.电流元1、2分别属于两个闭合稳恒电流圈,则电流元1、2之间的相互作用力服从牛顿第三定律。

( )⨯四、简答题1.写出一般形式的电磁场量D r、E r 、B r 、H r 的边值关系。

答: 2102102121212121ˆ() ˆ()0ˆ()0ˆ() n n n n t t f n D D D D n B B B B n E E E E n H H σσα⎧⋅-=-=⎪⎪⋅-==⎪⎨⨯-==⎪⎪⨯-=⎪⎩r r r r r r r r r r r r r 或或或 2、介质中麦克斯韦方程组的微分形式答:B D E ; H J ; D ; B 0;t t ρ∂∂∇⨯=-∇⨯=+∇⋅=∇⋅=∂∂r r r r r r r 3、写出洛仑兹力密度表达式。

答: S f E J B E v B T t c ρρρ∂=+⨯=⋅+⨯=-∇⋅-∂2vr r r r t v v r或五、证明题1. 由场和电荷系统的能量守恒定律、麦克斯韦方程组和洛仑兹力公式证明:(1) 电磁场的能量密为w D B E H t t t∂∂∂=⋅+⋅∂∂∂r r r r (2) 能流密度为S E H =⨯r r r1证明:场和电荷系统的能量守恒定律为 wS f v t∂∇⋅+=-⋅∂r r r (1)由洛仑兹力密度公式 f v (E v B )v v E J E ρρρ⋅=+⨯⋅=⋅=⋅r r r r r rr r r r 将上式代入(1)式得 w S J E t ∂∇⋅+=-⋅∂r r r(2)D J H t∂=∇⨯-∂rr r Q(D J E E H E t∂∴⋅=⋅∇⨯-⋅∂rr r r r r ) (3)E (H =(E H H (E (E H t ∂⋅∇⨯-∇⋅⨯⋅∇⨯-∇⋅⨯⋅∂rr r r r r r r r r B ))+)=)-H将上式代入(3)式得 (D BJ E E H E H t t∂∂⋅=-∇⋅⨯⋅-⋅∂∂r rr r r r r r )- (4))比较(2)、(4)式,可得电磁场的能量密为 w D B E H t t t∂∂∂=⋅+⋅∂∂∂r rr r 能流密度为 S E H =⨯r r r2、用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面。

(提示:考虑D r、E r 的边值关系)2证明:介质2与导体1的边值关系(静电情况) 0ˆˆ0n D nE σ⎧⋅=⎪⎨⨯=⎪⎩vv(1)式 其中n 为界面法线单位矢量,D 、E 为介质2中的场量,导体内静电平衡时场量D 、E 为0。

根据线性介质性质=D E εr v ,(1)式化为 00ˆ00ˆ0n t E n D E n E εσσ⎧=≠⋅=⎧⎪⇒⎨⎨=⨯=⎪⎩⎩vv ,导体外的电场只有法线方向分量,即总是垂直于导体表面。

3、用边值关系证明:在线性绝缘介质与导体的分界面上,在恒定电流情况下,导体内表面的电场线总是平行于导体表面。

3证明:设介质1为导体,介质2为绝缘体稳恒电流时绝缘介质与导体的边值关系为:2121()0()0n ne J J e E E ⎧⋅-=⎪⎨⨯-=⎪⎩r r r r r r绝缘介质中电流为零,因此 22210n n t t J J E E ==⎧⎨=⎩从而有 222100n n tt E E E E ==⎧⎨=≠⎩ 即电场只有平行于界面的分量4、证明当两种绝缘介质的分界面上不带自由电荷时,电场线的曲折满足:1212εεθθ=tg tg ,其中1ε和2ε分别为两种介质的介电常数,1θ和2θ分别为界面两侧电场线与法线的夹角。

(提示:考虑D r、E r 的边值关系)4证明:考虑分界面上不带自由电荷,由理想介质边值关系() 212122112221112121221121ˆ()0(1)cos cos (1)(2)sin sin (2)ˆ0n n n n t t t t nD D D DE E E E or E E E E E E n E E ⎧⋅-====⎧⎧⎧⎪⇔⇔⎨⎨⎨⎨===⨯-=⎩⎩⎩⎪⎩r vv v εεεθεθθθ 21222111(2)/(1)tg tg tg tg ⇒=⇒=θθθεεεθε5、当两种导电媒质内流有稳恒电流时,分界面上电场线曲折满足2211tg tg θσ=θσ,其中σ1和σ2分别为两种媒质的电导率。

(提示:考虑J r 、E r的边值关系)5证明:稳恒电流时导体之间的边值关系(2) 22112122211121211121(1)()0cos cos (1)sin sin (2)()0n n J Et t E E n J J E E or E E E E n E E =⎧=⋅-==⎧⎧⎪−−−→⎨⎨⎨==⨯-=⎪⎩⎩⎩v v v v r v v r σσσσθσθθθ 21212222112111(2)/(1)t t n n E E tg tg tg E E tg θθθσ⇒=⇒=⇒=σσσσθσ6、证明214()x rπδ∇=-r ,其中||r x =r 。

6证明:(1)当r ≠ 0时,2311111()()()()x y z x y z r r r re e e e e e r x r y r z r r x y z r∂∂∂-∂∂∂∇=++=++=-∂∂∂∂∂∂rr r r r r r 而323343*********()()30r r r r r r r r r r r r r r r r r r--∇⋅=∇⋅=∇⋅+∇⋅=∇⋅+∇⋅=⋅+⨯=r r r r r r r r,因此 2110,0r r r∇=∇⋅∇=≠ (2)当r 0=时,取一小球面S 包围着原点,取对小球体积V 积分,即223211114V V S S Sr d d ds ds r d r r r r r ττπ∇=∇⋅∇=∇⋅=-⋅=-Ω=-⎰⎰⎰⎰⎰rr r 蜒? (或当r 0=时,在r 0=点,1r奇异,上式不成立。

因此21r ∇是这样一个函数,它在0 r ≠处的值为零,只有在r 0=点上可能不等于零。

为了进一步确定这样的函数,我们采用极限方法。

2222221/2225/20a 0a 0113a r dV lim dV lim d dr r (r a )(r a )Ω∞→→-∇=∇=++⎰⎰⎰⎰ 作积分变换r a ρ=,可见上式的极存在,23225/223/2001dV 12d 44r (1)(1)ρρπρππρρ∞∞∇=-=-=-++⎰⎰)因此我们证明了 214(x )rπδ∇=- 7、已知一个电荷系统的偶极矩定义为()(,)V P t x t x dV ρ'''=⎰r r r ,证明 (,)VdP J x t dV dt''=⎰r r r 7证明:方法1:()()()V V V V dP dx x x dV x dV x dV JdV dt dtt ρρρ'''''∂'''''''''====∂⎰⎰⎰⎰rr r rr r r r v方法2:由电荷守恒定律(,)()V V V dP d x t x dV x dV J x dV dt dtt ρρ'''∂'''''''===-∇⋅∂⎰⎰⎰rr r rr r由 ()()()()()()f g f g f g f g f g f g ∇⋅=∇⋅+⋅∇⇒∇⋅=∇⋅-⋅∇r r rr r rrrrrrr()()()V V dP J x dV J x J x dV dt ''⎡⎤''''''''=-∇⋅=-∇⋅-⋅∇⎣⎦⎰⎰rr r r r r r式中 ()J x J x J I J ''''⋅∇=⋅∇=⋅=r r r t r r r则()()V V S V dPJ x dV JdV J x dS JdV dt'''''''''''=-∇⋅+=-⋅+⎰⎰⎰⎰rr r r r r r r Ñ 将上式中积分区域取为大于电荷分布区域,则右边第一项的面积分为0,(,)V dP P J x t dV dt'''==⎰rr r r &五、综合题1、已知电容率为ε的均匀介质内部体自由电荷密度为ρf ,求这种介质的体极化电荷密度ρp 。

1、解: P p ρ⋅-∇=ρE E P p ρρρ⋅∇--=-⋅-∇=⋅-∇=)()(00εεεερf f p E ρεεερεεεερ)()()(0001--=--=⋅∇--=ρ2、根据算符的性质,推导下列公式 A A A A ϖϖϖ(21)(2-∇=⨯∇⨯·A ϖ)∇2解:由C A B A C ϖϖϖϖϖ()(=⨯⨯·C B B ϖϖϖ()-·)A ϖ得=⨯∇⨯)(A A ϖϖ21A ϖ(∇·)A ϖA ϖ(-·A ϖ)∇=A A ϖ(212-∇·A ϖ)∇ 3、由麦克斯韦方程组导出电流连续性方程。

相关文档
最新文档