华侨大学大学物理作业本(下)答案

合集下载

大学物理下习题册答案详解

大学物理下习题册答案详解

解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )

华侨大学 大学物理作业本(下)答案

华侨大学 大学物理作业本(下)答案

大学物理作业本(下)姓名班级学号江西财经大学电子学院2005年10月第九章 稳恒磁场练 习 一1. 已知磁感应强度为20.2-⋅=m Wb B 的均匀磁场,方向沿x 轴正方向,如图所示。

求:(1) 通过图中abcd 面的磁通量;(2) 通过图中befc 面的磁通量;(3) 通过图中aefd 面的磁通量。

2. 如图所示,在被折成钝角的长直导线通中有20安培的电流。

求A 点的磁感应强度。

设a=2.0cm , 120=α。

3.有一宽为a的无限长薄金属片,自下而上通有电流I,如图所示,求图中P点处的磁感应强度B。

4.半径为R的圆环,均匀带电,单位长度所带的电量为 ,以每秒n转绕通过环心并与环面垂直的轴作等速转动。

求:(1)环心的磁感应强度;(2)在轴线上距环心为x处的任一点P的磁感应强度。

练习二1.一载有电流I的圆线圈,半径为R,匝数为N。

求轴线上离圆心x处的磁感应强度B,取R=12cm,I=15A,N=50,计算x=0cm,x=5.0cm, x=15cm各点处的B值;2.在一半径R=1.0cm的无限长半圆柱形金属薄片中,自上而下通有电流I=5.0A,如图所示。

求圆柱轴线上任一点P处的磁感应强度。

3.如图所示,两无限大平行平面上都有均匀分布的电流,设其单位宽度上的电流分别为1i 和2i ,且方向相同。

求:(1) 两平面之间任一点的磁感应强度;(2) 两平面之外任一点的磁感应强度;(3) i i i ==21时,结果又如何?4.10A 的电流均匀地流过一根长直铜导线。

在导线内部做一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如图所示。

计算通过此平面的磁通量。

(铜材料本身对磁场分布无影响)。

练习三1.半径为R 的薄圆盘上均匀带电,总电量为q ,令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为ω,求轴线上距盘心x 处的磁感应强度。

2.矩形截面的螺绕环,尺寸如图所示。

(1) 求环内磁感应强度的分布;(2) 证明通过螺绕环截面(图中阴影区)的磁通量,210ln 2D D NIh πμ=Φ 式中N 为螺绕环总匝数,I 为其中电流强度。

大学物理学练习册参考答案全

大学物理学练习册参考答案全

大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。

大物下册课后习题答案

大物下册课后习题答案

大物下册课后习题答案大物下册课后习题答案大学物理是一门重要的基础学科,它涉及到我们周围的自然现象和物质运动规律的研究。

作为学习大学物理的学生,课后习题是巩固知识、提高能力的重要途径。

下面将为大家提供大物下册课后习题的答案,希望对大家的学习有所帮助。

第一章:运动的描述1. 速度与位移的区别是什么?答:速度是描述物体在单位时间内位移的快慢,是矢量量,有大小和方向;位移是描述物体从一个位置到另一个位置的距离和方向,是矢量量,有大小和方向。

2. 什么是匀速直线运动?答:匀速直线运动是指物体在相等时间内位移相等的运动。

在匀速直线运动中,速度大小和方向保持不变。

3. 什么是加速度?答:加速度是描述物体速度变化率的物理量,是矢量量,有大小和方向。

加速度的大小等于速度变化量与时间的比值。

第二章:牛顿定律与运动学1. 牛顿第一定律是什么?答:牛顿第一定律,也称为惯性定律,指出当物体受力为零时,物体将保持静止或匀速直线运动的状态。

2. 什么是牛顿第二定律?答:牛顿第二定律指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

即F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。

3. 什么是牛顿第三定律?答:牛顿第三定律指出,任何一个物体受到的作用力都有一个大小相等、方向相反的反作用力作用在另一个物体上。

第三章:动能、功和能量守恒定律1. 动能是什么?答:动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。

动能的表达式为:K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。

2. 什么是功?答:功是描述力对物体做功的物理量,它等于力与物体位移的乘积。

功的表达式为:W=Fs,其中W为功,F为力,s为物体的位移。

3. 能量守恒定律是什么?答:能量守恒定律指出,在一个封闭系统内,能量的总量是不变的。

能量可以相互转化,但不能被创造或破坏。

第四章:动量和碰撞1. 动量是什么?答:动量是物体运动的量度,它等于物体的质量与速度的乘积。

大学物理练习册答案(下册)-

大学物理练习册答案(下册)-

(1) x Acos( 2π t )
T
(2)
x Acos( 2π t 1 )
T2
(3)x Acos( 2π t 1 ) (4) x Acos( 2π t 3 )
T3
T4
2.两位外星人A和B生活在一个没有自转,没有大气, 表面光滑的匀质球形小星球上。有一次他们决定进 行一场比赛,从他们所在的位置出发,各自采用航 天技术看谁能先达到星球的对径位置。A计划穿过星 体直径凿一条通道,采用自由下落方式到达目标位 置;B计划沿着紧贴着星球表面的空间轨道,象人造 卫星一样航行到目标位置。试问A和B谁会赢得比赛?
C. 1 , 1 ,0.05 22
D. 2,2,0.05
9. 一列机械横波在t时刻的波形曲线如图所示, 则该时刻能量为最大值的媒y质质元的位置是:
A. o, b, d, f B. a, c, e, g O'
C. o, d
D. b, f O
d
a
eg
c
b
fx
(二) 填空题 1.一横波的波动方程为: y 0.01cos(250πt 10πx)(m)
解: 以星球中心为原点在直径 通道上设置x轴,A在x处受引力:
Fx
G
Mm R3
x
(注: 只有半径为x的星球部分对A有引力)
式中M为星球质量, R为星球半径, m为A的质量
A做简谐振动, 周期为 T 2 m / k k GMm / R3
A到达目标所需的时间为 tA T / 2 R R / GM B以第一宇宙速度做圆周运动 vB GM / R B到达目标所需的时间为 tB R / vB R R / GM
4. 一质点在x轴上作谐振动振幅A=4cm, 周期T=2s, 其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动, 则质点第二次通过 x=-2cm,处时刻为:[]

大学物理下册练习与答案

大学物理下册练习与答案

I电磁学DC7・ 1 |如图所示,一电子经过Uo = 1 >10 7m / s o(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场 大小和方向;(2) 求电子自A 运动到C 所需的时间。

9解:(1)电子所受洛仑兹力提供向心力 evoB = m —Rmv o 9.1 lx 10~ x IX 10 ?3_得出 B 二 = _i9= 1./10 TeR 1 .6X 10 - x 0 .05磁场方向应该垂直纸面向里。

(2) 所需的时间为 t =# =药-=兀0. 05 = 1 .6 X 10 rs22 vo l x 107血工地2.0怡2的一个正电子,射入磁感应强度B 二0.1T 的匀强磁场中,其速 度矢量与B 成89角,路径成螺旋线,其轴在B 的方向。

试求这螺旋线运动的周 期T 、螺距h 和半径r o解:正电子的速率为I /XX X X - v ==1 ------- 2~~10 ' 110 19 = 2 .6x 10 7 m/s* m *9.1 1X 10做螺旋运动的周期为2 Jim 2 K X 9.1 丈 1(T 31T = ---------- = -------------- --- --------- = 3 ,6X 10 SeB 1 .6X 10一 X 0.1螺距为 h = vcos 89 °T =2.6 * 10 7 X cos 89 0 :<3. 6 X 10 10 = 1 .6^ lO^m317ZX _X X X_丰径为 r = mv sin 89 = 9.11 ~F02 .6⑴ TO Sih 89 = 1 .5 ^103 Hlx — xeBL6 10'0.1磁力A 点时,具有速率V0 /0 10cmA h -----------------DC7・3加1图所示,一铜片厚为d二1.0mm,放在B=1.5T的磁场中,磁场方向与铜片表面垂直。

已知铜片里每立方厘米有8.4^ 1022个自由电子,每个电子的电荷C - = -1.6 19T,当铜片中有I=200A的电流流通时,(1)求铜片两侧的电势差Uaa' ;(2)铜片宽度b对Uaa,有无影响?为什么?/// B i ////Z/-------- 28 — = -2.23 X 10_ V,8/ 10X「1.6 ¥o f X 1 .0 X 10一负号表示『侧电势高。

大学物理练习册下答案

大学物理练习册下答案

大学物理练习册下答案问题1:描述牛顿第二定律的数学表达式,并给出一个例子说明如何使用它来解决实际问题。

答案:牛顿第二定律的数学表达式是 \( F = ma \),其中 \( F \)是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。

例如,如果一个质量为5kg的物体受到10N的力,那么根据牛顿第二定律,物体的加速度 \( a \) 将是 \( 10N / 5kg = 2m/s^2 \)。

问题2:说明什么是能量守恒定律,并给出一个物理系统的例子来展示这一定律。

答案:能量守恒定律表明,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,但总量保持不变。

例如,当一个自由落体的物体从一定高度下落时,它的势能转化为动能。

如果忽略空气阻力,下落过程中总能量是守恒的。

问题3:解释什么是波的干涉,并给出一个实验设置来观察这一现象。

答案:波的干涉是指两个或多个波相遇时,它们的振幅相加形成一个新的波形的现象。

当两个波的相位相同(相长干涉)或相反(相消干涉)时,干涉效果最为明显。

观察干涉的一个简单实验设置是使用两个相干光源,它们发出的波在空间中相遇,形成明暗相间的干涉条纹。

问题4:描述电磁感应的基本原理,并解释法拉第电磁感应定律。

答案:电磁感应是当一个导体在变化的磁场中移动时,导体中产生电动势的现象。

法拉第电磁感应定律表明,导体中产生的电动势与穿过导体回路的磁通量的变化率成正比。

数学表达式为 \( \varepsilon = -d\Phi_B/dt \),其中 \( \varepsilon \) 是感应电动势,\( \Phi_B \) 是磁通量,\( t \) 是时间。

问题5:简述量子力学的基本原理,并解释海森堡不确定性原理。

答案:量子力学是描述微观粒子行为的物理学分支,其基本原理包括波粒二象性、量子态的叠加以及量子态的演化遵循薛定谔方程等。

海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积至少等于普朗克常数的一半。

《大学物理学》第二版下册习题解答

《大学物理学》第二版下册习题解答

大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。

力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。

•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。

•重力:地球上物体受到的引力,是一种特殊的引力。

•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。

•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。

1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。

力的分解是指将一个力按照一定的规律分解为多个力的过程。

力的合成可以使用力的三角法进行。

假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。

假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。

牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。

当物体受到外力时,按照该定律,物体会发生运动或停止运动。

1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华侨大学大学物理作业本(下)答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN大学物理作业本(下)姓名班级学号江西财经大学电子学院2005年10月第九章稳恒磁场练习一1.已知磁感应强度为2B的均匀磁场,方向沿x轴正方向,如图Wb0.2-⋅=m所示。

求:(1)通过图中abcd面的磁通量;(2)通过图中befc面的磁通量;(3)通过图中aefd面的磁通量。

2.如图所示,在被折成钝角的长直导线通中有20安培的电流。

求A点的α。

磁感应强度。

设a=2.0cm,120=3.有一宽为a的无限长薄金属片,自下而上通有电流I,如图所示,求图中P点处的磁感应强度B。

4.半径为R的圆环,均匀带电,单位长度所带的电量为 ,以每秒n转绕通过环心并与环面垂直的轴作等速转动。

求:(1)环心的磁感应强度;(2)在轴线上距环心为x处的任一点P的磁感应强度。

练习二1.一载有电流I的圆线圈,半径为R,匝数为N。

求轴线上离圆心x处的磁感应强度B,取R=12cm,I=15A,N=50,计算x=0cm,x=5.0cm, x=15cm各点处的B值;2.在一半径R=1.0cm的无限长半圆柱形金属薄片中,自上而下通有电流I=5.0A,如图所示。

求圆柱轴线上任一点P处的磁感应强度。

3.如图所示,两无限大平行平面上都有均匀分布的电流,设其单位宽度上的电流分别为1i 和2i ,且方向相同。

求:(1)两平面之间任一点的磁感应强度;(2)两平面之外任一点的磁感应强度;(3)i i i ==21时,结果又如何?4.10A 的电流均匀地流过一根长直铜导线。

在导线内部做一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如图所示。

计算通过此平面的磁通量。

(铜材料本身对磁场分布无影响)。

练习三1.半径为R 的薄圆盘上均匀带电,总电量为q ,令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为ω,求轴线上距盘心x 处的磁感应强度。

2. 矩形截面的螺绕环,尺寸如图所示。

(1)求环内磁感应强度的分布; (2)证明通过螺绕环截面(图中阴影区)的磁通量,210ln 2D D NIh πμ=Φ 式中N 为螺绕环总匝数,I 为其中电流强度。

3. 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴导体圆管(内外半径分别为b 、c )构成,使用时,电流I 从一导体流出,从另一导体流回。

设电流都是均匀分布在导体的横截面上,如图所示。

求(1)导体柱内(r<a),(2)两导体之间(a<r<b),(3)导体圆管内(b<r<c),(4)电缆外(r>c)各点处磁感应强度的大小,并画出B--r 曲线。

4. 一根外半径为1R 的无限长圆柱形导体管,管内空心部分的半径为2R ,空心部分的轴与圆柱的轴相平行但不重合,两轴间距离为a ,且a>2R 。

现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平等,如图所示,求:(1)圆柱轴线上的磁感应强度的大小;(2)空心部分轴线上的磁感应强度的大小;设R 1=10mm, 2R =0.5mm, a=5.0mm, I=20A.第十章磁场对电流的作用练习四=,在矩形线圈CDEF中1.如图所示,在长直导线AB内通有电流AI201=,AB与线圈共面,且CD、EF都与AB平行,已知通有电流AI102a=9.0cm,b=20.0cm,d=1.0cm,求:(1)导线AB的磁场对矩形线圈每边所作用的力;(2)矩形线圈所受到的合力和合力矩;I的方向与图中所示方向相反,则又如何?(3)如果电流2(4)2. 有一根质量为m 的倒U 形导线,两端浸没在水银槽中,导线的上段l 处在均匀磁场B 中,如图所示。

如果使一个电流脉冲,即电量⎰=idt q 通过导线,导线就会跳起来,假定电流脉冲的持续时间同导线跳起来的时间相比甚小,试由导线所达高度h ,计算电流脉冲的大小。

设m h m l kg m T B 30.020.0,1010,10.03==⨯==-和。

(提示:利用动量原理求冲量,并找出⎰idt 与冲量⎰Fdt 的关系)3. 横截面积20.2mm S =的铜线,变成U 形,其中O D OA '和两段保持水平方向不动,ABCD 段是边长为a 的正方形的三边,U 形部分可绕O O '轴转动。

如图所示,整个导线放在匀强磁场B 中,B 的方向竖直向上。

已知铜的密度33109.8-⋅⨯=m kg ρ,当这铜线中的电流I=10A 时,在平衡情况下,AB 段和CD 段与竖直方向的夹角为 15=α。

求磁感应强度B 。

4. 如图所示,一平面塑料圆盘,半径为R ,表面带有面密度为σ的剩余电荷。

假定圆盘绕其轴线A A '以角速度ω转动,磁场B 的方向垂直于转轴A A ',证明磁场作用于圆盘的力矩大小为 44BR M πσω=练习五1. 一个半径R=0.10 m 的半圆形闭合线圈,载有电流I=10A ,放在均匀外磁场中,磁场方向与线圈平面平行(如图所示),磁感应强度的大小T B 1100.5-⨯=。

(1)求线圈所受磁力矩的大小和方向;(2)在这力矩的作用下线圈转过 90(即转到线圈平面与B 垂直),求磁力矩作的功。

2. 一电子在T B 41070-⨯=的匀强磁场中作圆周运动,圆周半径r=0.3cm ,已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如图所示。

(1)画出这电子运动的轨道;(2)求这电子速度v 的大小;(3)求这电子的动能k E 。

3. 在霍耳效应实验中,一宽1.0cm ,长4.0cm ,厚cm 30.10.1-⨯的导体,沿长度方向截有3.0A 的电流,当磁感应强度大小为B=1.5T 的磁场垂直地通过该导体时,产生5100.1-⨯V 的横向电压,求:(1)载流子的漂移速度;(2)每立方米的载流子数目。

练习六1. 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点的一个竖直轴自由转动。

现有线圈中通有电流I ,并把线圈放在均匀的水平外磁场B 中,线圈对其转轴的转动惯量为J ,如图所示,求线圈绕其平衡位置作微小振动时的振动周期T 。

2. 如图所示,一电子在T B 41020-⨯=的磁场中沿半径为R=2cm 的螺旋线运动,螺距为h=5.0cm 。

(1)磁场B 的方向如何?(2)(3)求这电子的速度。

3.一环形铁芯横截面的直径为4.0mm,环的平均半径R=15mm,环上密绕着200匝的线圈,如图所示,当线圈导线中通有25mA的电流时,铁芯的相μ,求通过铁芯横截面的磁通量。

对磁导率300=rμ,半径为R,今有4.有一圆柱形无限长磁介质圆柱体,其相对磁导率为r电流I沿轴线方向均匀通过,求:(1)圆柱体内任一点的B;(2)圆柱体外任一点的B;(3)通过长为L的圆柱体的纵截面的一半的磁通量。

第十二章 电磁感应练习七1. 设有由金属丝绕成的没有铁芯的环形螺线管,单位长度上的匝数15000-=m n ,截面积为23102m S -⨯=,金属丝的两端和电源ε以及可变电阻串联成一闭合电路,在环上再绕一线圈A ,匝数N=5,电阻Ω=0.2R ,如图所示。

调节可变电阻,使通过环形螺线管的电流强度I 每秒降低20A 。

求:(1)线圈A 中产生的感应电动势ε,以及感应电流I ;(2)两秒内通过线圈A 任一横截面的感应电量q 。

2. 在图中具有相同轴线的两个导线回路,小回路在大回路上面距离x 处,设x>>R 。

因此,当大回路中有电流i 按图示方向流过时,小线圈所围面积内的磁场可看作是均匀的。

假定x 以等速率v dt dx =/而变化。

(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x=NR 时(N 为一正数),小回路内产生的感应电动势的大小; (3)若0>v ,确定小回路内感应电流的方向。

3. 如图所示,一长直导线载有I=5.0A 的电流,旁边有一矩形线圈ABCD ,长m l 20.01=,宽m l 10.02=,长边与长直导线平行且两者共面,AD 边与导线相距a=0.10m ,线圈共有1000匝。

令线圈以速度v 垂直与长直导线向右运动,10.3-⋅=s m v 。

求线圈中的感应电动势。

4. 横截面为正方形的一根导线ab ,长为l ,质量为m ,电阻为R 。

这根导线沿着两条平行的导电轨道无摩擦地下滑,轨道的电阻可忽略不计。

如图所示,另一根与ab 导线平行的无电阻的轨道,接在这两个平行轨道的底端,因而ab 导线与三条轨道组成一矩形的闭合导电回路。

导电轨道所在平面与水平面成θ角。

整个系统在竖直向上的均匀磁场B 中。

(1)求证:导线ab 下滑时,所达到的稳定速度大小为:2)cos (sin θθBl mgR v =(2)求证:这个结果与能量守恒定律是一致的。

练习八1. 如图所示,一均匀磁场被限制在半径R=20cm 的无限长圆柱形空间内,磁场以1)/4(/-⋅=s T dt dB π的恒定速率增加。

问图中线框abcda 的感生电流是多少?已知线框的电阻cm od oc cm ob oa R 30,10,6/,0.4=====Ω=πθ。

2. 在半径为R 的圆筒内,有方向与轴线平行的均匀磁场B ,以12100.1--⋅⨯s T 的速率减小,a 、b 、c 各点离轴线的距离均为r=5.0 cm ,试问电子在各点处可获得多大的加速度加速度的方向如何如果电子处在圆筒的轴线上,它的加速度又是多大3.一电子在电子感应加速器中半径为1.0m的轨道作圆周运动,如果电子每转一周动能增加700eV,计算轨道内磁通量的变化率。

4.在两根通有反向电流I的平行长直导线的平面内,有一矩形线圈放置如图所示,若导线中电流随时间的变化率为K/(大于零的恒量)。

试dIdt计算线圈中的感生电动势。

练习九1. 一截面为长方形的环式螺线管,共有N 匝,其尺寸如图所示。

证明:此螺线管的自感系数为ab h N L ln 22πμ =2. 一螺绕环,横截面的半径为a ,中心线的半径为R ,R>>a ,其上由表面绝缘的导线均匀地密绕两个线圈,一个匝1N ,另一个匝2N 。

求: (1)两线圈的自感1L 和2L ;(2)两线圈的互感M ;(3)M 与1L 和2L 的关系。

3. 一圆形线圈1C 由50匝表面绝缘的细导线绕成,圆面积为20.4cm S =,将此线圈放在另一个半径为R=20cm 的圆形大线圈2C 的中心,两者同轴。

大线圈由100匝表面绝缘的导线绕成。

(1)求这两线圈的互感系数M ;(2)当大线圈中的电流以150-⋅s A 的变化率减小时,求小线圈1C 中的感应电动势。

4. 氢原子中电子在一圆轨道上运动,问这轨道中心处磁场能量密度有多大?玻尔氢原子模型中电子的轨道半径为m 11101.5-⨯,频率f 等于15108.6-⋅⨯s r 。

相关文档
最新文档