新北师大版二元一次方程知识点总结--经典
认识二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题5.1认识二元一次方程组(知识梳理与考点分类讲解)【知识点1】二元一次方程1.定义含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程的条件(1)整式方程;(2)只含有两个未知数;3.关于x,y的两元一次方程的一般形式:ax+by=c(a≠0,b≠0).特别提醒:“所含未知数的项的次数都是1”不可理解为两个未知数的次数都是1,例如2xy+1=0不是二元一次方程.【知识点2】二元一次方程组1.定义共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.2.二元一次方程组应满足的条件:(1)两个方程都是整式方程;(2)共含有两个未知数;(3)两个方程都是一次方程;特别提醒:判断二元一次方程组时,误认为每个方程必须是二元一次方程.【知识点3】二元一次方程的解1.二元一次方程组的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.2.判断一对数值是不是二元一次方程的解的方法:判断一对数值是不是二元一次方程的解,只需将这对数值分别代入方程的左右两边,看其是否相等.特别提醒:二元一次方程只要给定其中的一个未知数的值,就可以相应地求出另一个未知数的值,因此二元一次方程有无数个解.二元一次方程的整数解有时只有有限个.【知识点4】二元一次方程组的解1.二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.2.判断一对数值是不是二元一次方程组的解的方法判断一对数值是否为一个二元一次方程组的解,必须将这对数值分别带入方程组中的每一个方程进行检验,若满足没一个方程,则这对数值就是这个方程组的解,否则就不是这个方程组的解.特别提醒:方程组的解一定是方程组中每个方程的解,而方程组中某个方程的解不一定是方程组的解.【考点目录】【考点1】二元一次方程的认识;【考点2】二元一次方程组的认识【考点3】二元一次方程的解;【考点4】二元一次方程组的解【答案】0【分析】根据二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的整式方程,进行求解即可解:∵方程()()33420m n m xn y --+--=是关于x y ,的二元一次方程,∴40312031m m n n +≠⎧⎪-=⎪⎨-≠⎪⎪-=⎩,∴44m n ==,,∴m n -440=-=【点拨】本题考查二元一次方程的定义,掌握二元一次方程组的定义是解题关键.二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.【举一反三】【变式1】(2023上·河北张家口·八年级统考期中)下列是二元一次方程的是()A .215x -=B .21x y +=C .23x y +=D .12y x+=【答案】C【分析】本题考查了二元一次方程的定义,二元一次方程需满足三个条件:①首先是整式方程,②方程中共含有两个未知数,③所有未知项的次数都是一次,不符合上述任何一个条件的都不叫二元一次方程.解:A .215x -=,是一元一次方程,故本选项不符合题意;B .21x y +=,是二元二次方程,故本选项不符合题意;C .23x y +=,是二元一次方程,故本选项符合题意;D .12y x+=,是分式方程,故本选项不符合题意.故选:C .【变式2】(2022下·湖北荆州·七年级校考期中)若方程:223m x ++514n y -=6是关于x 、y 的二元一次方程,则n m -的平方根为.【答案】2±【分析】根据二元一次方程的定义,得各个未知数的次数为1,求得m ,n 的值,进而求解.解:由题意,得:231m +=,5141n -=,解得1m =-,3n =.∴()314n m -=--=,∴n m -的平方根2=±.故答案为:2±.【点拨】本题考查二元一次方程的定义,平方根,熟练掌握只含有两个未知数,且未知项的次数为1的整式方程是二元一次方程是解题的关键.【考点二】二元一次方程组的认识【例2】(2017下·四川宜宾·七年级校联考阶段练习)已知方程组()()2233112m x m ym x --⎧--=⎪⎨+=-⎪⎩是二元一次方程组,求m 的值.【答案】m =5解:依题意,得:|m -2|-2=1,且m -3≠0,且m +1≠0,解得:m =5.【点拨】本题考查了二元一次方程组的定义.二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程,②方程组中共含有两个未知数,③每个方程都是一次方程.【举一反三】【变式1】(2023下·河北廊坊·七年级统考期末)下列方程组中是二元一次方程组的是()A .436231x y y z -=⎧⎨-=⎩B .45342x y x =⎧⎨-=⎩C .46323xy x y =⎧⎨+=⎩D .23325y xy x ⎧+=⎪⎨⎪+=⎩【答案】B【分析】根据二元一次方程组定义判断即可.解: A.此方程组含有,,x y z 三个未知数,故不是二元一次方程组,故此选项不符合题意;B .该方程组是二元一次方程组,故此选项符合题意;C .46xy =是二元二次方程,故不是二元一次方程组,故此选项不符合题意;D .233y x+=是分式方程,故不是二元一次方程组,故此选项不符合题意;故选:B .【点拨】本题主要考查了二元一次方程的定义.一定要紧扣二元一次方程组的定义回答.【变式2】(2023下·江苏徐州·七年级统考期末)观察所给的4个方程组:①23x y =⎧⎨=⎩;②415343x y x =⎧⎨-=-⎩;③2164x y x y +=⎧⎨-=⎩;④352494x y x y +=⎧⎨+=⎩,其中,符合二元一次方程组定义的是(写出所有正确的序号).【答案】①②④【分析】含有两个未知数,且未知数的最高次数是1,这样的整式方程组是二元一次方程组,根据定义逐一判断即可.解:①23x y =⎧⎨=⎩,符合二元一次方程组定义;②415343x y x =⎧⎨-=-⎩,符合二元一次方程组定义;③2164x y x y +=⎧⎨-=⎩,未知数x 的最高次数是2,不符合二元一次方程组定义;④352494x y x y +=⎧⎨+=⎩,符合二元一次方程组定义;所以符合二元一次方程组定义的是①②④.故答案为:①②④.【点拨】本题考查的是二元一次方程组的定义,熟记定义是解本题的关键.【考点三】二元一次方程的解【例3】(2023上·河北张家口·八年级统考期中)已知24x y =⎧⎨=⎩是关于x ,y 的二元一次方程314x ay +=的一组解.(1)求a 的值(2)请用含有x 的代数式表示y .【答案】(1)2a =;(2)372y x=-【分析】(1)将二元一次方程的解24x y =⎧⎨=⎩代入314x ay +=得到关于a 的方程,解关于a 的方程即可;(2)将2a =代入314x ay +=得到3214x y +=,将x 看作已知数,y 看作未知数,解关于y 的方程即可.(1)解:将24x y =⎧⎨=⎩代入314x ay +=,得:32414a ⨯+=,解得2a =;(2)解:∵2a =,∴原方程可变为3214x y +=,∴372y x =-.【举一反三】【变式1】(2023上·陕西西安·八年级高新一中校考期中)若关于x 、y 的二元一次方程221x y a +=-的一组解为3x =,1y =,则a 的值是()A .3B .2C .1D .1-【答案】A【分析】本题考查了二元一次方程的解,解题的关键是掌握二元一次方程的定义.把3x =,1y =代入到221x y a +=-中即可求解.解:把3x =,1y =代入到221x y a +=-中得:21321a -=+⨯,216a -=,3a =,故选:A .【变式2】(2023上·全国·八年级专题练习)小方解方程组232ax by cx y +=⎧⎨-=-⎩时,因抄错了a ,解得11x y =⎧⎨=⎩,则c 的值为.【答案】1【分析】本题主要考查了二元一次方程的解,将解代入第二个方程即可解答.解:把11x y =⎧⎨=⎩代入32cx y -=-得:32c -=-,解得:1c =.故答案为:1.【考点四】二元一次方程组的解【例4】(2023上·全国·八年级专题练习)甲和乙两人同解方程组125bx y x ay +=⎧⎨+=⎩,甲因抄错了a ,解得52x y =⎧⎨=⎩,乙因抄错了b ,解得32x y =⎧⎨=⎩,求52a b -的值.【答案】1【分析】本题考查了二元一次方程组的解,将甲、乙求得的解分别代入正确的方程,求出a ,b 的值即可求解,用代入法解方程是解本题关键.解:由题意52x y =⎧⎨=⎩,是12bx y +=的解,∴5212b +=,解得2b =,又 32x y =⎧⎨=⎩是5x ay +=的解,∴325a +=,解得1a =,5251221a b ∴-=⨯-⨯=.【举一反三】【变式1】(2023上·广东深圳·八年级校联考期中)若关于x ,y 的二元一次方程组2138x ay bx y -=-⎧⎨+=⎩的解是15x y =⎧⎨=⎩,则关于m 、n 的二元一次方程组()()()()2138m n a m n b m n m n ⎧+--=-⎪⎨++-=⎪⎩的解是()A .15m n =⎧⎨=⎩B .51m n =⎧⎨=⎩C .23m n =-⎧⎨=⎩D .32m n =⎧⎨=-⎩【答案】D【分析】本题考查了二元一次方程组的解及解二元一次方程组,先将15x y =⎧⎨=⎩代入2138x ay bx y -=-⎧⎨+=⎩解得357a b ⎧=⎪⎨⎪=-⎩,再将357a b ⎧=⎪⎨⎪=-⎩代入()()()()2138m n a m n b m n m n ⎧+--=-⎪⎨++-=⎪⎩即可求解,熟练掌握二元一次方程组的解及利用加减消元法解二元一次方程组是解题的关键.解:将15x y =⎧⎨=⎩代入2138x ay bx y -=-⎧⎨+=⎩得:251158a b -=-⎧⎨+=⎩,解得:357a b ⎧=⎪⎨⎪=-⎩,()()()()3215738m n m n m n m n ⎧+--=-⎪∴⎨⎪-++-=⎩,解得:32m n =⎧⎨=-⎩,故选D .【变式2】(2023下·七年级单元测试)写出一个解为25x y =⎧⎨=-⎩的二元一次方程组:.【答案】37x y x y +=-⎧⎨-=⎩(答案不唯一)【分析】方程组的解,指的是该数值满足方程组中的每一方程.在求解时,应先围绕25x y =⎧⎨=-⎩列一组算式,如253-=-,257+=,然后用x ,y 代换,可得方程组.解:先围绕25x y =⎧⎨=-⎩列一组算式,如:253-=-,257+=,然后用x ,y 代换,可得37x y x y +=-⎧⎨-=⎩等.答案不唯一,符合题意即可.故答案为:37x y x y +=-⎧⎨-=⎩(答案不唯一).【点拨】本题考查二元一次方程组的解,此题是开放性题目,答案不唯一.掌握二元一次方程组解的意义是解题的关键.。
八年级数学上册第五章二元一次方程组知识整理北师大版

第五章 二元一次方程组一、本章知识点梳理:知识点1:二元一次方程(组)的定义 知识点2:二元一次方程组的解定义知识点3:二元一次方程组的解法 知识点4:一次函数与二元一次方程(组)知识点5:实际问题与二元一次方程组 二、各知识点分类讲解知识点1:二元一次方程(组)的定义 1、二元一次方程的概念含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数。
(2)含有未知数的项的次数都是1。
(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1。
即若ax m +by n =c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by|a|-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.例2:下列方程为二元一次方程的有_________ ①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x,⑥22=-+y x xy ,⑦71=+y x⑧y x 23+,⑨1=++c b a 【巩固练习】下列方程中是二元一次方程的是( ) A .3x-y 2=0 B .2x+1y=1 C .3x —52y=6D .4xy=32、二元一次方程组的概念由两个二元一次方程所组成的方程组叫二元一次方程组注意:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程. 例:下列方程组中,是二元一次方程组的是( )A 、228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩【巩固练习】1、 已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩, 其中属于二元一次方程组的个数为( )A .1B 。
北师大版数学八上第五章 二元一次方程复习讲义

第五章 二元一次方程复习讲义一、知识点1、二元一次方程2、二元一次方程的解3、二元一次方程组4二元一次方程组的解5、二元一次方程组的解法6、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:直线y=kx+b 上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解(2)一次函数与二元一次方程组的关系: 二元一次方程组 的解可看作两个一次函数 和 的图象的交点。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解.二、练习1.已知⎩⎨⎧==5,3y x 是方程ax -2y =2的一个解,那么a 的值是 . 2.已知2x -3y =1,用含x 的代数式表示y ,则y = ,当x =0时,y = .3.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ).(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 4.已知y =kx +b .如果x =4时,y =15;x =7时,y =24,则k = ;b = .5、下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x +4y=6D .4x=24y - 6、如果与是同类项,则x ,y 的值是( ). A. B. C. D. 7.解下列方程组:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧+=-=+.76)1(4,443y x y x2315a b 114x x y a b ++-1,3x y =⎧⎨=⎩2,2x y =⎧⎨=⎩1,2x y =⎧⎨=⎩2,3x y =⎧⎨=⎩⎩⎨⎧=+=+222111c y b x a c y b x a 11111b c x b a y +-=22122b c x b a y +-=(3) (4)8.用作图象的方法解方程组⎩⎨⎧=-=+.52,02y x y x9、已知是关于x ,y 的二元一次方程组的解,求出a +b 的值.10.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?11.某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的宿舍每间可住5人.该校198个住宿生恰好住满这30间宿舍.大、小宿舍各有多少间?4、某人以两种形式储蓄了800元,一种储蓄的年利率为10%,另一种储蓄的年利率为11%,一年到期时去提取,他共得到利息85元5角,问两种储蓄他共存了多少钱?5、在全国足球甲A 联赛共22轮(即每个队均需参赛22场),全国冠军上海申花队共积46分(胜一场3分,平一场得1分,负一场得0分),并知申花队胜的场数比负的场数的3倍还多2,问申花队胜、平、负各几场?7、某中学初二学生去烈士陵园扫墓,若每辆汽车坐35个学生,则16个学生没有坐位;若每辆汽车坐52人,则空出一辆汽车.问共有几辆汽车,有多少学生?8、有一个两位数,个位上的数比十位上的数大5,如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数。
北师大版-认识二元一次方程组

哼,我从你背上拿来 1个,我的包裹数就是你的 2 倍! 真的?!
它们各驮了多少包裹呢? 你还累?这么大的个,才比我多驮了2个. 我从你背上拿来 1个,我的包裹数就是你的 2 倍! 老牛的包裹数-小马的包裹数=2个 老牛的包裹+1=(小马驮的包裹数-1)×2
设老牛驮了x个包裹 , 小马驮了y个包裹.
如: 2x+3=5, y+6=8.
壹
3.解下列方程:
3x+2=14
(2)2x-4=14-x
贰
1.什么叫方程?
含有未知数的等式叫做方程.
叁
2.什么叫一元一次方程?
在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方 程.
如: 2x+3=5, x+y=8.
累死我了!
你还累?这么大的个,才比我多驮了2个.
y
1,
否
x 3 y 5;
x 1,
(4)
y
是
2;
(6)52aab3b2b1,3否.
做一做
(1) x6适, y合方2程 吗? x y 8
x呢5,?y3 呢?你x还4能,找y到4
其他 的x ,值y适合方程
吗?
x y 8
(2) x5适, y合方3程 x2呢,?y8
吗5? x3y34
(3)你能找到一组 x ,值y ,同时适合 x y 8
成人票款+儿童票款=34 01
x y 8,
02
5 x 3 y 3 4 . 如果设有x个成人,y个儿童,由此你能得到怎
样的方程?
想一想
xy2,
xy8,
x12y1, 5x3y34.
上面所列方程各含有几个未知数?
第5章 二元一次方程组(知识清单)-八年级数学上期中期末考试满分全攻略(北师大版)

第5章二元一次方程组知识清单一二元一次方程(组)概念及解1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.注意:二元一次方程的识别方法①“二元”,即含有两个未知数;②“一次”,即含未知数的次数是1;③“整式方程”,即未知数不能出现在分母中。
2、二元一次方程组共含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组.注意:①含有两个整式方程;②方程中共含有两个未知数;③含未知数的项的次数都是1.3、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.注意:①二元一次方程的每一个解都是一对数值,而不是一个数;②一般情况下,一个二元一次方程有无穷多个解,但如果对其未知数的取值附加某些限制条件,那么也可能只有有限个特殊的解。
4、二元一次方程组的解我们把二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.注意:①方程组的解同时满足方程组中的每一个方程;②由于方程组需用“{”括起来,所以方程组的解也要用“{”括起来.5、二元一次方程组解的情况(1)唯一解;(2)无数解;(3)无解.二二元一次方程组的解法1、代入消元法将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。
这种解方程组的方法称为代入消元法,简称代入法。
注意:①找准消元对象。
消元对象一般选取系数简单的(如系数的绝对值较小的,系数是±1的)未知数,使变性后的方程比较简单或代入后比较容易化简;②在用代入法解二元一次方程组的一般步骤的第(2)步中,必须理解“另一个”的含义,否则,若把y=ax+b 代入变形的原方程,必然得到一个恒等式;③用代入法求出一个未知数的值后,再求另一个未知数时,一般代入变形后得到的方程比较简单.2、 加减消元法把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,从而把解二元一次方程组转化为解一元一次方程。
北师大八年级-二元一次方程组

二元一次方程组一、知识梳理知识点1. 二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程. 二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 例1.方程41ax y x -=-是二元一次方程,则a 的取值为( )A 、0a≠ B 、1a ≠- C 1a ≠ D 、2a ≠例2.若二元一次方程321x y -=有正整数解,则x 的取值应为( )A 正奇数B 、正偶数C 、正奇数或正偶数D 、0例3.已知二元一次方程组45ax by bx ay +=⎧⎨+=⎩ 的解是21x y =⎧⎨=⎩,则_____.a b +=练习1.已知,x y 满足方程组⎩⎨⎧=+=+4252y x y x ,则x y -的值为 。
2.请写出一个以,x y 为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成;②方程的解为⎩⎨⎧==32y x ,这样的方程组可以是___________.知识点2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.例1:解方程组:(1)32528x yx y+=⎧⎨-=⎩(2)2931x yy x+=⎧⎨-=⎩例2解方程组:4143314312 x yx y+=⎧⎪⎨---=⎪⎩练习:已知关于、的二元一次方程组的解满足二元一次方程,求的值。
求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题5.4求解二元一次方程组(知识梳理与考点分类讲解)【知识点1】代入消元法解二元一次方程组代入消元法:(1)定义:将其中一个方程组中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程组,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.(2)用代入消元法解二元一次方程组的一般步骤:步骤具体做法目的注意事项(1)变形选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数变形为x=ax+b(或x=ay+b)(a,b 是常数,a≠0)的形式一般选未知数系数比较简单的方程变形(2)代入把y=ax+B(或x=ay+b)代入另一个没有变形的方程消去一个未知数,将二元一次方程组转化为一元一次方程变形后的方程只能代入另一个方程(或另一个方程变形后的方程)(3)求解解消元后的一元一次方程求出一个未知数的值去括号时不能漏乘,移项时所移的项要变号(4)回代把求得的未知数的值代入步骤(1)中变形后的方程求出另一个未知数的值一般代入变形后的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:将方程组中的一个二元一次方程写成用含一个未知数的式子表示另一个未知数的形式,是用代入法解二元一次方程组的前提和关键,其方法就是利用等式的性质将其变形为y=ax+b(或x=ay+b)的形式,其中a,b 为常数,a≠0.用含一个未知数的式子表示另一个未知数后,应代入另一个方程求解,否则只能得到一个恒等式,并不能求出方程组的解.【知识点2】加减消元法解二元一次方程组1.加减消元法的定义通过将两个方程相加(减)消去其中一个未知数,将二元一次方程组转化为一元一次方程来解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.2.用加减消元法解二元一次方程组的一般步骤步骤具体做法目的注意事项(1)变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,给方程的两边都乘适当的数.使某一个未知数在两个方程中的系数相等或互为相反数.给某个方程乘一个数时,方程两边的每一项都要和这个数相乘(2)代入两个方程中同一个未知数的系数互为相反数时,将两个方程相加;同一个未知数的系数相等时,将两个方程相减.消去一个未知数,将二元一次方程组转化为一元一次方程把两个方程相加(减)时,一定要把两个方程两边分别相加(减).(3)求解解消元后的一元一次方程求出一个未知数的值(4)回代把求得的未知数的值代入方程组中某个较简单的方程求出另一个未知数的值回代时选择系数较简单的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:1.两个方程同一未知数的系数的绝对值相等或成倍数关系时,解方程组应考虑用加减消元法.2.如果同一未知数的系数的绝对值既不相等又不成倍数关系,我们应设法将一个未知数的系数的绝对值转化为相等关系.3.用加减法时,一般选择系数比较简单(同一未知数的系数的绝对值相等或成倍数关系)的未知数作为消元对象.【考点目录】【考点1】代入消元法解二元一次方程组;【考点2】加减消元法解二元一次方程组;【考点3】同解方程组;【考点4】整体思想解二元一次方程组;【考点5】求解二元一次方程组——错题复原问题;【考点6】求解二元一次方程组——参数问题;【考点7】构造二元一次方程组求解。
北师大版八年级上册数学第23讲《二元一次方程(组)与一次函数》知识点梳理

⎩ ⎨ 北师大版八年级上册数学第 23 讲《二元一次方程(组)与一次函数》知识点梳理【学习目标】1. 理解二元一次方程与一次函数的关系;2. 能根据一次函数的图象求二元一次方程组的近似解;3. 能利用二元一次方程组确定一次函数的表达式.【要点梳理】要点一、二元一次方程与一次函数的关系1. 任 何 一 个 二 元 一 次 方 程 ax + by = c (a 、b ≠ 0, c 为常数) 都 可 以 变 形 为y = - a x + c b b(a 、b ≠ 0, c 为常数) 即为一个一次函数,所以每个二元一次方程都对应一个一次函数. ⎧x = 0,2.我们知道每个二元一次方程都有无数组解,例如:方程 x + y = 5 我们列举出它的几组整数解有⎨ y = 5; ⎧x = 5, ⎨ y = ⎧x = 2, ,我们发现以这些整数解为坐标的点(0,5),(5,0),(2,3)恰好在一次函数 y = - x + 5 ⎩ 0; ⎩ y = 3的图像上,反过来,在一次函数 y = 5 - x 的图像上任取一点,它的坐标也适合方程 x + y = 5 . 要点诠释:1. 以二元一次方程的解为坐标的点都在相应的函数图像上;2. 一次函数图像上的点的坐标都适合相应的二元一次方程;3. 以二元一次方程的解为坐标的所有点组成的图像与相应一次函数的图像相同.要点二、二元一次方程组与一次函数1. 二元一次方程组与一次函数每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.要点诠释:1. 两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定y = 5 -x y = 2x -1 ⎧x = 2⎨y = 3是相应的两个一次函数的图象的交点.如一次函数与图象的交点为(2,3),则⎩⎧x +y = 5⎨2x -y = 1就是二元一次方程组⎩ 的解.2.当二元一次方程组无解时,方程组中两方程未知数的系数对应成比例,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组无解,则一次函数y = 3x - 5 与y = 3x +1 的图象就平行,反之也成立.3.当二元一次方程组有无数解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.2.图像法解二元一次方程组求二元一次方程组的解,可以转化为求两条直线的交点的横纵坐标(即二元一次方程组的图像解法.)所以,解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.要点诠释:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.相反,求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.要点三、用二元一次方程组确定一次函数表达式待定系数法:先设出函数表达式,再根据所给的条件确定表达式中未知数的系数,从而得到函数表达式的方法,叫做待定系数法.利用待定系数法解决问题的步骤:1.确定所求问题含有待定系数解析式.2.根据所给条件, 列出一组含有待定系数的方程.3.解方程组或者消去待定系数,从而使问题得到解决.【典型例题】类型一、二元一次方程与一次函数1、一次函数的图象如图所示,则与此一次函数对应的二元一次方程为()A x﹣3y=3B ..x+3y=3 C.3x﹣y=1 D.3x+y=1【答案】A【解析】直线过点(3,0),(0,﹣1).代入y=kx+b,得到二元一次方程组解方程组得到.∴一次函数解析式为,移向,并将系数化为 1 得到所对应的二元一次方程x﹣3y=3.【总结升华】每个二元一次方程都对应一个一次函数,因此当求出一次函数的解析式时即也就求出了相应二元一次方程.举一反三:【变式】已知x = 3 ,y =-2 和x = 0 ,y = 1是二元一次方程ax +by + 3 = 0 的两个解,则一次函数y =ax +b 的解析式为()A.、y =-2x - 3B、y =x C.、y =-x + 3D、y =-3x - 3【答案】D类型二、二元一次方程组与一次函数2、(2016•临清市二模)如图,已知函数y=ax+b 和y=kx 的图象交于点P,则根据图象可得,关于x、y 的二元一次方程组的解是()A.B.C.D.【思路点拨】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【答案】C.【解析】解:函数y=ax+b 和y=kx 的图象交于点P(﹣3,1),即x=﹣3,y=1 同时满足两个一次函数的解析式.所以关于x,y 的方程组的解是.【总结升华】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.举一反三:【变式】(2015 春•昌乐)在教学活动中我们知道,任何一个二元一次方程的图象都是一条直线,如图,已知直线y=ax﹣6 过点P(﹣4,﹣2),则关于x、y 的方程组的解是.【答案与解析】解:∵x=﹣4 时,y=x=﹣2,∴点P(﹣4,﹣2)在直线y= x 上,∴方程组的解为.故答案为.3、(2014•东莞模拟)在同一坐标系中画出函数y=2x+1 和y=﹣2x+1 的图象,并利用图象写出二元一次方程组的解.【思路点拨】利用两点法作出两直线的图象,交点坐标即为方程组的解.【答案与解析】解:如图,两直线的交点坐标为(0,1),所以,方程组的解是.【总结升华】用一次函数图象解方程是解二元一次方程组的又一解法,反映了一次函数与二元一次方程组之间的联系,能直观地看到怎样用图形来表示方程组的解.类型三、用二元一次方程组确定一次函数表达式4、某游泳池内现存水1890(m3),已知该游泳池的排水速度是灌水速度的2 倍.假设在换水时需要经历“排水﹣﹣清洗﹣﹣灌水”的过程,其中游泳池内剩余的水量y(m3)与换水时间t(h)之间的函数关系如图所示.根据图象解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y(m3)与换水时间t(h)之间的函数关系式,写出函数的定义域.【思路点拨】(1)由图象可知,该游泳池5 个小时排水1890(m3),根据速度公式求出即可,求出灌水的速度和时间即可求出清洗该游泳池所用的时间;(2)设灌水过程中的y(m3)与换水时间t(h)之间的函数关系式是y=kt+b.将(11,0),(21,1890)代入y=kt+b 求出即可.【答案与解析】解:(1)∵由图象可知,该游泳池5 个小时排水1890(m3),∴该游泳池排水的速度是1890÷5=378(m3/h),由题意得该游泳池灌水的速度是378×=189(m3/h),由此得灌水1890m3需要的时间是1890÷189=10(h),∴清洗该游泳池所用的时间是21﹣5﹣10=6(h),(2)设灌水过程中的y(m3)与换水时间t(h)之间的函数关系式是y=kt+b.将(11,0),(21,1890)代入y=kt+b,得,解得:k=189,b=﹣2079,即灌水过程中的y(m3)与时间t(h)之间的函数关系式是y=189t﹣2079,(11<t≤21).【总结升华】本题考查了一次函数的应用,主要考查学生能否把实际问题转化成数学问题,题目比较典型,是一道比较好的题目.举一反三:【变式】为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y 应是x 的一次函数,下表列出两套符合条件的课桌椅的高度:第一套第二套椅子高度xcm 40.0 37.0(1)请确定y 与x 的函数关系式?(2)现有一把高39cm 的椅子和一张高为78.2 的课桌,它们是否配套?为什么?【答案】解:(1)设y=kx+b.根据题意得.解得.∴y=1.6x+11;(2)椅子和课桌不配套.∵当x=39 时,y=1.6×39+11=73.4≠78.2,∴椅子和课桌不配套.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组
第一单元:认识二元一次方程组
一.二元一次方程的定义
1. 方程的元:方程的未知数;
2.方程的次:整式方程含未知数的项的最高次数。
3.定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
它的一般形式是
4.特别提醒;项的次数与未知数的次数的区别。
【例1】下列方程中是否二元一次方程
(1) x+y+z = 9, (2) x2+y =(x-1)2, (3) xy+y = 7,
(4) 7x+6y+4 =16, (5) — + y = 6 (6) x2+y = 6.
二.二元一次方程组的定义
1.共含有两个未知数的两个(或以上)一次方程组成的一组方程,叫做二元一次方程。
理解:①共含有:有的方程可以含一个未知数,整体看共含两个未知数。
②整式,每个含未知数的项的次数均为1。
③有些整式方程需要化简后看是否ax+by=c 的形式
2.方程组一般用大括号括起来表示。
11.下列方程组中是二元一次方程组的是
[]
(A) (B) (C) (D)
【例2】它们是二元一次方程组吗
(1)xy-x=4, x+y=5;×
(2)x-y=2, x+1=2(y-1);√
1、整体看,共两个未知数;
2、两个一次方程.
三.二元一次方程的一个解
1.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解(两个值)。
2.二元一次方程的解有无穷多个(一个,两数)
3.解的简便求法:方程化为用含一个未知数的代数式表示另一个未知数的形式,取一求一.
4.解的用法:是解-立即代入!
5.解的判别:分别代入方程两边,左=右,才能判断是否方程的解(不能直接代入方程)。
课堂练习2
12.下列各组数是方程的解的是
[]
(A) (B) (C) (D)
【例3】下面4组数值中,哪些是二元一次方程2x+y=10的解
(1) x=-2,y=6; (2) x=3, y=4,
(3) x=4,y=3;(4) x=6, y=-2.
四.二元一次方程组的解
1.定义:二元一次方程组中各个方程的公共解,叫做二元一次方程组的解。
表示:方程和方程组的解都用大括号来表示
2.判断未知数的值是否方程组的解分别代入两个方程经验,都满足
五.基础题型
第二单元:求解二元一次方程组
一.1.代入消元法的基本思路:通过“代入”达到“消元”目的。
2. 代入法的一般步骤(举例说明):①一选:选一个未知数系数相对简单的方程(整理)②二变:把选中的方程变为用含有一个未知数的代数式表示另
一个未知数的形式。
如 y=f(x)的形式③三代:把变化后的方程代入另一个方程,消去一个未知数。
化为一元一次方程。
④四解:解一元一次方程得到一个未知数的值。
⑤五求:把得到的未知数的值代入其中一个简单的二元方程,求出另一个未知数的值。
⑥六写:用大括号的形式写出方程组的解。
二.加减消元法
1.(加减)思路:变二元为一元
一般步骤:①一选:选择两方程中系数简单的一个未知数。
②二变:利用等式性质二,把选中的未知数的系数变为相等或相反的数(两边同乘一个数变公倍数)③三加减:变化后符合条件的方程相加(减)消去一个未知数,得到一个一元一次方程。
④四解:解一元一次方程得到一个未知数的值。
⑤五求:把得到的未知数的值代入一个较简单的二元方程求出另一个未知数的值。
⑥六写:用大括号的形式写出方程组的解。
第四单元:二元一次方程组的实际应用
列方程解应用题
•思路:试设元-回头看-找关系-列方程。
•步骤:审-设-列-解-验-答。
•记住:未知数也是数,别把未知数不当数。
问题的思路:砍腿法和安脚法。
仔细审题:抓住“大、小、多、少、和、差、倍、分等关键词找准等量关系。
【例1】
1. 解决上面提出的鸡兔同笼问题。
2. 古代问题:以绳测井。
若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。
绳长、井深各几何
【练习1】甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的倍。
如果设甲植树x棵,乙植树y棵,那么可列方程组为
【练习2】买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张
【练习3】一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天的的工作量。
现在知道在施工期间雨天比晴天多3天。
问这项工程要多少天才能完成
【练习4】学校买铅笔、圆珠笔和钢笔共232支,共花了300元。
其中铅笔数量是圆珠笔的4倍。
已知铅笔每支元,圆珠笔每支元,钢笔每支元。
问三种笔各有多少支。