用三角形内切圆半径证明勾股定理

合集下载

勾股定理与三角形的内切圆利用圆的性质解题

勾股定理与三角形的内切圆利用圆的性质解题

勾股定理与三角形的内切圆利用圆的性质解题勾股定理与三角形的内切圆:利用圆的性质解题引言:勾股定理是数学中的经典定理之一,在解决三角形问题时有着广泛的应用。

与之相关的还有三角形的内切圆,它可以为我们提供很多有用的信息。

本文将探讨勾股定理与三角形的内切圆的关系,并利用圆的性质解决一些问题。

一、勾股定理的基本原理:勾股定理在欧几里得几何学中最早被提出,它表明对于直角三角形,直角边的平方和等于斜边的平方。

设直角三角形的两个直角边分别为a和b,斜边为c,则勾股定理可以表示为:a² + b² = c²。

二、三角形的内切圆:三角形的内切圆是指与三角形的三边都有且仅有一个公共点的圆。

这个公共点称为圆的切点,而与切点相交的三边上的切点称为切点,切点与顶点所在的线段可相交也可不相交。

内切圆的圆心通常被称为三角形的内心,内心到三角形三边的距离相等,且与三角形的边相切。

三、内切圆与勾股定理的关系:1. 内切圆半径与三角形面积的关系:根据圆的性质,内切圆的半径可以通过三角形的周长和面积计算得出。

设三角形的周长为p,面积为S,内切圆的半径为r,则有以下关系成立:S = pr。

据此,我们可以利用内切圆的半径求解三角形的面积,或者根据三角形的面积推导出内切圆的半径。

2. 内切圆与三角形的边长关系:三角形的内切圆与三角形的边长之间存在着一定的关系。

设三角形的三条边长分别为a,b,c,内切圆的半径为r,则有以下关系成立:a + b > c,a + c > b,b + c > a。

这些不等式反映了内切圆与三角形边长之间的紧密联系,通过分析边长之间的关系,可以更好地理解三角形的形态及性质。

四、利用内切圆的性质解题示例:1. 求解三角形面积:已知一个直角三角形,其中两条直角边分别为3和4,求解其面积。

解析:根据勾股定理,直角边的平方和等于斜边的平方,即3² + 4²= c²,求得斜边c为5。

三角形最全勾股定理的证明方法

三角形最全勾股定理的证明方法
∴ ∠EHA +∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ABCD是一个边长为a + b的正方形,它的面积等于 .
∴ .∴ .
【证法3】
以a、b为直角边(b>a), 以c为斜
边作四个全等的直角三角形,则每个直角
三角形的面积等于 .把这四个直角三
∠FAB =∠GAD,
∴ ΔFAB≌ ΔGAD,
∵ ΔFAB的面积等于 ,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积= .
同理可证,矩形MLEB的面积= .
∵ 正方形ADEB的面积
=矩形ADLM的面积+矩形MLEB的面积
∴ ,即 .
【证法8】
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
∴ .
∴ .
【证法4】
以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 .把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵RtΔEAD≌RtΔCBE,
∴∠ADE =∠BEC.
∵ ∠AED +∠ADE = 90º,
∴ ∠AED +∠BEC = 90º.
BT = BE = b,
∴RtΔHBT≌RtΔABE.
∴HT = AE = a.
∴GH = GT―HT = b―a.
又∵∠GHF +∠BHT = 90º,
∠DBC +∠BHT =∠TBH +∠BHT = 90º,
∴ ∠GHF =∠DBC.

勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理) 是一个,是人类早期发现并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

是的一个特例。

约有400种证明方法,是数学定理中证明方法最多的之一。

“”是勾股定理最基本的公式。

勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。

(3,4,5)就是。

也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。

勾股定理命题1如果的两条直角边长分别为a ,b ,斜边长为c ,那么。

勾股定理的逆定理命题2如果的三边长a ,b ,c 满足,那么这个三角形是直角三角形。

【证法1】(赵爽证明)以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o,∴ABCD 是一个边长为c 的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90o.∴EFGH 是一个边长为b―a 的正方形,它的面积等于.∴∴.【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等.即,整理得.【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o.∴ΔDEC 是一个等腰直角三角形,它的面积等于.又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ABCD 是一个直角梯形,它的面积等于 ∴.∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。

初中数学 如何使用勾股定理计算一个非直角三角形的内切圆的弧长

初中数学 如何使用勾股定理计算一个非直角三角形的内切圆的弧长

初中数学如何使用勾股定理计算一个非直角三角形的内切圆的弧长计算非直角三角形的内切圆的弧长是一个有趣且具有挑战性的问题。

内切圆是指一个圆,它恰好与三角形的三条边都相切。

通过勾股定理和其他几何知识,我们可以解决这个问题并计算内切圆的弧长。

下面,我将详细介绍如何解决这个问题。

步骤一:确定三角形的边长和角度首先,我们需要确定非直角三角形的三条边长和三个角度。

这可以通过测量或使用三角函数计算来实现。

通常情况下,我们需要知道三角形的两个角度和一个边长,或者三个边长中的两个和一个角度,才能确定三角形的所有属性。

步骤二:计算三角形的半周长接下来,我们需要计算非直角三角形的半周长。

半周长是指三角形的三条边长之和的一半,可以通过以下公式来计算:s = (a + b + c) / 2其中,a、b、c表示三角形的三条边长,s表示半周长。

步骤三:计算三角形的面积然后,我们可以使用以下公式计算非直角三角形的面积:A = √(s * (s - a) * (s - b) * (s - c))其中,A表示三角形的面积,a、b、c表示三角形的三条边长,s表示半周长。

步骤四:计算内切圆半径现在,我们已经知道了三角形的边长和面积。

接下来,我们可以使用以下公式来计算内切圆的半径:r = A / s其中,r表示内切圆的半径,A表示三角形的面积,s表示半周长。

步骤五:计算内切圆的弧长最后,我们可以使用以下公式来计算内切圆的弧长:L = 2πr * (α/360)其中,L表示内切圆的弧长,r表示内切圆的半径,π表示圆周率,α表示对应于三角形内角的圆心角的度数。

我们可以将α表示为以下公式:α = 2 * arctan(A/(s-a))其中,arctan表示反正切函数,A表示三角形的面积,s表示半周长,a表示三角形的一个边长。

总结:在本文中,我们介绍了如何使用勾股定理计算非直角三角形的内切圆的弧长。

具体而言,我们需要确定三角形的边长和角度,计算半周长和三角形的面积,然后使用面积来计算内切圆的半径,最后使用半径和对应于三角形内角的圆心角的度数来计算内切圆的弧长。

初中数学 如何使用勾股定理的逆定理计算一个三角形的内切圆的半径

初中数学 如何使用勾股定理的逆定理计算一个三角形的内切圆的半径

初中数学如何使用勾股定理的逆定理计算一个三角形的内切圆的半径当使用勾股定理的逆定理计算一个三角形的内切圆的半径时,可以通过以下步骤进行:步骤一:给定一个三角形ABC,其中顶点A、顶点B和顶点C分别是三角形的三个顶点。

步骤二:根据题目条件,计算三角形ABC的边长。

步骤三:计算三角形ABC的半周长。

步骤四:计算三角形ABC的面积。

步骤五:计算三角形ABC的内切圆的半径。

下面是一个具体的例子来说明如何使用勾股定理的逆定理计算一个三角形的内切圆的半径:例子:给定一个三角形ABC,其中顶点A(0, 0),顶点B(3, 0),顶点C(0, 4)。

计算三角形ABC 的内切圆的半径。

解答:步骤一:给定三角形ABC,顶点A(0, 0),顶点B(3, 0),顶点C(0, 4)。

步骤二:计算三角形ABC的边长。

三角形ABC的边长可以通过以下公式计算:AB = √[(Ax - Bx)^2 + (Ay - By)^2]BC = √[(Bx - Cx)^2 + (By - Cy)^2]AC = √[(Ax - Cx)^2 + (Ay - Cy)^2]对于我们的例子,我们可以计算出三角形ABC的边长:AB = √[(0 - 3)^2 + (0 - 0)^2] = √[9] = 3BC = √[(3 - 0)^2 + (0 - 4)^2] = √[25] = 5AC = √[(0 - 0)^2 + (0 - 4)^2] = √[16] = 4步骤三:计算三角形ABC的半周长。

三角形ABC的半周长可以通过以下公式计算:s = (AB + BC + AC) / 2其中,s是三角形ABC的半周长,AB、BC和AC分别是三角形ABC的边长。

对于我们的例子,我们可以计算出三角形ABC的半周长:s = (3 + 5 + 4) / 2 = 6步骤四:计算三角形ABC的面积。

三角形ABC的面积可以通过以下公式计算:S = √[s * (s - AB) * (s - BC) * (s - AC)]其中,S是三角形ABC的面积,s是三角形ABC的半周长,AB、BC和AC分别是三角形ABC 的边长。

勾股定理的十六种证明方法

勾股定理的十六种证明方法

勾股定理的十六种证明方法
勾股定理是数学中的重要定理之一,通常被描述为直角三角形的斜边平方等于两直角边平方之和。

这个定理的证明方法有很多种,以下是其中的十六种证明方法:
1. 几何证明法
2. 代数证明法
3. 三角函数证明法
4. 相似三角形证明法
5. 欧几里得算法证明法
6. 向量证明法
7. 反证法
8. 非欧几里得几何证明法
9. 外接圆证明法
10. 内切圆证明法
11. 黄桃算法证明法
12. 割圆法证明法
13. 梅涅劳斯定理证明法
14. 射影几何证明法
15. 连锁反应证明法
16. 矩阵证明法
每一种证明方法都有其独特的思路和技巧,可以通过对比和学习不同证明方法来更好地理解和掌握勾股定理。

勾股定理16种经典证明方法与在实际生活中的应用

勾股定理16种经典证明方法与在实际生活中的应用

勾股定理16种经典证明方法与在实际生活中的应用ab c ab b a 214214222⨯+=⨯++【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即整理得 .【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF.222c b a =+ab 21∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º.∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于.∴ . ∴ .【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2.∵ EF = FG =GH =HE = b ―a ,∠HEF = 90º.()2b a +()22214c ab b a +⨯=+222c b a =+ab 21∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于.∴ .∴ .【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC.∴ ABCD 是一个直角梯形,它的面积等于.∴ .∴ .【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P.∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,()2a b -()22214c a b ab =-+⨯222c b a =+ab 21221c ()221b a +()222121221c ab b a +⨯=+222c b a =+∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形.设多边形GHCBE 的面积为S ,则, ∴ .【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P. 过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵ ∠BCA = 90º,QP ∥BC ,,21222ab S b a ⨯+=+abS c 2122⨯+=222c b a =+∴ ∠MPC = 90º,∵ BM ⊥PQ ,∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c ,∴ Rt ΔBMQ ≌ Rt ΔBCA.同理可证Rt ΔQNF ≌ Rt ΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD. 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L.∵ AF = AC ,AB = AD ,∠FAB = ∠GAD ,∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =.同理可证,矩形MLEB 的面积 =.∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积221a 2a 2b∴ ,即 .【证法8】(利用相似三角形性质证明)如图,在Rt ΔABCa 、b ,斜边AB 的长为c ,过点C 作在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90∠CAD = ∠BAC ,∴ ΔADC ∽ ΔACB.AD ∶AC = AC ∶AB ,即 .同理可证,ΔCDB ∽ ΔACB ,从而有 .∴ ,即 .【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R. 过B 作BP ⊥AF ,垂足为P. 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA.∴ DH = BC = a ,AH = AC = b.由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA. 即PB = CA = b ,AP= a ,从而PH = b ―a.222b ac +=222c b a =+AB AD AC ∙=2AB BD BC ∙=2()222AB AB DB AD BC AC =∙+=+222c b a =+∵ Rt ΔDGT ≌ Rt ΔBCA ,Rt ΔDHA ≌ Rt ΔBCA.∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ).用数字表示面积的编号(如图),则以c 为边长的正方形的面积为①∵=,,∴ = . ②把②代入①,得= = .∴ .【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).543212S S S S S c ++++=()[]()[]a b a a b b S S S -+∙-+=++21438abb 212-985S S S +=824321S ab b S S --=+812S S b --98812212S S S S b S S c ++--++=922S S b ++22a b +222c b a =+∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE.又∵ ∠BTH = ∠BEA = 90º,BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE.∴ HT = AE = a.∴ GH = GT ―HT = b ―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC. 即 .过Q 作QM ⊥AG ,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE= ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌Rt ΔABE. 所以Rt ΔHBT ≌ Rt ΔQAM . 即 .由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE ,∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC. 即.∵ ,,,又∵ ,,,27S S =58S S =64S S =543212S S S S S c ++++=612S S a +=8732S S S b ++=27S S =58S S =64S S =∴ ==,即 .【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c. 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a. 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得=== ,即,∴ .【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有,∵ AB = DC = c ,AC = BD = b ,∴ ,即 8736122S S S S S b a++++=+52341S S S S S ++++2c 222c b a =+ADAE AC ∙=2()()BD AB BE AB -+()()a c a c -+22a c -222a cb -=222c b a =+BD AC BC AD DC AB ∙+∙=∙222AC BC AB +=22b ac +=a b aa B ACD c∴ .【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c. 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r.∵ AE = AF ,BF = BD ,CD = CE ,∴ = = r + r = 2r,即 ,∴ .∴ ,即 ,∵ ,∴ ,又∵ = = == ,∴ ,∴ ,∴ , ∴ .【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设,即假设 ,则由==可知 ,或者 . 即 AD :AC ≠AC :AB ,或者 BD :222c b a =+()()()BF AF CD BD CE AE AB BC AC +-+++=-+CD CE +r c b a 2=-+c r b a +=+2()()222c r b a +=+()222242c rc r ab b a ++=++ab S ABC 21=∆ABC S ab ∆=42AOC BOC AOB ABC S S S S ∆∆∆∆++=br ar cr 212121++()r c b a ++21()r c c r ++221rc r +2()ABC S rc r ∆=+442()ab rc r 242=+22222c ab ab b a +=++222c b a =+222c b a ≠+222AB BC AC ≠+AB AB AB ∙=2()BD AD AB +BDAB AD AB ∙+∙AD AB AC ∙≠2BD AB BC ∙≠2c b a r r r O F D B ABC ≠BC :AB.在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :∠ADC ≠∠ACB.在ΔCDB 和ΔACB ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则∠CDB ≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾.所以,的假设不能成立.∴ .【证法15】(辛卜松证明)222AB BC AC ≠+222c b a =+ab 21ab 21ab 21ab 212c2b 2a B C b a b a b a b a b ac c c cb ab ab b a b a设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 ;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 =.∴ ,∴ .【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC ,则 AD = c.∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ―a = b.又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b ,∴ Rt ΔAED ≌ Rt ΔDMC.∴ ∠EAD = ∠MDC ,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,∴ ∠BAF=∠DAE.连结FB ,在ΔABF 和ΔADE 中,()ab b a b a 2222++=+()22214c ab b a +⨯=+22c ab +22222c ab ab b a +=++222c b a =+()a b +∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE ,∴ ΔABF ≌ ΔADE.∴ ∠AFB = ∠AED = 90º,BF = DE = a.∴ 点B 、F 、G 、H 在一条直线上.在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a ,∴ Rt ΔABF ≌ Rt ΔBCG.∵ , , , ,∴ ===∴ .勾股定理在实际生活中的应用勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三边之间的数54322S S S S c +++=6212S S S b ++=732S S a +=76451S S S S S +===6217322SS S S S b a ++++=+()76132S S S S S ++++5432SS S S +++2c222c b a =+量关系,是我们在直角三角形中解决边长计算问题的重要理论依据,同时勾股定理在我们实际生活中应用也很广泛。

勾股定理的验证验证方法16种.1.3.3 验证方法16种

勾股定理的验证验证方法16种.1.3.3 验证方法16种

证明方法一:课本的证明做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等. 即 abc ab b a 214214222⨯+=⨯++整理得222cb a =+证明方法二:邹元治证明以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.b ab ab abac b acbacb ac bacbac b a∵ Rt ΔHAE ≌ Rt ΔEBF , ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +∴()22214c ab b a +⨯=+.∴222c ba =+.证明方法三:赵爽证明以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21. 把这四个直角三D GC FAHEBabcab ca b c a bc角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2.∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴()22214c a b ab =-+⨯ ∴ 222c b a =+.证明方法四:1876年美国总统Garfield 证明以a 、b 为直角边,以c 为斜边作两个b acGD ACBFE Ha bab c c AB CD E全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE , ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠D EC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形, 它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+.∴ 222cb a=+.证明方法五:梅文鼎证明做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的PH G F E D CB A abc abca b c a bc 一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P . ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD , ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD , ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º, BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ab S c 2122⨯+=, ∴ 222c ba =+.证明方法六:项明达证明做两个全等的直角三角形,设它们的两条直角边cccb acbaA B CEFP QM N长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N .∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ ,∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).证明方法七:欧几里得证明做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L .∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a . 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b ac += ,即 222c b a =+.cba cb a ABCD EFGH MLK证明方法八:利用相似三角形性质证明如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB ,即AB AD AC ∙=2 . 同理可证,ΔCDB ∽ ΔACB ,从而有AB BD BC ∙=2.∴ ()222AB AB DB AD BC AC =∙+=+,即 222c b a =+.ABDC a cb证明方法九:杨作玫证明做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠P AC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b .由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a . ∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . T F ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ).用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++=①∵()[]()[]a b a a b b S S S -+∙-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++==922S S b ++ = 22a b +.∴ 222c b a =+.987654321PQR TH G F E D C BA a b c ab c cc证明方法十:李锐证明设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º, ∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =. 过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE= ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE ,∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.M H Q R T G F ED C B A cb a 87654321证明方法十一:利用切割线定理证明在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC ∙=2=()()BD AB BE AB -+ =()()a c a c -+ = 22a c -,即222a c b -=,∴ 222c b a =+.证明方法十二:利用多列米定理证明在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBDa b aaBAC EDc内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙,∵ AB = DC = c ,AD = BC = a , AC = BD = b , ∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.证明方法十三:作直角三角形的内切圆证明在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE , ∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+ = CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.ba ca b c ACB D∴ ()()222c r b a +=+,即()222242c rc r ab b a ++=++,∵ ab S ABC 21=∆, ∴ ABCS ab ∆=42,又∵AOO C A O B A B C S S S S ∆∆∆∆++= =br ar cr 212121++ =()r c b a ++21=()r c c r ++221= rcr+2,∴ ()ABCS rc r ∆=+442, ∴ ()ab rc r 242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.证明方法十四:利用反证法证明如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,c ba r r r O FEDCBA∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.证明方法十五:辛卜松证明设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 ()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +. ∴ 22222c ab ab b a+=++,ABDC a cb∴ 222c b a=+.证明方法十六:陈杰证明设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c .∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a .ab 21ab 21ab 21ab 212c 2b 2aA AD DBBCC b ababa bab a ccccb aab abb a b a∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++ =2c ∴ 222c b a =+.A BC D EF G HMab c a b cac a bc 1234567。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的再证明
铜城中学 梁红生
在初中数学圆的教学中,我发现了勾股定理新的证明方法,说出来与大家共同讨论。

在义教实验版初中数学第24章圆有两道有关三角形的内切圆半径的计算问题:
1.第98页练习第2题:
如图,⊿ABC 的内切圆的半径为r ,⊿ABC 的周长为L,求⊿ABC 的面积 (提示设内心为O , 连接OA ,OB ,OC )
此题我们易得:
S △ABC = S △ABO + S △CBO+ S △ACO =R *AB 2
1+R *BC 21+R *AC 21 =R *L 2
1
如果该三角形是直角三角形,设三边为a,b,c,其中c 为斜边,则有: 21ab=21(a+b+c)R 解得,R=c
b a ab ++ 2.第103页习题15题:
如图,Rt △ABC 中,∠C=900,AB,BC,CA 的长为a,b,c,求△ABC 的内切圆的半径R 。

此题易证得四边形CEOF 为正方形,其边长为R ,再运用切线长定理得:
A B
C O .
D
E
F A B
C D E F O
AD = AF = a -R
BD=BE= b -R
AB=BD+BE
即:c= a -R+ b -R 解得:R=2c -b a + 比较两题的结果,就有:
c b a ab ++=2c -b a + 化简就有:a 2+b 2=c 2
如此,即证明了勾股定理。

2010.12.15。

相关文档
最新文档