1求函数定义域类型几方法(word版)

合集下载

求函数定义域的类型及方法

求函数定义域的类型及方法

求函数定义域的类型及方法函数定义域是指函数中所有可能取值的集合。

在数学中,我们关心的是函数的定义域是什么,即函数可以接受哪些输入值。

定义域的类型及方法可以根据函数类型的不同而有所不同。

下面,我将介绍几种常见函数类型的定义域类型及确定方法。

1.代数函数:代数函数是由代数运算(如加减乘除、指数、对数等)构成的函数。

常见的代数函数类型包括多项式函数、有理函数和指数函数等。

对于代数函数,它们的定义域通常是实数集或者实数集的子集。

确定定义域时,需要避开会导致函数结果无意义的数值,比如分母为零或负数的情况。

例如:多项式函数f(x)=2x^2+3x+1的定义域是整个实数集,因为它可以接受任意实数作为输入。

2.三角函数:三角函数是指以角度或弧度为自变量的函数,常见的三角函数有正弦函数、余弦函数和正切函数等。

对于三角函数,定义域通常是实数集或者实数集的子集。

确定定义域时,需要考虑周期性和奇偶性质。

使用角度时,常用的定义域是[0,360],以弧度为单位时,常用的定义域是[-π,π]。

例如:正弦函数 f(x) = sin(x) 的定义域是整个实数集,因为它可以接受任意实数作为输入。

3.指数函数和对数函数:指数函数和对数函数是指以指数和对数为基础的函数,常见的指数函数有指数函数、对数函数和幂函数等。

对于这些函数,它们的定义域通常是正实数集或正实数集的子集。

确定定义域时,需要避开会导致结果无意义的数值,比如对数底为零或负数的情况。

例如:指数函数f(x)=e^x的定义域是整个实数集,因为它可以接受任意实数作为输入。

4.分段函数:分段函数是由多个不同函数段构成的函数,每个函数段有不同的定义域。

在确定分段函数的定义域时,需要找出各个函数段的交集作为最终的定义域。

例如:分段函数f(x)=x^2,-1<=x<0,2x+1,0<=x<2,x-3,x>=2其中第一段的定义域是[-1,0),第二段的定义域是[0,2),第三段的定义域是[2,∞),所以这个分段函数的定义域是[-1,0)∪[0,2)∪[2,∞)。

函数的定义域和常见求解方法

函数的定义域和常见求解方法

函数的定义域和常见求解方法函数的定义域(domain)是指函数能够接受的实际输入值的集合。

换句话说,定义域是使函数有意义的所有可能的输入值的集合。

在数学中,函数一般表示为f(x),其中x是函数的自变量,而f(x)则是自变量x所对应的函数值。

常见的函数定义域包括实数域(-∞,+∞),有理数集,整数集,自然数集,以及其他特定的定义域,如正数集,三角函数等。

在确定函数的定义域时,我们需要注意以下几点:1.分式函数的定义域:分式函数的定义域由分母不等于零的值所构成。

我们需要找出使分母不等于零的x的值,将这些值作为定义域的一部分。

2.平方根函数的定义域:平方根函数的定义域要求被开方数非负,即要求根号内的数大于等于零。

3.对数函数的定义域:对数函数的定义域要求底数大于零,并且对数函数的参数值必须大于零。

常见的函数求解方法包括图像法、方程法、函数变量代换法、函数性质法等。

1.图像法:图像法是通过绘制函数的图像来找出函数的解。

我们将函数的图像与坐标系结合起来,寻找函数与x轴的交点,即函数的解。

2.方程法:方程法是通过将函数等式转化为方程的形式,然后通过解方程来找出函数的解。

在方程法中,我们可以使用各种方法来解方程,如因式分解法、配方法、根号消去法等。

3.函数变量代换法:函数变量代换法是通过引入新的变量来转化函数,从而简化函数的形式。

通过选择适当的变量代换,我们可以将原函数转化为更简单的函数,进而求解出函数的解。

4.函数性质法:函数性质法是通过利用函数的性质来求解函数的解。

例如,通过函数的奇偶性、单调性、周期性、对称性等性质,我们可以得到函数的一些特殊解。

在实际问题中,常常需要综合运用以上多种方法来求解函数的解。

根据具体的函数形式和问题的要求,选择最合适的方法进行求解。

同时,在进行函数求解时,我们也需要注意函数定义域的范围,以保证求解出的函数解在定义域内有效。

(完整word版)求函数定义域和值域方法和典型题归纳,推荐文档

(完整word版)求函数定义域和值域方法和典型题归纳,推荐文档

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高一数学函数的定义域与值域的常用方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

例1. 已知,试求。

解:设,则,代入条件式可得:,t≠1。

故得:。

说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。

例2. (1)已知,试求;(2)已知,试求;解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以-x代x则得:,与条件式联立,消去,则得:。

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。

例4. 求下列函数的解析式:(1)已知是二次函数,且,求;(2)已知,求,,;(3)已知,求;(4)已知,求。

【题意分析】(1)由已知是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用的式子表示就容易解决了。

(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,的两个程就行了。

【解题过程】⑴设,由得,由,得恒等式,得。

故所求函数的解析式为。

(2),又。

(3)设,则所以。

(4)因为①用代替得②解①②式得。

【题后思考】求函数解析式常见的题型有:(1)解析式类型已知的,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式和标根式的选择;(2)已知求的问题,法一是配凑法,法二是换元法,如本例(2)(3);(3)函数程问题,需建立关于的程组,如本例(4)。

函数定义域几种类型及其求法

函数定义域几种类型及其求法

函数定义域几种类型及其求法函数的定义域是指函数的自变量取值范围,也就是使函数有意义的输入值的集合。

在数学中,函数的定义域可以分为几种常见的类型,如下所述。

1.实数定义域(R):函数的定义域是实数集合R。

这意味着函数可以接受任何实数作为输入。

例如,常见的函数如线性函数、多项式函数、指数函数、对数函数、三角函数等都具有实数定义域。

在这种情况下,不需要做额外的计算来确定函数的定义域,因为它已经明确了。

2.有理数定义域(Q):函数的定义域是有理数集合Q。

有理数是可以表示为两个整数的比值的数。

例如,分式函数如有理函数、整式函数等可以具有有理数定义域。

在这种情况下,我们需要找到函数中的分母,并解方程找到满足分母不为零的有理数值。

3.整数定义域(Z):函数的定义域是整数集合Z。

这意味着函数只能接受整数作为输入。

例如,阶跃函数、周期函数、模函数等可以具有整数定义域。

在这种情况下,函数的定义域可以通过阅读函数定义或观察函数图形来确定。

4.正数定义域(P):函数的定义域是正数集合P。

这意味着函数只能接受正实数作为输入。

例如,根式函数如平方根、立方根等可以具有正数定义域。

在这种情况下,我们需要找到函数中的根号,并解方程找到满足根号内值大于等于零的正数值。

5.范围限定定义域:有时函数的定义域可能会根据问题的特定要求而受到限制。

例如,函数表示一个物理过程,其定义域可以是非负实数集合[0,∞),因为负时间或未来时间不具有实际意义。

确定函数的定义域的方法可以通过以下几种方式:1.查看函数的公式或定义:有时,函数的定义域可以通过检查函数的公式或定义来确定。

例如,当函数是一个分式或根式函数时,分母、根号内值的限制可以帮助我们确定定义域。

2.解方程:对于一些函数,可以通过解方程来确定定义域。

例如,对于有理函数,需要找到使得分母不为零的解。

3.观察函数图形:有时,通过观察函数的图形可以直观地确定定义域。

例如,对于三角函数和周期函数,可以在图上观察到周期性。

高二数学函数的概念(Word版)

高二数学函数的概念(Word版)

高二数学函数的概念(2021最新版)作者:______编写日期:2021年__月__日【导语】小编为大家整理了高二数学函数的概念,供大家学习阅读参考。

一.知识网络二.高考考点 1.映射中的象与原象的概念; 2.分段函数的问题:定义域、值域以及相关的方程或不等式的解的问题; 3.复合函数的解析式、图象以及相关的最值等问题; 4.分类讨论、数形结合等数学思想方法的应用.三.知识要点(一)函数的定义1、传统定义:设在某一变化过程中有两个变量x和y,如果对于某一范围内x的每一个值,y都有的值和它对应,那么就说y是x的函数,x叫做自变量,y叫做因变量(函数). 2、现代定义:设A、B是两个非空数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x ,在集合B中都有确定的数f(x)和它对应,那么就称 f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 3、认知: ①注意到现代定义中”A、B是非空数集”,因此,今后若求得函数定义域或值域为φ,则此函数不存在. ②函数对应关系、定义域和值域是函数的三要素,缺一不可.在函数的三要素中,对应关系是核心,定义域是基础,当函数的定义域和对应法则确定之后,其值域也随之确定. (二).映射的概念将函数定义中的两个集合从非空数集扩展到任意元素的集合,便得到映射概念. 1、定义1:设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有的元素和它对应,那么这样的对应(包括集合A、B及集合A到集合B的对应法则f)叫做集合A到集合B的映射,记作 f:A→B2、定义2:给定一个集合A到集合B的映射 f:A→B,且a∈A,b∈B,如果在此映射之下元素a和元素b对应,则将元素b叫做元素a的象,元素a叫做元素b的原象.即如果在给定映射下有 f:a→b,则b叫做a的象,a 叫做b的原象. 3、认知: 映射定义的精髓在于”任一(元素)对应(元素)”,即A中任一元素在B中都有的象.在这里,A中元素不可剩,允许B中有剩余;不可”一对多”,允许”多对一”.因此,根据B中元素有无剩余的情况,映射又可分为”满射”和”非满射”两类. 集合A到集合B的映射 f:A→B是一个整体,具有方向性; f:A→B 与 f:B→A 一般情况下是不同的映射. (三)、函数的表示法表示函数的方法,常用的有解析法、列表法、图象法和口头描述法.1、解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.2、列表法:列出表格表示两个变量的函数关系的方法.运用列表法表示的,多是理论或实际生活中偏于实用的函数.3、图象法:用函数图象表示两个变量之间函数关系的方法. 图象法直现形象地表示出函数的变化情况,是数形结合的典范.只是它不能精确表示自变量与函数值之间的对应关系. 认知:函数符号的意义在函数的概念中,我们用符号”y=f(x)”表示”y是x的函数”这句话. 其中,对于运用解析法给出的函数y=f(x),其对应法则”f”表示解析式蕴含的对自变量x施加的”一套运算的法则”,即一套运算的框架. 具体地,对于函数f(x)=5 -2x+3(x>1) ①对应法则”f”表示这样一套运算的框架:5( ) -2()+3,()>1.即f: 5( ) -2( )+3,( )>1. 据此,我们可分别对函数值与函数表达式作以诠释和辩析: f(a):对自变量x的取值a实施上述运算后的结果,故有f(a)=5 -2a+3 (a>1); f(x):对自变量x实施上述运算后的结果,故有f(x)=5 -2x+3 (x>1); f(g(x)):对函数g(x)实施上述运算后的结果,于是有f(g(x))=5 (x)-2g(x)+3 ( g(x)>1 ) ②感悟:函数符号意义之下的产物或推论有比较才能有鉴别,有品味才能有感悟.我们仔细地比较和品味①、②,不难从中悟出这样的代换规律: f(x)的解析式f[g(x)]的表达式我们将上述替换形象地称之为”同位替换”. 显然,同位替换是在函数符号的意义下产生的函数特有的替换,它源于”等量替换”,又高于”等量替换”,对于同位替换,在两式不可能相等的条件下仍可操作实施,这是”等量替换”所不能比拟的.由f(x)的解析式导出f(x+1)的解析式,便是辩析两种替换的一个很好的范例.四.经典例题例 1.如右图,在直角梯形OABC 中,AB∥OC,BC⊥OC,且AB=1,OC=BC=2,直线l:x=t,截此梯形所得位于l左方的图形面积为S,则函数S=f(t)的大致图象是以下图形中( ) 分析1:立足于f(t)在t∈[0,1]上的函数式.直线OA的方程为y=2x, 故当0≤t≤1时, s=,,由此否定A,B,D,应选C. 分析2:运用运动的观点,感悟函数图象所反映的函数值随着自变量的变化而变化的状态. 当l在O,D之间运动时,S随着t的增加而增加,并且增加的速度越来越快,即ΔS1, ΔS2..., ΔSn是递增的(ΔSi是单位时间内面积的增量),故排除A 和B,对于C和D,由t∈[0,1]时f(t)= 的凹凸性可排除D,故应选C. 例 2.如图所示,梯形OABC各顶点的坐标分别为O(0,0),A(6,0),B(4,2),C(2,2),一条与y轴平行的直线l从点O开始作平行移动,到点A为止.设直线l与x轴的交点为M,OM=x,并记梯形被直线l截得的在左侧的图形面积为y,求函数 y=f(x)的解析式,定义域及值域. 分析:如图,由于点M位置的不同,所得图形的形状与面积不同,故需要分类讨论,注意到决定l左侧图形形状的关键点,故以x=2,4 分划讨论的区间. 解: (1)当0≤x≤2时,上述图形是一等腰RtΔ,此时, y= ,即 ; (2)当22),求f(2x+1)的解析式; (2)已知 ,求f(x+1)的解析式. 解: (1) ∵f(x)=x2+2x-1 (x>2) ∴以2x+1替代上式中的x得f(2x+1)=(2x+1)2+2(2x+1)-1 (2x+1>2) ∴f(2x+1)=4x2+8x+2 (x>1/2 )(2)由已知得∴以x替代上式中的得f(x)=x2-1 (x≥1)∴f(x+1)=(x+1)2-1 (x+1≥1)即f(x+1)=x2+2x (x≥0)点评:上述求解也可运用换元法,但是,不论是”换元法”,还是上面实施的”同位替换”,它们都包括两个方面的替换: (1)解析式中的替换; (2) 取值范围中的替换. 根据函数三要素的要求,这两个方面的替换缺一不可. 例 4. 设y=f(2x+1)的定义域为[-1,1],f(x-1)=x2,试求不等式f(1-x)f(b)≥f(c),则映射f的个数为 ; ②若映射f满足f(a)+f(b)+f(c)=0,则映射f的个数为 ; ③若映射f满足 f(a)-f(b)=f(c), 则映射f的个数为. (2)设A={1,2,3,4,5},B={6,7,8},从A到B的映射f满足f(1)≤f(2)≤f(3)≤f(4)≤f(5),则映射f的个数为 . 分析:注意到f(a)的意义:在映射f:A→B之下A中元素a的象,故有f(a),f(b),f(c)∈B.为便于梳理思路,解答这类题经常运用列表法或分类讨论的方法. 解: (1)由已知得f(a),f(b),f(c)∈B①列表法:∵f(a)>f(b)≥f(c)∴f(a)只能取0或1,f(c)只能取-1或0. 根据映射的定义,以f(a)取值从大到小的次序列表考察: f(a) f(b) f(c) 1 0 0 1 0 -1 1-1 -1 0 -1 -1 由此可知符合条件的映射是4个.②列表法:注意到f(a)+f(b)+f(c)=0,又B中三个元素之和为0的情形只有两种:0+0+0;1+(-1)+0,以a的象f(a)的取值(从小到大)为主线列表考察f(a) f(b) f(c) 0 0 0 0 1 -1 0 -1 1 1 0 -1 1 -1 0 -11 0 -1 0 1 由此可知符合条件的映射有7个.③分类讨论:f(a)-f(b)=f(c) f(a)=f(b)+f(c)即a的象等于其它两个元素的象的和.以象集合元素的个数为主线(从小到大)展开讨论. ( i )当象集合为单元素集合时,只有象集{0}满足已知条件,此时符合条件的映射f只有1个. ( ii )当象集合为双元素集合时,满足条件的象集合为{-1,0}或{1,0} {-1,0}:-1=0+(-1),-1=(-1)+0;{1,0}:1=0+1,1=1+0 此时符合条件的映射有4个.( iii )当象集合为三元素集合时,满足条件的象集合为{-1,0,1} {-1,0,1}: 0=1+(-1), 0=(-1)+1∴此时符合条件的映射f有2个于是综合(i)、(ii)、(iii)得符合条件的映射f的个数为7. (2)分类讨论:以象集合中元素的个数(从小到大)为主线展开讨论. (i)当象集合为单元素集时,象集为{6}或{7}或{8},故此时满足条件的映射f有3个; (ii)当象集合为双元素集时,先将A中元素分为两组,有种分法,又每两组的象有3种情形,故此时符合条件的映射f有×3=12个; (iii)当象集合为三元素集时,先将A中元素分为3组,有种分法,又每三组的象只有1种情形,故此时符合条件的映射f有×1=6个。

完整word版,高中数学(必修1)全套教材含答案(超好),推荐文档

完整word版,高中数学(必修1)全套教材含答案(超好),推荐文档

特别说明:《高中数学教材》是根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。

欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。

本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章或节分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]目录:数学1(必修)数学1(必修)第一章:(上)集合 [训练A、B、C]数学1(必修)第一章:(中)函数及其表 [训练A、B、C]数学1(必修)第一章:(下)函数的基本性质[训练A、B、C] 数学1(必修)第二章:基本初等函数(I) [基础训练A组] 数学1(必修)第二章:基本初等函数(I) [综合训练B组]数学1(必修)第二章:基本初等函数(I) [提高训练C组]数学1(必修)第三章:函数的应用 [基础训练A组]数学1(必修)第三章:函数的应用 [综合训练B组]数学1(必修)第三章:函数的应用 [提高训练C组](数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC U I UB .()()A B AC U I U C .()()A B B C U I UD .()A B C U I4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =+∈∈A B C2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =I ,则C 的非空子集的个数为 。

(完整版)高等数学笔记(可编辑修改word版)

(完整版)高等数学笔记(可编辑修改word版)

⑷若 lim ,则称β是比α较低阶的无穷小量
2
lim 1
定理:若:1 ~ 1, 2 ~ 2;则:
2
lim
1 2
㈢两面夹定理
1. 数列极限存在的判定准则:
设: yn xn zn (n=1、2、3…)
且:
lim
n
yn
lim
n
zn
a
则:
lim
n
xn
a
2. 函数极限存在的判定准则:
设:对于点 x0 的某个邻域内的一切点 (点 x0 除外)有:
第一章 函数、极限和连续 §1.1 函数
一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x∈D
定义域: D(f), 值域: Z(f).
2.分段函数:
y
f (x) g( x)
x D1 x D2
3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f-1(y)
x x0
㈡无穷大量和无穷小量
1. 无穷大量: lim f (x)
称在该变化过程中 f (x) 为无穷大量。
X 再某个变化过程是指:
x , x , x , x x0, x x0 , x x0
2. 无穷小量: lim f (x) 0 称在该变化过程中 f (x) 为无穷小量。 3. 无穷大量与无穷小量的关系:
g(x) f (x) h(x) 且: lim g(x) lim h(x) A 则: lim f (x) A
x x0
x x0
x x0
㈣极限的运算规则
若: lim u(x) A, lim v(x) B
则:① lim[u(x) v(x)] limu(x) lim v(x) A B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域的类型及求法
一、已知解析式型(所有同学一定要会的)
二、含参问题(很重要)
三、抽象函数(复合函数)的定义域
1已知()f x 的定义域,求[]()f g x 的定义域
其解法是:若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[]()f g x 的定义域.
例1 已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.
分析:该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围.
解:()f x Q 的定义域为[]15-,,1355x ∴--≤≤,41033
x ∴≤≤. 故函数(35)f x -的定义域为41033⎡⎤⎢⎥⎣⎦
,. 2、已知[]()f g x 的定义域,求()f x 的定义域
其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的范围即为()f x 的定义域.
例2 已知函数2
(22)f x x -+的定义域为[]03,,求函数()f x 的定义域. 分析:令222u x x =-+,则2(22)()f x x f u -+=,
由于()f u 与()f x 是同一函数,因此u 的取值范围即为()f x 的定义域.
解:由03x ≤≤,得21225x x -+≤≤.
令222u x x =-+,则2(22)()f x x f u -+=,15u ≤≤.
故()f x 的定义域为[]15,.
3,已知[]()f g x 的定义域,求[()]f h x 的定义域
其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的取值范围即为()h x 的取值范围,由()h x 的取值范围即可求出
[()]f h x 的定义域x 的取值范围。

例2 已知函数(1)f x +的定义域为[]15-,,求(35)f x -的定义域.
分析:令1,35u x t x =+=-,则(1)(),(35)()f x f u f x f t +=-=,
(),()f u f t 表示的是同一函数,故u 的取值范围与t 相同。

解:()f x Q 的定义域为[]15-,,即15x ∴-≤≤016x ∴+≤≤。

056x ∴-≤3≤
51133
x ∴≤≤ 故函数(35)f x -的定义域为51133⎡⎤⎢⎥⎣⎦
,. 4、运算型的复合函数
求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,然后再求交集.
例3 若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.
解:由()f x 的定义域为[]35-,,则()x ϕ必有353255x x --⎧⎨-+⎩
,,≤≤≤≤解得40x -≤≤. 所以函数()x ϕ的定义域为[]40-,.
四、实际问题型(这个就不讲了哈)
求函数定义域要注意的问题:
1当解析式为整式时,x 取任何实数。

(如y=2x+1,y=x 2+x-1的定义域为R )
2当解析式为分式时,x 取分母不为零的实数。

(如y=11
x +的定义域为{x|x ≠-1}) 3当解析式为偶次根式时,x 取被开方数为非负数的实数。

(如y =
y ={x|x ≥-1})
4当解析式为复合表达式时,首先逐个列出不等式,求出各部分的允许取值范围,再求其公共部分。

见例1
5当解析式涉及到实际应用问题时,视具体应用问题而定。

6、对数函数的真数要大于零,底数要大于零,且不等于1。

相关文档
最新文档