主要生源要素的生物地球化学循环

合集下载

Chapter05-1 海洋化学

Chapter05-1 海洋化学

§ 5-2 氮的生物地球化学循环
三、海洋氮循环路径及其关键过程
海洋生物固氮作用; 通过物理过程由中深层 向上提供的NO3-; 各 种 形 态 氮 ( NO 3 - N , NH 4 + ,小分子有机氮)被
海洋生物的吸收;
通过颗粒物沉降向中深 层输送的PON;
DON垂向或水平输送;
硝化作用; 反硝化作用。
四、海洋氮循环关键过程
1、氮的生物吸收; 2、固氮作用; 3、硝化作用; 4、反硝化作用。
§ 5-2 氮的生物地球化学循环
四、海洋氮循环关键过程 1、氮的生物吸收 在许多开阔大洋海域,生
物初级生产过程往往受氮
的提供量所限制。由于海 洋中的大部分浮游植物无
法直接利用N2 ,它们必须
通过吸收溶解态氮组分 (如NO3-、NO2-、NH4+、
§ 5-2 氮的生物地球化学循环
三、海洋氮循环路径及其关键过程
海洋的氮输入途径主要包括:
(1)火山活动(NH3); (2)河流; (3)大气; (4)对于表层海水,还有上升流输送。
火山活动和河流向海洋输送各种无机(NO3-、NO2-、NH4+) 和有机形态(DON、PON)的氮,而大气主要提供N2。
§ 5-2 氮的生物地球化学循环
三、海洋氮循环路径及其关键过程
参与氮循环的关键过程:
海洋生物活动是导致海洋中 氮于各种化学形态之间相互 转化的重要影响因素,其中 生物固氮作用、氮的生物吸 收、硝化作用和反硝化作用 是海洋氮循环的关键过程。
海洋生物活动及其导致的氮形态转化
§ 5-2 氮的生物地球化学循环
在真光层内,营养盐经生物光合作用被吸收,成为生物
有机体组成部分。生物体死亡后下沉到真光层以下,有

长江中下游地区浅水湖泊生源要素的生物地球化学循环

长江中下游地区浅水湖泊生源要素的生物地球化学循环

长江中下游地区浅水湖泊生源要素的生物地球化学循环一、本文概述Overview of this article本文旨在深入探讨长江中下游地区浅水湖泊生源要素的生物地球化学循环。

长江中下游地区作为中国的重要经济和文化中心,其浅水湖泊生态系统对于区域生态环境和经济发展具有至关重要的影响。

本文将对这一区域内浅水湖泊中的生源要素(如碳、氮、磷等)的生物地球化学循环过程进行系统的阐述和分析。

This article aims to explore in depth the biogeochemical cycles of biogenic elements in shallow lakes in the middle and lower reaches of the Yangtze River. As an important economic and cultural center of China, the shallow lake ecosystem in the middle and lower reaches of the Yangtze River has a crucial impact on the regional ecological environment and economic development. This article will systematically elaborate and analyze the biogeochemical cycling process of biogenic elements (such as carbon, nitrogen, phosphorus, etc.) inshallow lakes in this region.我们将概述长江中下游地区浅水湖泊的基本特征,包括湖泊的水文条件、生态环境和生源要素的分布状况。

在此基础上,我们将深入探讨这些湖泊中生源要素的生物地球化学循环过程,包括生源要素的输入、转化、输出和积累等关键环节。

地球化学与地球化学循环

地球化学与地球化学循环

地球化学与地球化学循环地球化学是研究地球及其各种构成物质的科学。

地球上的各种元素分布和相互作用,以及它们与地壳、海洋、大气等环境的关系都属于地球化学的范畴。

地球化学循环则是指地球上各种元素与物质在地壳、大气、水体以及生物圈之间相互转化、迁移和循环的过程。

一、地球化学循环的概述地球化学循环是指地球上各种元素和环境之间的相互作用和循环的过程。

它包括岩石圈、大气圈、水圈和生物圈在地球表面上的相互作用。

这些物质在地球不同圈层之间的转移和循环被称为地球化学循环。

地球化学循环可以分为有机地球化学循环和无机地球化学循环。

有机地球化学循环主要指碳、氧、氮、硫等元素在生物圈中的循环过程,包括植物光合作用、动物呼吸作用、微生物分解作用等。

无机地球化学循环则主要指含有金属元素的矿石的形成、水体中溶解物的循环、岩石圈中元素的迁移等过程。

二、地球化学循环的重要性地球化学循环对地球的生态系统和人类社会都有重要的影响。

首先,地球化学循环是维持生态系统平衡和物质循环的重要机制。

它调节了各种元素和化学物质的稳定性和流动性,保持了地球上各种生物和非生物因素之间的动态平衡。

其次,地球化学循环对气候变化和环境污染的影响不可忽视。

大气中的气态元素和化学物质的循环直接影响到大气组成的稳定性以及气候变化的趋势。

水体中溶解物的循环则直接关系到水质的清洁与否,对生物圈和人类的健康产生重要影响。

最后,地球化学循环还对矿产资源的形成和分布有一定的影响。

矿石中的金属元素在地球化学循环中经历了岩浆、热液和沉积等作用,形成了多种矿石矿床。

这些矿产资源对于支撑现代社会的发展具有重要的经济和战略价值。

三、地球化学循环的主要过程地球化学循环包括很多复杂而繁琐的过程,下面列举其中几个主要过程。

首先是生物地球化学循环,主要涉及碳、氮、硫等元素在生物圈中的转化和循环。

植物通过光合作用吸收二氧化碳,释放氧气,参与了碳的循环;微生物参与了氮的固氮和氮的释放;硫的循环则与微生物的硫微生物循环等有关。

第5章 主要生源要素的生物地球化学循环分析

第5章 主要生源要素的生物地球化学循环分析

二、氮的存在形态与储库
氮以多种价态
存在,其生物 地球化学行为 异常复杂
溶解于海水中的N2分子是最重要的氮存在形
态,海水中的溶解N2接近于与大气达到平衡 的数值。 少量以溶解态或颗粒态的无机和有机氮存在。 主要无机形态是NO3-(1~500 μM)、NO2(0.1~50 μM)、NH4+(1~50 μM),合起 来又称溶解无机氮。
但还原酶还原形成H2,还另外需要2个电子:
N2 8e 8H 2NH3 H 2
生物固氮过程需要消耗大量的能量,同时伴
随着放氢反应,ATP为此反应过程提供所需 的能量。生物固氮的总反应式为:
N2 8e nATP 8H 2NH3 4H2 nADP nPi
第五章 海水中主要生源要素的生 物地球化学循环
第1节 引言
一、营养盐的构成
海洋植物与动物生长所必需的元素
(1)含量高,不会限制生物生长:CO2、SO42-、 HBO3-、Mg2+、Cl-、K+、Ca2+等,不称为营养盐。 (2)在海水中含量很低:如Fe、Mn、Co、Zn、Se 等,称为痕量营养盐。 (3)在海水中的含量会影响海洋生物生产力与生 态系统结构,是海洋初级生产过程和食物链的基础, 反过来,生物活动又对其在海水中的含量、分布产 生明显影响: N、P、Si,称为主要营养盐。
三、海洋氮循环路径
海洋的氮输入途径主要包括: (1)火山活动(NH3); (2)河流; (3)大气。

火山活动和河流向海洋输送各种无机(NO3-、NO2-、 NH4+)和有机形态(DON、PON)的氮,而大气 主要提供N2。
第五章 海水中主要生源 要素的生物地球化学循环 §三、海洋氮循环路径

基础生态学--第五章第三节生态系统的物质循环

基础生态学--第五章第三节生态系统的物质循环

一、生物地球化学循环
(二)分类
(2)沉积型:矿物元素贮存在地壳里。经过自然风化和开采 冶炼,从岩石中释放出来为植物吸收,并沿食物链转移,经微 生物的分解再返回环境。一部分在土壤中,一部分随水汇入海 洋,经过沉降、淀积和成岩作用变成岩石,当岩石被抬升并遭 受风化作用时,该循环才算完成。
这类循环缓慢易受干扰。沉积循环通常无全球性影响。
1)生物圈:海平面上升,淹没海岸湿地,陆地生物区变化。 2)生态系统
●农业生态系统:农作物减产;病虫害加重;影响牲畜食。 ●森林生态系统:导致干旱、增加森林大火风险。森林害虫增加,影响森林对物质的吸收。 ●水生生态系统:使海洋静水层和沉淀层的微生物活动加快,水中含氧量减少,影响许多海洋动物的
生存;导致藻类繁殖速度加快,使鱼类产量减少。
3、磷循环 (2)磷循环的环境问题。人类对磷循环的影响,主要是在农 业生态系统中取走收获物,使土壤供磷能力下降,人工施用的 磷肥补充了有效磷,但可溶性磷酸极易与金属离子结合使不 溶性降低所以磷肥的利用与土壤酸度关系很大。另外,水土 流失也使肥料流失,土壤中有效磷的含量有效地控制生物固 氮的速度。
4、水循环 从总体上说,水可以分为五部分,即大气中的水、地表水、地 下水、土壤中的水和动植物的蒸发水。地球上的水时刻都在 运动。水从一个系统输出,必然会为另一个系统输入。海洋 水、陆地水和大气水通过固体、液体和气体三相的变化,不 停地进行着交换,这种交换称为水循环。
在生态系统中的物质循环可以用库和流通两个概念 来加以概括,库是由存在于生态型:其贮存库是大气和海洋。气相循环把大气和海 洋相联系,循环迅速,具有明显的全球性。
如 CO2、N2、O2 和水等。气相循环与全球性三个环境问题 (温室效应,酸雨,臭氧层破坏)密切相关。

第5章 主要生源要素的生物地球化学循环

第5章 主要生源要素的生物地球化学循环
北太平洋HOTS站总溶解氮(TDN) 与总溶解磷(TDP)的关系
二、磷的存在形态与储库
海水中的总磷(TP)可分为颗粒磷(PP)和
总溶解磷(TDP)(TP=PP+TDP), 在大 多数开阔海洋环境中,TDP储库一般远远超 过PP储库。 颗粒磷和总溶解磷均包括无机和有机的磷组 分,因此,PP=POP+PIP,TDP= DOP+DIP。
4HNO3 5CH 2O 5CO2 7H 2O 2N2
反硝化作用发生的条件:
(1)亚氧或缺氧; (2)大量的有机物存在。
全球海洋σt=27等密度面溶解氧的空间分布
五、海洋中氮营养盐的分布
1、全球海洋表层水中NO3-的空间分布
全球海洋表层水中NO3-的空间分亚北极大西 洋,表层海水具有高浓度的NO3-,在任何季 节都不会因浮游植物光合作用而呈缺乏状态, 这些海域称为高营养盐低叶绿素海域。
2、全球海洋深层水中NO3-的空间分布
沿热盐
循环路 径,深 层海水 中NO3的含量 逐渐增 加
全球海洋4000m深度NO3-的空间分布特征




开阔大洋表层水,氮主要存 在于DON中(83%),其次 是PON(7%)、NO3- +NO2河口区 (5%)、NH4+(5%)。 开阔大洋深层水,氮主要以 开阔大 洋表层 NO3 +NO2 形式存在,占比 水 92%,其余以DON存在。 沿岸海域和河口区, NO3+NO2-的比例明显比大洋表 近岸海域 层水来得高,分别占比45% 开阔大 和31%;DON占比降低(沿 洋深层 岸海域18%;河口区13%);水 NH4+的比例随离岸距离的减 少贡献越大。 PON占比在沿岸海域(3%) 与河口区(8%)与开阔大洋 开阔大洋、沿岸和河口区水体各形态 氮的分配情况 表层水差别不大。

第5章主要生源要素的生物地球化学循环

第5章主要生源要素的生物地球化学循环
态系统结构,是海洋初级生产过程和食物链的基础,
反过来,生物活动又对其在海水中的含量、分布产
生明显影响: N、P、Si,称为主要营养盐。

二 营养盐循环
营养盐存在形态与
分布会受到生物活
动的制约,同时受
到化学、地质和水
文因素的影响。
❖ 因此,它们在海洋
中的含量与分布不
均匀,也不恒定,
往往存在明显的季
节与区域变化。
太古代
元古代
显生宙
地球大气的初始氧化过程
海洋氮循环在冰期—间冰期大气CO2
变化中的作用
三个假说
❖ 冰期—间冰期海洋氮储库的变化可能是导致
冰期—间冰期海洋生物生产力和大气CO2浓
度发生变化的重要原因。
❖ 了解海洋水体氮的生物地球化学循环对于阐
释海洋生态系统的功能和全球气候变化具有
重要意义。
❖ 正基于此,氮循环研究一直是海洋科学经久
四、海洋氮循环关键过程
1、氮的生物吸收
2、固氮作用;
3、硝化作用;
4、反硝化作用
1、氮的生物吸收
❖ 在许多开阔大洋海域,生物初级生产过程往
往受氮的提供量所限制。由于海洋中的大部
分浮游植物无法直接利用N2,它们必须通过
吸收溶解态氮组分(如NO3-、NO2-、NH4+、
尿素)来满足其光合作用需要。
当海水中的氮进入到生物细胞壁后,通过一系列酶的
作用和合成代谢反应,最终被转化为蛋白质。所发生
的重要合成代谢反应如下:
由于亚硝酸盐比硝酸盐处于较低的氧化态,其转化
为有机形式需要耗费较少的能量。与此类似,浮游
植物吸收氨盐或尿素所耗费的能量更少。
❖ 如果将混合了溶解态尿素、氨盐、亚硝酸盐和硝酸

化学物质的循环过程及其源汇效应2015

化学物质的循环过程及其源汇效应2015
• Major nutrients in the sea are compounds of nitrogen, phosphorus and silicon. • Because of usage, nutrients are scarce at the surface and their concentrations are measured in parts per million (ppm). • Concentration of nutrients vary greatly over time and because of this they are considered a nonconservative property of the sea.
Cu Speciation – Ocean Distributions
Total Copper Strong Organic Ligands
Free Cu2+ Total Cu
5-3 Solutes in water: Nutrients and Organics
Nutrients are chemicals essential for life.
低氧区 (DO<2mg/L)
河口海岸低氧的特征?
海洋中的物质(化学)
Water molecular Ocean Water: solvent solute major ions trace ions/gas nutrients organic substances pollutants
Water
Al (nM)
Fe (nM)
Metal Limitation and Toxicity – Cu – Role of Free Metal Ion
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洋结合态氮储库
激发生物
生产力
有机碳输出通量增

吸收更多大气CO2
启示
• 冰期—间冰期海洋氮储库的变化可能是导致冰 期—间冰期海洋生物生产力和大气CO2浓度发生变 化的重要原因。
• 了解海洋水体氮的生物地球化学循环对于阐释海 洋生态系统的功能和全球气候变化具有重要意义。
• 正基于此,氮循环研究一直是海洋科学经久不衰 的热点研究领域。
海洋固氮作
增加海洋结合态氮储库 生物生产力
激发
有机碳输出通量增加

收更多大气CO2
• 假说三:海洋反硝化作用机制(Ganeshram等,
Nature, 1995;Altabet等,Nature, 1995;Ganeshram等,
Paleoceanogr., 2000)
冰期时海洋反硝化作用降低
增加海
氮被海洋生物吸收的示意图
• 当海水中的氮进入到生物细胞壁后,通过一系列 酶的作用和合成代谢反应,最终被转化为蛋白质 。所发生的重要合成代谢反应如下:
• HOOCCO(CH2 )2COOH(α −酮戊二酸) + NH3 + 2NADPH⎯⎯→HOOCCH(NH2 )CH2CH2COOH(谷氨酸) + 2NADP+ H2O
(3)主要营养盐: N、P、Si(是海洋初级生产过 程和食物链的基础,其在海水中的含量会影响海 洋生物生产力与生态系统结构,反过来,生物活 动又对其在海水中的含量、分布产生明显影响。
•海 洋 中 主 要 营 养 盐 循 环
• 由于营养盐参与了生物生命活动的整个过程,它 们的存在形态与分布会受到生物活动的制约,同 时受到化学、地质和水文因素的影响,因此,它 们在海洋中的含量与分布并不均匀,也不恒定, 往往存在明显的季节与区域变化。
海洋生物活动及其导致的氮形态转化
四、海洋氮循环关键过程
• 1、氮的生物吸收; • 2、固氮作用; • 3、硝化作用; • 4、反硝化作用
• 1、氮的生物吸收
在许多开阔大洋海 域,生物初级生产 过程往往受氮的提 供量所限制。由于 海洋中的大部分浮 游植物无法直接利 用N2,它们必须通 过吸收溶解态氮组 分(如NO3-、NO2-、 NH4+、尿素)来满 足其光合作用需要。
吸收更多
• 假说二:海洋固氮作用机制(Falkowski,
Nature, 1997; Broecker andHenderson, Paleooceanogr, 1998; Michaels等, Oceanography, 2001;Karl等, Biogeochemistry, 2002)
冰期大气Fe沉降通量增加 用增强
• 海洋中有机氮均以-3价存在,其中最重要的组分 是腐殖质,其次包括氨基酸、核酸、氨基糖、尿 素以及它们的聚合物(如DNA、RNA、甲壳质 Chitin)。
海洋氮储库
ห้องสมุดไป่ตู้
海洋中各种形态氮的浓度
海洋的不同区域,各种形态氮之间的分配是不同的
开阔大洋、 沿岸和河口 区水体各形 态氮的分配 情况
• 开阔大洋深层水,氮主要以NO3- 和NO2-形式存在, 其比例占92%,其余的以溶解有机氮形态存在。
• 沿岸海域与河口区PON所占比例与开阔大洋表层水 差别不大,分别占3%(沿岸海域)和8%(河口 区)。
三、海洋氮循环路径及其关键过程
• 海洋的氮输入途径主要包括: (1)火山活动(NH3); (2)河流; (3)大气。
火山活动和河流向海洋输送各种无机 (NO3-、NO2-、NH4+)和有机形态(DON、PON) 的氮,而大气主要提供N2。
第5章 主要生源要素的生物地 球化学循环
第1节 引言
• 一、生源要素构成 海洋植物与动物生长所必需的元素
(1)不称为营养盐:CO2、SO42-、HBO3-、Mg2+、 Cl-、K+、Ca2+等(含量高,不会限制生物生长)。
(2)痕量营养盐:如Fe、Mn、Co、Zn、Se等(在海 水中含量很低)。
地球大气的初始氧化过程
• 海洋氮循环在冰期—间冰期大气CO2变化中的作用
变化 机制?
共识: 海洋的作用
三个假说
• 假说一:陆架侵蚀机制
(McElroy,Nature,1983; Culter等, EPSL,
2003)
冰期海平面低
陆架区暴露于空气
间冰期累积的有机物风化侵蚀
增加海
洋结合态氮储库
促进光合作用 大气CO2
• 少量以溶解态或颗粒态的无机和有机氮存在。
• 主要无机形态是NO3-(1‾500 μM)、NO2(0.1‾50 μM)、NH4+(1‾50 μM),合起来又 称溶解无机氮。
• 氨离子以NH4+ 和NH3两种形态存在,二者存在如 下平衡:
NH4 + ←⎯→NH3 + H+
pH=8.1时,95%的氨以NH4+形态存在, 仅5%以NH3形态存在。
第2节 氮的生物地球化学循环
一、海洋氮循环在气候变化中的作用
• 氮(N)是海洋生物生长的必需营养元素,它是生 物体中蛋白质、核酸、光合色素等有机分子的重 要组成元素。
• 氮是许多海域初级生产力和碳输出的主要控制因 子,因而与大气CO2浓度的变化乃至全球气候变化
有密切联系。
• 地球大气的初始氧化与氮循环密切相关
• 目前对海洋中各形态氮的含量与分布有一定了解, 对其循环路径也有定性认识,但有关海洋氮循环 关键过程的速率特征仍缺乏定量信息。
二、氮的存在形态与储库
• 氮以多种价态存在,其生物地球化学行为异常复杂。
• 溶解于海水中的N2分子是最重要的氮存在形态, 海水中的溶解N2接近于与大气达到平衡的数值。
• 开阔大洋表层水,氮主要存在于DON中(83%), 其次是PON(7%),再下来是NO3- +NO2-(5%)和 NH4+(5%)。
• 沿岸海域和河口区,NO3- +NO2-的比例明显比大 洋表层水来得高,其比例分别为45%和31%;DON所 占比例降低至18%(沿岸海域)和13%(河口区); NH4+的比例随离岸距离的减少贡献越大。
• 海洋生物固氮作用; • 通过物理过程由中深层
向上提供的NO3-;
• 各种形态氮(NO3-、 NH4+)被海洋生物的吸 收;
• 通过颗粒物沉降向中深 层输送的PON;
• DON垂向或水平输送; • 硝化作用; • 反硝化作用
海洋生物活动 是导致海洋中 氮于各种形态 之间相互转化 的重要影响因 素,其中生物 固氮作用、氮 的生物吸收、 硝化作用和反 硝化作用是海 洋氮循环的关 键过程。
相关文档
最新文档