2018考研数学二线性代数复习知多少

合集下载

2018年考研数学二高数及线代考点

2018年考研数学二高数及线代考点

2018年考研数学二高数及线代考点
店铺高考网为大家提供2018年考研数学二高数及线代考点,更多高考资讯请关注我们网站的更新!
2018年考研数学二高数及线代考点
2018考研数学考什么?如何准备考研数学二?考研数学二考哪些?哪些不考?下面为同学们一一解答!
考研数学二考试科目:
只考高数(78%)和线代(22%) ,也就是不考概率。

一、【高数同济四版】带星号不考
上册:打星号的不考,第二章第八节不考,第三章第十节不考,第五章第六节不考,第七章不考,其他都考。

下册:打星号的不考,第八章第六、七节不考,第九章第三、四、五节不考,第十章,第十一章不考,第十二章5,6,11,12,13节不考。

总的来说,上册考的多下册只考三章,而且不是全考,但微分方程比较繁。

二、【线性代数】1-5章全考,第六章不考。

1.曲面和曲线积分不考。

2.空间解析几何不考。

3.级数不考。

3.三重积分不考。

考研数学线性代数的知识点怎么复习范本三份

考研数学线性代数的知识点怎么复习范本三份

考研数学线性代数的知识点怎么复习范本三份知识点一:矩阵1.矩阵的定义:矩阵是一个由数域中的元素排列成的矩形阵列。

2.矩阵的运算:包括矩阵的加法、减法、数乘、乘法等。

3.矩阵的类型:包括列矩阵、行矩阵、方阵、行满秩矩阵、列满秩矩阵等。

4.矩阵的转置:行变为列,列变为行。

5.矩阵的逆:满足矩阵乘法交换律的方阵,存在逆矩阵。

6.矩阵的秩:线性无关行(列)向量的最大个数。

知识点二:行列式1.行列式的概念:一个由n*n个元素构成的方阵,与其他方阵不同的一个特殊数。

2.行列式的性质:包括行互换、列互换、其中一行(列)乘以一个非零常数、其中一行(列)加上另外一行(列)的k倍等运算。

3.行列式的计算:包括按定义计算、按行(列)展开、按行列式的性质计算等方法。

4.行列式的性质与结论:含有零行(列)的行列式为零、对调两行(列)行列式变号、行列式与其转置行列式相等等。

知识点三:向量空间1.向量空间的定义:满足一定条件的集合,其中的元素可以进行向量运算。

2.向量空间的性质:包括封闭性、线性组合、线性无关、向量子空间等性质。

3.线性相关与线性无关:一组向量之间的线性组合关系。

4.基、维数与坐标:向量空间的基、维数与坐标之间的关系。

5.线性映射:保持向量空间的线性性质的映射。

6.矩阵的秩与线性方程组的解:矩阵的秩与方程组解的个数及解的性质之间的关系。

知识点四:特征值与特征向量1.特征值与特征向量的定义:对于一个n*n矩阵A,如果存在常数λ和非零向量x,使得Ax=λx,则称λ为矩阵A的特征值,x为矩阵A的特征向量。

2.特征值与特征向量的计算:包括求解特征方程、求解特征向量的过程。

3.特征值与特征向量的性质:特征值的和等于矩阵的迹,特征向量对应不同特征值的特征向量线性无关等。

知识点五:二次型1.二次型的定义:一个含有二次项和线性项的多项式。

2.二次型的矩阵表示:用矩阵表示二次型。

3.二次型的规范化:将二次型化为标准形,即去除二次项的干涉项。

考研数学《线性代数》考点知识点总结

考研数学《线性代数》考点知识点总结

记作: ri rj ( ci cj ) D D 0 .
3.行列式乘以 k 等于某行(列)所有元素都乘以 k. 推论:某一行(列)所有元素公因子可提到行列式的外面.
记作: kD ri k ( kD ci k ).
记作: kD ri k ( kD ci k ).
行列式的 性质:
a2i a2n
a21
a22
a2i a2n
an1 an2 (ani ani ) ann
an1 an2 ani ann an1 an2 ani ann
上式为列变换,行变换同样成立.
6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.
记作: ci ci kcj ( ri ri krj ), D 不变.
n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;

k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 11
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 xn
x32 xn2 = (xi x j ) .证明用数学归纳法.
定理 2:
n 阶行列式可定义为 D (1)ta a p11 p2 2 apnn = (1)ta1p1a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)
2.互换行列式的两行(列),行列式变号.
推论:两行(列)完全相同的行列式等于零.
记作: ri rj ( ci c j ) D D .

考研数学线性代数重点知识

考研数学线性代数重点知识

考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。

下面我们就来详细梳理一下线性代数中的重点知识。

一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。

计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。

其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。

行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。

行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。

二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。

矩阵的运算有加、减、乘、数乘。

矩阵乘法需要注意其规则,不满足交换律。

逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。

求逆矩阵的方法有伴随矩阵法和初等变换法。

矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。

三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。

判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。

极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。

向量组的秩等于其极大线性无关组所含向量的个数。

四、线性方程组线性方程组是线性代数的重点应用之一。

齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。

非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。

求解线性方程组可以使用高斯消元法。

五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。

求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。

2018考研数学大纲解读及高分规划:线性代数_毙考题

2018考研数学大纲解读及高分规划:线性代数_毙考题

毙考题APP获取更多考试资料,还有资料商城等你入驻2018考研数学大纲解读及高分规划:线性代数2017年9月15日教育部考试中心发布了2018年全国硕士研究生入学统一考试数学考试大纲,与2017年大纲相比,整个考试大纲(数学一、数学二、数学三)包括标点符号在内,和去年的一样,所以请同学们放心,按照自己的规划正常复习即可,考试大纲没有任何的变化说明仍然以考查基本概念和基本方法为主,大家不要做一些偏题、难题和怪题,努力就一定会有更大的收获。

下面我给大家总结一下线性代数接下来的复习规划,希望能给大家带去更大的帮助。

线性代数跟高等数学和概率统计不同,它的内容多,概念多,定理多而抽象,所以大家复习的时候一定要注意:第一,把各个章节的知识点串起来,而且善于总结出自己的思路,把知识学活。

第二,要善于总结高频考点的考试方式和对应的解题方法,除了把握住这些重难点之外更最重要的是在做题中训练自己灵活解题的能力。

线性代数在考研数学(数学一、数学二、数学三)的试卷中所占的分值是34分,一共包含六章的内容:行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型。

考试题型分为选择、填空和解答,其中可能出选择填空题的内容主要是行列式的计算,矩阵的秩,向量组相关性的判定,方程组解的判定,矩阵合同与相似,正定二次型的判定。

出解答题的地方相对来说比较固定,一道是向量组与方程组结合的题目,主要是判断一组向量的相关性或者一个向量能否由一组向量表示的问题。

具体解法就是全部转化为齐次或非齐次方程有没有解的问题,如果系数行列式的方阵,则考虑行列式是否为0来做,如果不是方阵则考虑初等变换化行列阶梯形来做;另一道是矩阵的特征值与特征向量或者将一个二次型标准化的题目,这道题目的计算量会比较大,所以大家一定要认真对待,课下多加下一些功夫去练,具体方法都是我们平时学到的,先算特征值和特征向量,然后正交化单位化,最后令正交矩阵,得到对角矩阵或者标准二次型。

考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析一、矩阵的运算矩阵的加法、乘法、转置以及数量乘法等是矩阵运算的基本操作。

矩阵的加法和乘法具有结合律、交换律和分配律等基本性质。

1.1 矩阵的加法对于两个相同大小的矩阵A和B,它们的和记作A + B,定义为它们对应元素相加所得到的矩阵。

即,如果A = [a_ij],B = [b_ij],则A + B = [a_ij + b_ij]。

1.2 矩阵的乘法对于两个矩阵A和B,如果A的列数等于B的行数,它们可以进行乘法运算,记作C = AB。

矩阵C的元素c_ij可以表示为c_ij =∑(a_ik * b_kj)。

其中∑表示求和符号,k表示对应元素的相同下标。

1.3 矩阵的转置对于一个矩阵A,它的转置记作A^T。

即,如果A = [a_ij],则A^T = [a_ji]。

也就是说,矩阵A的行变为转置后矩阵的列,矩阵A的列变为转置后矩阵的行。

1.4 数量乘法一个数与一个矩阵的乘积称为数量乘法。

对于一个数k和一个矩阵A,它们的乘积记作kA。

即,kA = [ka_ij]。

其中ka_ij表示矩阵A中每个元素乘以k所得到的矩阵。

二、线性方程组线性方程组是线性代数的重要内容之一。

解一个线性方程组就是找到一组使得方程组中所有方程都成立的未知数的值。

通常通过矩阵的方法来解线性方程组,有三种常用的解法:高斯消元法、克拉默法则和逆矩阵法。

2.1 高斯消元法高斯消元法是通过矩阵的初等变换将线性方程组化为最简形式,从而求解方程组。

具体步骤如下:1) 将线性方程组的系数矩阵和常数矩阵合并成增广矩阵;2) 逐行进行初等变换,使得增广矩阵的主对角线元素为1,其他元素为0;3) 对增广矩阵进行回代,求出方程组的解。

2.2 克拉默法则克拉默法则是通过行列式的性质来解线性方程组。

对于一个n元线性方程组,如果系数矩阵的行列式不为0,则方程组有唯一解,且每个未知数的值可以通过求解n个行列式得到。

2.3 逆矩阵法逆矩阵法是通过求解方程AX = B来解线性方程组。

考研数学:线性代数方程组掌握这些,打遍天下无敌手

考研数学:线性代数方程组掌握这些,打遍天下无敌手

考研数学:线性代数方程组掌握这些,打遍天下无敌手[摘要]数学都是很多人心中的痛,成绩老是无法提高。

数学复习的第一个阶段主要任务就是复习基础。

下面凯程考研数学辅导老师给各位考生整理线性代数方程组相关知识点。

因为考研数学由高数等多个部分组成,很多同学并不是从高数开始,而是从线性代数开始复习,那么我们就一起来看看线代的相关知识和应用。

说到考研,大家都会觉得数学真是一道很难翻越的坎儿(不考数学的专业除外)。

数学都是很多人心中的痛,成绩老是无法提高。

数学复习的第一个阶段主要任务就是复习基础。

“基础,一定要注意加强基础。

”这基本是老调重弹、老生常谈了。

有些考生觉得基础已经很好了,我现在就要提高。

这样的情况,存在于很多考试意识中。

即使基础确实好的考生,也绝不能觉得基础不重要,基础无用论绝对是有害而无益的。

线性代数的核心就是如何解方程组,所以本部分中线性方程组什么时候有解,是有唯一解还是有无穷多解,如何求解是复习的重点,通常在考试中会在本部分出一道大题。

而向量的线性相关性问题一般转化为线性方程组有无解的问题,所以可放在一起复习。

下面为大家梳理线性代数方程组的相关知识与应用。

▶其中我们应当掌握1、非齐次线性方程组解的结构及通解;2、齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法;3、齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件;4、矩阵初等变换的概念,初等矩阵的性质,矩阵等价的概念,矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵;5、向量、向量的线性组合与线性表示的概念;6、用初等行变换求解线性方程组的方法;7、基变换和坐标变换公式,过渡矩阵。

(数一)8、向量空间、子空间、基底、维数、坐标等概念;(数一)9、向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法;10、向量组的极大线性无关组和向量组的秩的概念和求解;11、向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系;矩阵的特征值特征向量与二次型相当于是求解线性方程组的应用,出题比较灵活,有些题目技巧性较强,复习起来也是比较有意思的一章。

2018考研数学二复习之你可以这样安排

2018考研数学二复习之你可以这样安排

2018考研数学二复习之你可以这样安排来源:智阅网考研数学二复习具有基础性和长期性的特点,因为数学知识的学习是一个长期积累的过程,所以,我们在复习考研数学二时,应该合理进行安排。

首先,我们应该了解考研数学二的考查内容。

考研数学二主要考查高等数学、线性代数,概率与数理统计不做考查。

高等数学约占总考查内容的78%,线性代数占约22%。

其次,考研数学二复习计划的具体安排。

了解了考研数学二的考查内容后,我们就要进行合理的安排。

第一阶段:夯实基础,全面复习。

这个时候,我们可以看看毛纲源老师的2018《考研数学常考题型解题方法技巧归纳》(数学二),书中对考研数学二的考查内容介绍全面,有助于我们夯实基础阶段的使用。

第二阶段:熟悉题型,融会贯通。

适量进行习题训练,熟悉考研题型,加强知识点的前后联系,分清重难点,把握好整体的知识体系,熟悉并掌握定理公式和集体技巧。

毛纲源老师的2018《考研数学常考题型解题方法技巧归纳》(数学二)这本书中,介绍了我们在复习考研数学二必须掌握的题型和解题方法,对我们复习考研数学二很有帮助。

第三阶段:查缺补漏,模拟训练。

套题、模拟训练题阶段。

练习答题规范,保持卷面整洁,增加信心,练习掌握考试时间的分配,增强临场应变的能力,要对自己前两个阶段复习中出现含糊不清,掌握不牢的地方重点加强。

第四阶段:强化记忆,保持状态。

查漏补缺,回归教材。

强化记忆,调整心态,保持状态,积极应考。

这个时候,我们依旧能够用上毛纲源老师的2018《考研数学常考题型解题方法技巧归纳》(数学二)。

可见毛纲源老师的这本书,在我们复习考研数学二时,是一本性价比很高的书籍。

所以,想买毛纲源2018《考研数学常考题型解题方法技巧归纳》(数学二),可以去智阅网上看看,最近智阅网上,有很多购书优惠,买得越多,折扣越多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018考研数学二线性代数复习知多少
来源:智阅网
线性代数是,考研数学二中很重要的一部分。

这里就来熟悉一下线性代数的基础内容。

线代概念很多,重要的有代数余子式、伴随矩阵、逆矩阵、初等变换与初等矩阵、正交变换与正交矩阵、秩(矩阵、向量组、二次型)、等价(矩阵、向量组)、线性组合与线性表出、线性相关与线性无关、极大线性无关组、基础解系与通解、解的结构与解空间、特征值与特征向量、相似与相似对角化、二次型的标准形与规范形、正定、合同变换与合同矩阵。

而运算法则也有很多必须掌握:行列式(数字型、字母型)的计算、求逆矩阵、求矩阵的秩、求方阵的幂、求向量组的秩与极大线性无关组、线性相关的判定或求参数、求基础解系、求非齐次线性方程组的通解、求特征值与特征向量(定义法,特征多项式基础解系法)、判断与求相似对角矩阵、用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

汤家凤老师的2018《考研数学15真题解析与方法指导》(数学二),对相关线性代数的基础和重要知识点都有详尽的讲解,介绍了不少解题方法,对咱们提高考研数学二复习效果,有很大帮助。

建议还没有买到这本书的同学,可以去天猫商城北京世纪文都图书专营店、智阅网上看看,最近有很多购书优惠,买书就送优惠券,买的图书越多,享受到的折扣力度越大。

相关文档
最新文档