七年级几何题大全

合集下载

七年级下册数学应用问题和几何题100道

七年级下册数学应用问题和几何题100道

七年级下册数学应用问题和几何题100道第一部分:数学应用问题(50道)1. 某商店有100个苹果,每天卖出5个,问几天能卖完?2. 一本书的原价是80元,打6折后的价格是多少?3. 小明父亲的年龄是35岁,小明的年龄是他父亲的1/5,问小明几岁?4. 一个长方形的长度是10厘米,宽度是4厘米,计算它的面积和周长。

5. 爸爸给小明的压岁钱是200元,小明花了其中的1/4买了一本书,还剩多少钱?6. 小华每天早上骑自行车去学校,单程需要15分钟,问他来回一共要多长时间?7. 小红家离学校有3千米,她每天步行去学校,速度是每小时4千米,问她需要多长时间到达学校?8. 小明购买了一台电视机,原价是2000元,经过砍价后,他以8折的价格购买了它,他花了多少钱?9. 一家超市里面,水果有苹果、橙子和香蕉,苹果有24个,橙子是苹果的3/4,香蕉是橙子的2倍,问超市里面一共有多少个水果?10. 甲、乙两个人合作做一件工作,甲能独立完成这个工作需要6天,乙能独立完成这个工作需要8天,问他们合作完成这个工作需要多少天?...(依次类推)第二部分:几何题(50道)51. 把一个长方形切成4个同样大小的正方形,每个正方形的边长是10厘米,那么原来长方形的周长是多少?52. 一个正方形的边长是8厘米,计算它的面积和周长。

53. 一个圆的半径是5厘米,计算它的面积和周长。

54. 一条边长为12厘米的正三角形,计算它的周长。

55. 一个矩形的长是10厘米,宽是6厘米,计算它的面积和周长。

56. 一条边长为9厘米的正六边形,计算它的周长。

57. 一个长方体的长是5厘米,宽是3厘米,高是4厘米,计算它的体积和表面积。

58. 一个圆柱体的底面半径是3厘米,高是8厘米,计算它的体积和表面积。

59. 一个圆锥体的底面半径是6厘米,高是10厘米,计算它的体积和表面积。

60. 一个球的半径是7厘米,计算它的体积和表面积。

...(依次类推)本文档包含50道数学应用问题和50道几何题,帮助七年级学生进行数学应用和几何的练习。

七年级数学典型几何证明50题

七年级数学典型几何证明50题

初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。

∴ ∠BAF=∠EAF (∠1=∠2)。

3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

七年级上册几何题50道

七年级上册几何题50道

七年级上册几何题50道1.画出一个点A,并从点A画出两条射线,形成一个角∠BAC,测量并写出∠BAC的度数。

2.如果∠1=35°且∠2与∠1互为余角,求∠2的度数。

3.画出一个直角三角形,其中一个锐角为45°,并测量另一锐角的度数。

4.证明等腰三角形底角相等。

5.一个三角形的两个内角分别为60°和50°,求第三个内角的度数。

6.画出一个平行四边形ABCD,如果∠A=110°,求∠B的度数。

7.一个矩形的长是宽的两倍,如果宽是10厘米,求矩形的面积。

8.一个正方形的周长是20厘米,求它的面积。

9.一个圆的半径是3厘米,求圆的周长和面积。

10.如果一个圆的直径是10厘米,求半圆的周长。

11.画出一个直角梯形,上底3cm,下底7cm,高5cm,求它的面积。

12.一个等边三角形的边长为6cm,求它的高。

13.求一个边长为5cm的正六边形的周长。

14.如果一个平行四边形的两邻边分别是5cm和8cm,且夹角为60°,求它的面积。

15.一个直角三角形的两直角边分别为3cm和4cm,求斜边的长度。

16.画出一个角,然后使用圆规和直尺将其二等分。

17.证明直角三角形斜边上的中线等于斜边的一半。

18.一个圆的周长是31.4cm,求它的半径。

19.画出一个等腰梯形,底边分别是12cm和8cm,高为5cm,求它的面积。

20.如果一个矩形的面积是24cm²,长是6cm,求它的宽。

21.一个直角三角形的斜边为10cm,其中一个锐角为30°,求较短的直角边的长度。

22.画出一个角,使用圆规和直尺将其三等分。

23.如果一个圆的面积是100πcm²,求它的半径。

24.一个正方形的对角线长为8cm,求它的边长。

25.一个等腰三角形的底边为10cm,腰长为8cm,求底角的度数。

26.画出一个正五边形,如果一个内角是108°,求它的一个外角的度数。

七年级上册数学几何题

七年级上册数学几何题

七年级上册数学几何题一、线段相关题目1. 已知线段AB = 8cm,点C在线段AB上,AC = 3cm,点M是线段BC的中点,求线段AM的长。

解析:因为AB = 8cm,AC = 3cm,所以BC=AB AC = 8 3 = 5cm。

又因为点M是线段BC的中点,所以CM = 1/2BC= 1/2×5 = 2.5cm。

则AM = AC+CM = 3 + 2.5 = 5.5cm。

2. 如图,点C把线段AB分成AC:CB = 2:3的两部分,点D是线段AB的中点,若CD = 2,求线段AB的长。

解析:设AC = 2x,CB = 3x,则AB=AC + CB = 5x。

因为点D是线段AB的中点,所以AD = 1/2AB = 2.5x。

又因为CD = AD AC,所以2.5x-2x = 2,0.5x = 2,解得x = 4。

所以AB = 5x = 20。

二、角相关题目1. 已知∠AOB = 90°,∠BOC = 30°,OM平分∠AOC,ON平分∠BOC,求∠MON 的度数。

解析:(1)当OC在∠AOB内部时:因为∠AOB = 90°,∠BOC = 30°,所以∠AOC=∠AOB ∠BOC = 90° 30° = 60°。

因为OM平分∠AOC,所以∠MOC = 1/2∠AOC = 30°。

因为ON平分∠BOC,所以∠NOC = 1/2∠BOC = 15°。

所以∠MON = ∠MOC ∠NOC = 30° 15° = 15°。

(2)当OC在∠AOB外部时:∠AOC = ∠AOB+∠BOC = 90° + 30° = 120°。

因为OM平分∠AOC,所以∠MOC = 1/2∠AOC = 60°。

因为ON平分∠BOC,所以∠NOC = 1/2∠BOC = 15°。

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。

七年级经典几何难题20道题

七年级经典几何难题20道题

七年级经典几何难题20道题以下是七年级经典几何难题20道题:1. 已知等边三角形的一边长为a,求面积。

答案:面积为√3/4 * a²。

2. 如果一个矩形的长比宽大2cm,它的面积是24cm²,求矩形的长和宽。

答案:长为6cm,宽为4cm。

3. 已知一个正方形的边长为4cm,求周长和面积。

答案:周长为4*4=16cm,面积为4*4=16cm²。

4. 求一个直径为10cm的圆的面积。

答案:面积为π*(10/2)²=25πcm²。

5. 求一个等腰三角形底为6cm,高为8cm的面积。

答案:面积为1/2 * 6 * 8 = 24cm²。

6. 已知一个长方形的长为10cm,宽为5cm,求面积。

答案:面积为10*5=50cm²。

7. 求一个正方形的对角线长度为13cm的面积。

答案:面积为(13/2)²=169/4=42.25cm²。

8. 已知一个等边三角形的边长为8cm,求面积。

答案:面积为√3/4 * 8²=16√3 cm²。

9. 求一个半径为5cm的圆的周长。

答案:周长为2π*5=10πcm。

10. 已知一个矩形的长为12cm,宽为3cm,求面积。

答案:面积为12*3=36cm²。

11. 求一个边长为6cm的正方形的对角线长度。

答案:对角线长度为6√2 cm。

12. 已知一个等腰三角形底为10cm,高为12cm,求面积。

答案:面积为1/2 * 10 * 12 = 60cm²。

13. 求一个半径为7cm的圆的面积。

答案:面积为π*7²=49πcm²。

14. 已知一个长方形的长为15cm,宽为2cm,求面积。

答案:面积为15*2=30cm²。

15. 求一个正方形的边长为9cm的面积。

答案:面积为9*9=81cm²。

16. 求一个等边三角形的一边长为6cm的面积。

七年级重要几何典型题

七年级重要几何典型题

七年级重要几何典型题一.选择题(共23小题)1.(2013•江阳区模拟)如图,面积为12cm 2的△ABC 沿BC 方向平移到△DEF 的位置,平移的距离是边BC 长的2倍,则图中四边形ACED 的面积为( ).C D .14.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,垂足分别为C ,D ,E ,则下列说法不正确的是( ).C D.18.(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()24.(2003•河北)两根木棒的长分别为7cm和10cm,要选择第三根木棒,将它们钉成一个三角形框架,那么第三根木棒长xcm的范围是_________.25.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为_________厘米.26.(2002•吉林)工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB、CD两根木条),这样做根据的数学知识是_________.27.如图,AD是△ABC的中线,如果△ABC的面积是18cm2,则△ADC的面积是_________cm2.28.(2009•安顺)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_________度.29.(2007•江西)如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=_________度.参考答案与试题解析一.选择题(共23小题)1.(2013•江阳区模拟)如图,面积为12cm2的△ABC沿BC方向平移到△DEF的位置,平移的距离是边BC长的2倍,则图中四边形ACED的面积为().(2006•大兴安岭)一个三角形的两边长分别为3和7,且第三边的边长为整数,这样的三角形的周长的最小值是8.C D.13.下列说法正确的是()14.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()15.(2013•盐城模拟)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A的大小是().C D.17.(2010•东营)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()18.(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()19.(2009•肇庆)如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()21.(2009•铁岭)如图所示,已知直线AB∥CD,∠C=125°,∠A=45°,则∠E的度数为()22.(2008•黄石)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()23.(2007•云南)如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()二.填空题(共7小题)24.(2003•河北)两根木棒的长分别为7cm和10cm,要选择第三根木棒,将它们钉成一个三角形框架,那么第三根木棒长xcm的范围是3<x<17.25.(2003•青海)一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为9厘米.26.(2002•吉林)工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB、CD两根木条),这样做根据的数学知识是三角形的稳定性.27.如图,AD是△ABC的中线,如果△ABC的面积是18cm2,则△ADC的面积是9cm2.28.(2009•安顺)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=25度.29.(2007•江西)如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=25度.DAC=(30.(2006•十堰)如图,已知AB∥CD,∠A=55°,∠C=20°,则∠P=35度.。

七年级数学典型几何证明50题

七年级数学典型几何证明50题

初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。

∴ ∠BAF=∠EAF (∠1=∠2)。

3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( )A B C D3.轮船航行到C 处观测小岛A 的方向是北偏西48°,那么从A 同时观测轮船在C 处的方向是( ) A.南偏东48° B.东偏北48° C.东偏南48° D.南偏东42° °32′5″+______=180°.7.八时三十分,时针与分针夹角度数是_______. 6.一个角的余角比它的补角的23还少40°,求这个角。

6.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。

(1)求线段MN 的长;(2分)(2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,你能猜想MN 的长度吗并说明理由。

你能用一句简洁的话描述你发现的结论吗(2分)(3)若C 在线段AB 的延长线上,且满足AC BC = b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗ABCMN4、61平角是 度, 25o32ˊ×3= 。

6、已知;两个角互补,且角度之比为3∶2,那么这两个角分别是 。

7、时钟指向5:30,则时针与分针所成较小的那个角的度数为__________度. 6、如图,已知∠AOC=∠BOD=90o ,∠AOD=150o , 则∠BOC 的度数为:( )A .30oB .45oC .50oD .60o8、已知:线段AC 和BC 在同一条直线上,如果AC=cm ,BC=cm ,线段AC 和BC 中点间的距离是 。

1、下列图形中,能够折叠成正方体的是( )AB CD6、一个角的补角加上20o ,恰好等于这个角的5倍,求这个角的度数。

1.下图是由一些相同的小正方体构成的几何体从不同方向看到的平面图形,则这些相同的小正方体的个数是 个。

从正面看 从左面看 从上面看9.用一副三角板画角,不能画出的角的度数是( )CD BOO AB CE F A .15° ° ° °6. 如图5,∠AOB=35°,∠BOC=50°,∠COD=21°,OE 平分∠AOD , 求∠BOE 的度数。

(10分)3.如图,点A 位于点O 的方向上。

4.45°52′48″=_________度。

1.如图是那种几何体表面展开的图形。

6如图,已知∠AOC=∠BOD=90o ,∠AOD=150o , 则∠BOC 的度数为( )A 、30oB 、45oC 、50oD 、60o1.右面这个几何体的展开图形是( )2.(6分)请画出右图从三个方面看的平面图形.从正面看 从上面看 从左面看F EDCBOA6. 如图,∠AOB = 110°,∠COD = 70°,OA 平分∠EOC , OB 平分∠DOF , 求∠EOF 的大小。

7. 2点25分时针和分针的夹角为______度.4.已知∠α=50°18′,则∠α的余角的补角是___________度. 为线段AB 的中点,D 在线段CB 上,DA=6,DB=4,则CD=________.3.学校、电影院、公园在平面图上的标点分别是A 、B 、C, 电影院C 在学校A 的正东方向,公园B 在学校的南偏西25°方向,那么平面图上的∠CAB=______°.6.如图3所示,︒=∠90AOB ,OE 、OF 分别平分AOB ∠、BOC ∠,如果︒∠=∠60EOF ,求∠AOC 的度数.(10分)第1题图CDBO 第6题图(图3)10、将圆分成三个扇形,其三个扇形的面积比为2:3:4,则最小那个扇形的圆心角为 度。

10、下列说法中正确的是A 、两点之间的所有连线中,线段最短。

B 、射线就是直线。

C 、两条射线组成的图形叫做角。

D 、小于平角的角可分为锐角和钝角两类。

6、已知线段AB ,延长AB 到C ,使BC =31AB ,D 为AC 中点,DC = 2cm ,则线段AB 的长度是 A 、3 B 、6cm C 、4cm D 、3cm3、一条船向北偏东50方向航行到某地,然后依原航线返回,船返回时航行的正确方向是:A 、南偏西400B 、南偏西500C 、北偏西400D 、北偏西50010.在下列立体图形中,不属于多面体的是( ) A .正方体; B .三棱柱; C .长方体;D .圆锥体.1.如图,为正方体展开图形,将它折回正方体,则点A 会和下列哪两个面连接() A .1和3B .1和4 C .1和6D .4和6 4.计算:120︒,(1)32035/51”如果一个角的补角是那么这个角的余角为_______.10.如图,是一块在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成。

设中间最小的一个正方形边长为1,则这个长方形色块图的面积为_____________。

1.下图是从不同的方向看由一些相同的小正方体构成的几何体所得到的平面图形.这些相同的小正方体的个数是( )(A )4个 (B )5个 (C )6个 (D )7个 4.,αβ都是钝角,甲、乙、丙、丁计算1()6αβ+的结果依次为50,26,72,90︒︒︒︒,其中确有正确的结果,那么算得结果正确者是 ( )(A ) 甲 (B )乙 (C )丙 (D )丁从正面看 从左面看 从上面看ACBDO643 23 4 1 (图5)6.如图,已知110AOC BOD ∠=∠=︒,75BOC ∠=︒ 求:AOD ∠的度数 6.(1)已知,如图,点C 在线段AB 上,且6AC cm =,14BC cm =,点M 、N 分别是AC 、BC 的中点, 求线段MN 的长度;(2)在(1)中,如果AC acm =,BC bcm =,其他条件不变,你能猜测出MN 的长度吗请说出你发现的结果,并说明理由。

9.如图,一副三角板的两个直角顶点重合在一起。

(1) 比较EOM ∠与FON ∠的大小,并说明理由;(2) EON ∠与MOF ∠的和为多少度为什么9.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,则∠1= 。

7.如图,钟表8时30分时,时针与分针所成的角的度数为( )(A )30° (B )60° (C )75° (D )90°1.如图,在一个正方体的两个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于( )(A) 60° ( B) 75° (C) 90° ( D) 135°1.如图,有一个无盖的正方体纸盒,下底面标有字母“M ”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( )(A) (B)(C) (D)4.如图所示已知︒=∠︒=∠30,90BOC AOB ,OM 平分AOC ∠,ON 平分BOC ∠; (1)︒=∠_____MON ;(2) βα=∠=∠BOC AOB ,,求MON ∠的度数;并从你的求解你能看出什么什么规律吗10下列结论正确的是( )A.直线比射线长B.过两点有且只有一条直线NEO FN M无盖M M M MMAD FCA EB C.过三点一定能作三条直线 D.一条直线就是一个平角. 4、86°32′15″+______=180°.7、八时三十分,时针与分针夹角度数是_______. 10、下列说法正确的是( ).(A )射线就是直线 (B )连接两点间的线段,叫做这两点的距离 (C )两条射线组成的图形叫做角 (D )经过两点有一条直线,并且只有一条直线 8.点A 、B 、C 是同一直线上的三个点,若AB=8cm ,BC=3cm ,则AC=( ).(A )11cm (B )5cm (C )11cm 或5cm (D )11cm 或3cm 6.一个角是它的余角的3倍,则这个角的补角是_________.4.把一个平角16等分,则每份为(用度、分、秒表示)=__________.2. 如图是由六个小正方体堆积而成,分别画出从正面看、从上面看、从左面看后的图形.5.五条直线两两相交,交点个数值最少有______个,最多________个. 2.图3B 的四个三视图中,是图3A 图所示物体的三视图的是( ).图3A 图3B1.已知某些多面体的平面展开图如图4所示,其中是三棱柱的有( ).A .1个B .2个C .3个D .4个6.已知一个角的余角是这个角的补角的41,求这个角.(本题6分) 2.分别从下面、左面、上面观察这个立方图形,各能得到什么平面图形请画在下面。

10.下几何图形绕着它的一条边旋转得到是圆柱的是( )A 、直角三角形B 、等腰三角形C 、梯形D 、长方形 6.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BAF=60°,则∠DAE 等于( ) ° ° ° °1.如图2,四个图形是由立体图形展开得到的,相应的立体图形是顺次是( )ABC E DOA .正方体、圆柱、三棱柱、圆锥B 。

正方体、圆锥、三棱柱、圆柱C .正方体、圆柱、三棱锥、圆锥D 。

正方体、圆柱、四棱柱、圆锥3.某测绘装置上一枚指针原来指向南偏西( )(A )南偏东35°o (B )北偏西35°o (C )南偏东25°o (D )北偏西25°o 5.AOE =∠BOC ,OD 平分∠COE A .1对 B .2对 C .3对 D .4对 4. 已知∠a=36°42′15″,那么∠a 的余角等于________. 4. 57.32°=______°______′______″;27°14′24″=_____°.15°28ˊ36"⨯6-49°28′52″4 =8.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,则AM =___。

7.时针指示4点40分,它的时针和分针所成的角(小于平角)的度数是_______。

6.个角的余角比它的补角的23还少40°,求这个角。

10.(1)已知一条射线OA,如果从点O 再引两条射线OB 和OC,使∠AOB=90°,∠AOC=30°, 射线OM 平分∠BOC ,ON 平分∠AOC,求∠MON 的度数。

(自己画图解答) (2)如果(1)中,∠AOB=α,∠AOC=β(β为锐角),其它条件不变,则∠MON=___10.一个正方体木块,它的六个面上分别标有数字1~6,图1是这个正方体从不同方向所观察到的数字情况,则数字1和5对面的数字是( )A.4,3 B.3,2 C.3,4 D.5,16.如图2,直线AB 与CD 相交于点O ,12=∠∠,若140AOE =o∠, 则AOC ∠的度数为( ) A.40oB.60oC.80oD.100o10.右面的图形(每个正方形的边长均为1)和左面相应的等式,探究其中的规律:(1)写出第五个等式,并在给出的五个正方形上面画出与之对应的图示;(2)猜想并写出与第n 个图形相对应的等式.6.为直角,AOC ∠为锐角,且OM 平分BOC ∠,ON 平分AOC ∠, 求MON ∠的度数.3.南偏东15o和北偏东25o的两条射线组成的角等于_______.10.圆柱、圆锥、正方体、长方体、棱柱、棱锥、球,在这些几何体中,表面都是平面的有_______,表面没有平面的有_______,只有两个面的有_______.6.P 为线段AB 上一点,且25AP AB =,M 是AB 的中点,若2cm PM =,则AB =_______. 4.A ∠的补角为12512'o,则它的余角为( ) A.5418'oB.3512'oC.3548'oD.以上都不对6.已知O 为AD 上一点,AOC ∠与AOB ∠互补,OM ,ON 分别为AOC ∠,AOB ∠的平分线,若40MON =o ∠,试求AOC ∠与AOB ∠的度数.10、下面由火柴棒拼出的一列图形中,摆第1个图形要4根火柴棒,摆第二个图形需要7根火柴棒,按照这样的方式继续摆下去,摆第n 个图形时,需要 根火柴棒.1、 如图所示的图形中分别是由①圆柱;②长方体;③三棱柱;④正方体展开得到的,按图形顺序排列正 确的是……【】A .①②③④B .②③④①C .③②④①D .④②③①2、如图,是由几个小立方体块搭建的几何体,请画出这个几何体的主视图和左… n=1n=2n=3n=4从左面看从正面看从上面看视图.10、观察右边的图形,回答下列问题:(1)图中的点被线段隔开分成四层,则第一层有1个点,第二层有3个点,第三层有5个点,第四层有个点;(2)如果要你继续画下去,那么第五层有多少个点第n层呢(3)某一层上有77个点,你知道这是第几层吗(4)第一层与第二层的和是多少前三层的和是多少前四层呢你有没有发现什么规律(用含n的代数式表示)根据你的推测,前十二层的和是多少1.如图,将纸片沿虚线拆叠可得一个正方形,则和平面A相对的面是______10、每张长桌单独摆放时,可容纳6人同时签名(如图1,每个小半圆代表1个签名位置),并排摆放两张长桌时可容纳10人时签名(如图2)若按这种方式摆放10张长桌(如图3),可同时容纳的签名人数是。

相关文档
最新文档