第三章参数估计
三章参数估计ParametricEstimation

会有多项分布,
p( x1,..., xm | p1,..., pm )
n!
m
m
p
xi i
xi ! i1
i 1
m
m
l ( p1,..., pm ) log( n!) log xi! xi log pi
i 1
i 1
m
pi 1
i 1
m
m
m
l( p1,...,pm,) log(n!) logxi! xi logpi ( pi 1)
1.点估计的基本概念(Point Estimator)
点估计: 就是由样本x1,x2,…xn确定一个统计量
gx1,x2,,xn
用它估计总体的未知参数,称为总体参数的估 计量。当具体的样本抽出后,可求得出样本统 计量的值。用它作为总体参数的估计值,称作 总体参数的点估计值。
2.两种基本的点估计方法
• (1)总体的方差越大,需要的样本量越大。 • (2)样本量n和置信区间长度的平方成反比。 • (3)置信度越高,样本量越大。
样本量的确定
需要考虑问题:
➢ (1)要求什么样的精度?即我们想构造多宽的区间? ➢ (2)对于构造的置信区间来说,想要多大的置信度?即我
k
阶中心矩。
矩法估计: V ^ k Ak, U ^ k Bk
这 是k包 个含 未 知 1, 参 , k 数 的 联 立 方
A1 11 ,2 , ,k
A2
21 ,2 , ,k
Ak k 1 ,2 , ,k
从中解出方,记 程为 组 ˆ1, 的 ,ˆ解 k,即
ˆˆ21
ˆ1 ˆ2
X1 ,X2 X1 ,X2
置信区间的含义
样本分布 /2
第三章 参数估计

第三章参数估计重点:1.总体参数与统计量2.样本均值与样本比例及其标准误差难点:1.区间估计2.样本量确实定知识点一:总体分布与总体参数统计分析数据的方法包括:描绘统计和推断统计〔第一章〕推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。
总体分布是总体中所有观测值所形成的分布。
总体参数是对总体特征的某个概括性的度量。
通常有总体平均数〔μ〕总体方差〔σ2〕总体比例〔π〕知识点二:统计量和抽样分布总体参数是未知的,但可以利用样本信息来推断。
统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。
统计量是样本的函数,如样本均值〔〕、样本方差〔 s2〕、样本比例〔p〕等。
构成统计量的函数中不能包括未知因素。
由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。
统计量的取值是根据样本而变化的,不同的样本可以计算出不同的统计量值。
[例题·单项选择题]以下为总体参数的是( )a.样本均值b.样本方差c.样本比例d.总体均值答案:d解析:总体参数是对总体特征的某个概括性的度量。
通常有总体平均数、总体方差、总体比例题·判断题:统计量是样本的函数。
答案:正确解析:统计量是样本的函数,如样本均值〔〕、样本方差〔〕、样本比例〔p〕等。
构成统计量的函数中不能包括未知因素。
[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。
答案:错误解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。
〔一〕样本均值的抽样分布设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。
每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。
计量经济学 第三章:违背假设问题及参数估计方法

2.D-W检验 D-W检验适合于一阶自相关检验,构造统计量
d
2 e e t t 1 t 2 n
et
t 1
n
2
n et et 1 2(1 ˆ) 则:d 21 t 2n 2 et t 1 0d 4
e 0 1 f ( X ) 2 f ( K )
四、存在异方差模型的估计方法(Eviews权重法) 1.解释变量的某种(函数)形式作为权数
Eviews6.0权数为: 1 f ( x)
1 f ( x) 标准差的倒数 2 方差的倒数 1 f ( x) Eviews7.2权数: 标准差 f ( x) 2 f 方差 ( x)
采用时间序列数据的模型往往存在序列相关
三、序列相关检验
检验方法主要有: 图示法 D-W检验 LM检验 例3-3(表3-3),进出口对于国内生产总值的影响 1.图示法 ①估计原模型,得到残差; ②构造残差与残差滞后期之间的散点图; ③若存在线性关系,则存在序列相关。 另外,也可以构造残差与时间序列t的散点图,通过 分析随时间序列的规律性判断是否存在序列相关。
2.加权最小二乘法的权数为: 1 ei ◇消除异方差的经验做法: 指数模型能够有效地减弱异方差现象; 多个解释变量优先考虑用残差序列作为权数。
例3-1(表3-1),能源消费问题 ◇原模型为: ECt 0 1GDPt t ◇原模型参数估计结果为: ˆ 87307.06 0.6 t
t t t 1 2 t 2 s t s
s 0
E ( t ) s E ( t s ) 0
s 0
2 2s Var ( t ) Var ( t s ) 2 1 s 0 2 s Cov( t , t s ) 1 2
3 第三章 参数估计与非参数估计

– 各类的先验概率P(ωi)
– 各类的条件概率密度函数p(x|ωi)
P(i | x)
p(x | i ) P(i ) p(x | j ) P( j )
j
知识的来源:对问题的一般性认识或一些训练数据 基于样本两步Bayes分类器设计
利用样本集估计p(ωi)和p(x|ωi)
θ N
argmax ln p( x k | θ)
θ k 1
16
• 最大似然估计计算方法
使似然函数梯度为0
θ H (θ) |ˆ θ ln p( xk | θ) |ˆ 0
ML
N
k 1
ML
θ 1
...
s
T
17
一.类概率密度最大似然估计
7
§3-1 参数估计与监督学习(续2)
下图表示对一幅道路图像按路面与非路面分类可用两种不同做法,其中左图 是在图像中路面区与非路面中各找一个窗口,将其中每个象素分别作为这两 类的训练样本集,用这两个样本集在特征空间的分布参数进行设计。 而无监督学习方法则不同,它不预先选择样本类别的样本集,而是将整幅图 的像素都作为待分类样本集,通过它们在特征空间中表现出来的聚类现象, 把不同类别划分开。 图中有监督学习,样本集分布呈现交迭情况,而无监督学习方法由于没有类 别样本指导,无法确定它们的交迭情况,只能按分布的聚类情况进行划分。
N 1 估计值: 1 Xk N k 1
1 N 2 Xk N k 1
Xk
T
结论:①μ的估计即为学习样本的算术平均
②估计的协方差矩阵是矩阵
统计学参数估计

统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。
这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。
在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。
而样本则是从总体中获取的一部分观测值。
参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。
常见的参数估计方法包括点估计和区间估计。
点估计是一种通过单个数值来估计总体参数的方法。
点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。
常见的点估计方法包括最大似然估计和矩估计。
最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。
矩估计则是通过样本矩的函数来估计总体矩的方法。
然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。
为了解决这个问题,区间估计被引入。
区间估计是指通过一个区间来估计总体参数的方法。
该区间被称为置信区间或可信区间。
置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。
置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。
在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。
例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。
在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。
参数估计的准确性和可靠性是统计分析的关键问题。
估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。
经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。
总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。
参数估计在统计推断、统计检验和决策等领域具有广泛的应用。
估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。
应用数理统计——参数估计

这就是矩法估计的理论依据。
三、正态总体参数的区间估计 前面讨论了未知参数的点估计问题,它是用估计
量 θ 的值作为未知参数θ的估计。然而不管θ 是一 个怎样优良的估计量,它也只是一定程度的精确, 至于如何反映精确度,参数的点估计并没有回答。 由于θ 是一随机变量,需说明用θ 去估计θ的精度, 也就是要说明在一定概率意义下, 与θ的误差有 θ 多大。即确定具有特定概率意义的区间,使它以 相当大的概率包含未知参数的真值,以表明总体 参数真值所处的范围。
α
α
α
2
− uα
σ
n } = 1−α ) = 1−α
2
2
2
uα
2
σ
n
< µ < X + uα 2 < µ < x − uα 2
于是P{x − uα 2
σ
n
σ
n
例6:见教材82页例1。
(2)总体方差σ 2未知时,正态总体均值µ的区间估计
X −µ 因为若X服从N ( µ , σ ),则T = 服从t (n − 1) S n
2 2
小结:学习了
1、点估计法——矩法 2、评价估计量优劣的标准——无偏性、有效性 和一致性 3、正态总体的区间估计——均数和方差的区间估计 作业:教材98页第4题。 教材99页第10、13题。 教材100页第17、18题。
3、正态总体方差σ 的区间估计
2
因为若X服从N ( µ , σ 2 ),则χ 2 = 由附表4知P{χ12−α 2 < (n − 1) S 2
(n − 1) S 2
σ2
服从χ 2 (n − 1)
σ2
2 < χα 2 } = 1 − α
SPSS第三章参数估计

利利利利
t 21.192
Mean df Sig. (2-tailed) Difference 32 .000 8.86364
结论: 结论
1:33家平均受益量为 8.8636万元 万元, 表1:33家平均受益量为 8.8636万元,标准 差为2.4027万元. 2.4027万元 差为2.4027万元.
新电池 ):18.2\10.4\12.6\18.0\11.7\15.0\24.0\17.6\ (日):18.2\10.4\12.6\18.0\11.7\15.0\24.0\17.6\23 .6\24.8\19.3\20.5\19.8\17.1\ .6\24.8\19.3\20.5\19.8\17.1\16.3 旧电池 ):12.1\17.5\8.6\13.9\7.8\15.1\17.9\10.6\ (日):12.1\17.5\8.6\13.9\7.8\15.1\17.9\10.6\13.8 14.2\15.3\ \14.2\15.3\11.6
挂牌上课态度反映得分(X) 挂牌上课态度反映得分( 10—20 10 20 20—30 20 30 30—40 30 40 40—50 40 50 50—60 50 60 60—70 60 70 合计 人数(f ) 人数( 2 6 10 12 20 10 60
案例1 案例1
(1分表示"很不同意" (1分表示"很不同意",7分表示"很同 分表示 分表示" 10项态度分累加后得一总态度分 项态度分累加后得一总态度分, 意",将10项态度分累加后得一总态度分,这种 量叫7级李克累加量表): 量叫7级李克累加量表): 试计算: 试计算: 学生态度得分的平均值和标准差; (1)学生态度得分的平均值和标准差; 构造学生态度得分平均值的98%置信区间. 98%置信区间 (2)构造学生态度得分平均值的98%置信区间.
有限数据统计处理(总体参数估计)第三章

(1)、总体标准差σ已知条件下,对总体
平均数的区间估计
使用t分布的条件:当样本容量n<30,且总体标准差σ未
知时,用样本标准差S代替总体标准差σ。样本标准差S
计算公式:
x x t sx
s sx n
s
(x - x)
n 1
2
例1:从大学一年级学生中随机抽取12名学
B
A
中位数的抽样分布
X
充分性:作为估计参数用的统计量已经提取了
样本中所有可利用的信息(随着样本容量的增大,估计
量越来越接近被估计的总体参数 )。
P(X )
较大的样本容量
B A
较小的样本容量
X
二、区间估计
问题:
在
对有限次测量
x
的某个范围 内包含 的概率 有多大?
(......x......)
置信区间
样本统计量 (点估计)
置信下限
置信上限
置信区间
无限多次测定中才有总体平均值和总体标准偏差,而实
际测定为有限次测定,与未知,只能用有限次测定的平
均值及标准偏差S来估计。用S代替引起的误差可用校正
系数t来补偿。
置信区间和置信概率
总体平均值将包括在
区间内,即包括在X平均值附近的某区间内。
因此称在
的区间为置信区间。
置信区间:在一定置信度下,以测定结果x 为中心的,包括 总体平均值在内的可靠性范围。
把测定值在置信区间内出现的概率称为置信概率 (P),也称为置信度。
置信水平:
1.
总体未知参数落在区间内的概率
2.
表示为P= (1-)%
为显著性水平,是总体参数未在区间内的概率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1 求点估计量的方法
设总X体的分布函 F(数 x,)或概率函 P(x数 ,)的 数学表达式为已中知 x为,随其机变 X的 量观测 值, 为总体的未知参 的数 取, 值范围, 记为 即,称 为参数空间。
定义1:设X1, X2, , Xn是总体 X的样本,为总体的未知参数
构造统计T量(X1, X2, , Xn),对于样本观(测x1,值x2, , xn),若将统计量的观T测 (x1,值x2, , xn)作为未知 参数的值,则T称(x1, x2, , xn)为的估计值,而统 量T(X1, X2, , Xn)称为的估计量。
第三章 参数估计
统计推断:根据样本推断总体分布或分布的数字特征。
参数估计:总体的分布函数或概率函数的数学表达式 为已知,但它的某些参数(总体的数字特 征也作为参数)却未知,我们对未知参数 或未知参数的函数进行估计。
主要内容: 点估计量的方法
矩估计法 极大似然法 顺序统计量法 估计量的评选标准
无偏性 有效性 相合性 一致最小方差无偏估计 区间估计
解 。律
P {X x } p x (1 p )1 x , x 0 ,1 ;
故似然函数为
n
n
n
xi
n xi
L (p) pxi(1p)1xi pi1 (1p) i1 ,
i1
n
n
而 ln L (p ) ( x i)ln p (n x i)ln 1 p ().
解得 aˆ: A2
3(A2A12)X
3n ni1(Xi
X)2
bˆA1
3(A2A12)X
3n ni1(Xi
X)2
n 1i n1Xi2X2n 1i n1(XiX)2
返回主目录
二、极大似然估计
原理: 当试验中得到一个结果时,哪个 值使得这 个结果的出现具有最大概率就应该取哪个值 作为 的估计值。
f (x)
x 1
0
0 x1 其他
其中0未知, X1, , Xn是一个样.本
求: 的矩估计量。
解1 : E X0 1xx1d x
令
1n
1A1ni1Xi X
1
解得
ˆ
1
X X
2
为的矩估计.量 返回主目录
例 2:设总 X~U 体 [a,b]a ,,b未知 X1, ; ,Xn
是一个 求:样 a, b的本 矩估计; 量。
n
L ()L (x 1, ,x n ;) p (x i;), i 1
20 求似然函L数 ()的最大值点 :
令
dL() 0. d
或 ddlnL()0.
解之 的 得极大似ˆ然 ˆ(估 x1,计 ,xn)值 .
返回主目录
若母体的分布中 个包 参含 数 1,多,l, 则 样 本 的似 然 函 数 为 :
n
i
存在。
样本的k阶原点矩为
Ak
1 n
n i1
Xik
(k1,,l.)
原理: 经验分布函数一致收敛于总体分布函数,样本 的k阶原点矩一致收敛于总体的k阶原点矩。
矩估计法(矩法): 用样本各阶原点矩的函数来估计
总体各阶原点矩同一函数的方法,相应的估计 量称为矩估计量。
QQ (E,X E2 X ,,ElX ) Q ˆQ (A 1,A 2,,A l)
则 ˆ 1 ˆ 1 ( A 1 , ,A l) T 1 ( X 1 , ,X n )
ˆl ˆl( A 1 , ,A l) T l( X 1 , ,X n )
分别1为 , ,l的矩估.计量
ˆk T k (x 1 , ,x n )k , 1 ,2 , ,l,
分别1为 , ,l的矩估.计值
例1: 设总体X的概率密度为
一、矩法估计
设 总X体为 连 续 型 随 机 变概量率,密其度 为
f(x;1,,l ), 总 体X为 离 散 型 随 机 变分量布,列其为
P{X x} p(x;1,,l ),
设总体X的k阶原点矩
k EXk
(k 1,2, ,l)
xk
f
( x;1 ,
, l
)dx
或 xik p(xi;1, ,l )
设 总X体 的 分 布 函F数 (x;为 1,,l)或 概 率 函 数 为P(x;1,,l), 有 l个 不 同 的 未 知要 参由 数 , 样 本 建l个立不 带 任 何 未统 知计 参量 数 的
T i(X 1 , ,X n ) i 1 ,2 , ,l
把它们分别作 l个为 未这 知参数的估计量
ˆi T i(X 1 , ,X n ) i 1 ,2 , ,l
n
L ( ˆ1,, ˆl)supp(xi;1,,l), i1
则称 ˆk k(X1,,Xn)为k的极大似然估
若参 1,数 ,l的已知实函待 数估 (函 简数 称 uu(1,,l)
则u 称 ˆu(ˆ1,,ˆl)为 u(1,,l)的 极 大 似 然
极大似然估计 法的具体做法如下: 10 写出似然函:数
L ( 1, ,l) p(xi; 1, ,l), i 1
即 可 L 0 ,i令 1 , ,l.或 ln L 0 ,i 1 , ,l.
i
i
解l个方程组 1,求 ,得 l的极大似然估计
返回主目录
例 3:设 X~B(1,p);X1,,Xn是 来 X的 自一 个 样 试求参数p的极大似然估计量。
矩 估 计 法的 具 体 做 法 如 下 :
1 0 求出 X 的 k 阶 总 原 k 体 E 点 k( X k 1 ,2 矩 , ,l)
设 1 : 1 ( 1 , , l),
l l( 1 , , l),
20 解上面方程组得:
11( 1,,l)
l l(1,,l)
30 以 Ak分别代替上 ( k k式 1,中 2,,的 l),
概率最大的事件最可能发生
极大似然估计法:
设 p(x;1,,l)为总 X的 体概率函数 (1, ,,其 l) 是未知参数, 是 l维 参的 数 X1,, 空 ,Xn为 间 X的样 称样本的联合概率函数
n
L(1,,l) p(xi;1,,l) i1
为 1,,l的似然 ˆ函 1,, ˆ数 l使; 得若 下式
解: 2 1 E E X 2 aX D 2b, (E X ) 2 X ( b 1 a ) 2 2 ( a 4 b ) 2
令a 2bA1n 1i n1Xi X (b 1a)22(a 4b)2A 2n 1i n1Xi2
返回主目录
例 2(续)
即 a b 2 A 1 , b a 1(A 2 2 A 1 2 )