一次函数图像性质小结与配套测试

合集下载

2024年中考数学模拟试题15一次函数的图像与性质

2024年中考数学模拟试题15一次函数的图像与性质

一次函数,也叫正比例函数,是指具有形如 y = kx 的函数,其中 k 是常数。

下面是一些关于一次函数图像和性质的描述:
1.图像特点:一次函数的图像是一条直线,通过原点(0,0)。

2.斜率:一次函数的斜率k表示图像的倾斜程度。

当k>0时,函数呈正斜率,图像向右上方倾斜;当k<0时,函数呈负斜率,图像向右下方倾斜;当k=0时,函数呈水平线,图像平行于x轴。

3.增减性:一次函数的图像有唯一的一个增减区间,当x增加时,y 也随之增加,反之亦然。

若k>0,则函数递增;若k<0,则函数递减。

4.零点:一次函数的零点指的是使得函数值为0的x值,即y=0对应的x值。

一次函数的零点就是原点(0,0)。

5.直线方程:一次函数的直线方程可以通过已知的一个点和斜率来确定。

若已知一点为(x1,y1),斜率为k,则直线方程为y-y1=k(x-x1)。

6.集合性质:一次函数的图像上任意两点的连线仍在图像上,即图像上的点构成一条直线。

希望以上内容能够帮助到你!。

(完整版)一次函数的图像和性质练习题

(完整版)一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数y kx(k 0) 一定经过点,经过(1,), 一次函数y kx b(k 0)经过(0,)点,(,0)点.2.直线y 2x 6与x轴的交点坐标是 ,与y轴的交点坐标是。

与坐标轴围成的三角形的面积是。

3.若一次函数y mx (4m 4)的图象过原点,则m的值为.4.如果函数y x b的图象经过点P(0,1),则它经过x轴上的点的坐标为 .5. 一次函数y x 3的图象经过点(, 5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2) y随x的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x与y=2x+6的图象的位置关系是 .8.若直线y=2x+6与直线y=mx+5平行,则m=.9.在同一坐标系内函数y=ax+b与y=3x+2平行,则a, b的取值范围是.10.将直线y= — 2x向上平移3个单位得到的直线解析式是 ,将直线y= — 2x向下移3个单得到的直线解析式是 .将直线y= - 2x+3向下移2个单得到的直线解析式是.11.直线y kx b经过一、二、三象限,则k 0, b 0,经过二、三、四象限,则有k 0, b 0,经过一、二、四象限,则有k 0, b 0.12. 一次函数y (k 2)x 4 k的图象经过一、三、四象限,则k的取值范围是.13.如果直线y 3x b与y轴交点的纵坐标为 2 ,那么这条直线一定不经过第象限.14.已知点A(-4, a),B(-2,b) 都在一次函数y=-x+k(k为常数)的图像上,则a与b的大小 2关系是a—b(填" <““=”或“ >")15. 一次函数y=kx+b的图象如图所示,看图填空:(1)当x=0 时,y=; 当x=p寸,y=0.(2)k=, b=.(3)当x=5 时,y=;当y=30 时,x=.二、选择题1.已知函数y (m 3)x 2,要使函数值y随自变量x的增大而减小,则m的取值范围是2 .已知直线y kx b ,经过点A(x i, y 1)和点B(x 2, y 2),若k 0,且x 1 X 2,则y 1与y 2的大5.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过()两个一次函数y ax b 与y 2 bx a ,它们在同一直角坐标系中的图象可能是三、解答题1,已知一次函数 y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点;(2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.2 . 设一次函数y kx b(k 0),当x 2时,y 3,当x 1时,y 4。

第03讲 一次函数的图像与性质(知识解读+题型精讲+随堂检测)(原卷版)

第03讲 一次函数的图像与性质(知识解读+题型精讲+随堂检测)(原卷版)

第03讲 一次函数的图像与性质1. 理解一次函数的定义2. 学会观察一次函数图像并分析,判断函数值随自变量的变化而变化3. 掌握求一次函数解析式方法并解决简单的几何面积问题;4.掌握一次函数与方程组及不等式的关联。

知识点1:一次函数的定义如果 y=kx+b (k ,b 是常数,k ≠0 )的函数,叫做一次函数,k 叫比例系数。

注意:当b=0时,一次函数y=kx+b 变为y=kx ,正比例函数是一种特殊的一次函数。

知识点2:一次函数图像和性质一次函数图象与性质用表格概括下:增减性 k >0 k <0从左向右看图像呈上升趋势,y 随x 的增大而增大从左向右看图像呈下降趋势,y 随x 的增大而较少图像(草图)b >0 b=0b <0b <0 b=0b <0经过象限一、二、三一、三 一、三、四 一、二、四 二、四 二、三、四与y 轴的交点位置b >0,交点在y 轴正半轴上;b=0,交点在原点;b <0,交点在y 轴负半轴上 【提分要点】:1. 若两直线平行,则;2. 若两直线垂直,则知识点3:一次函数的平移1、一次函数图像在x 轴上的左右平移。

向左平移n 个单位,解析式y=kx+b 变化为y=k (x+n )+b ;向右平移n 个单位解析式y=kx+b 变化为y=k (x-n )+b 。

口诀:左加右减(对于y=kx+b 来说,对括号内x 符号的增减)(此处n 为正整数)。

2、一次函数图像在y 轴上的上下平移。

向上平移m 个单位解析式y=kx+b 变化为y=kx+b+m ;向下平移m 个单位解析式y=kx+b 变化为y=kx+b-m 。

口诀:上加下减(对于y=kx+b 来说,只改变b )(此处m 为正整数) 知识点4:求一次函数解析式用待定系数法求一次函数解析式的步骤: 基本步骤:设、列、解、写 ⑴设:设一般式y=kx+b⑵列:根据已知条件,列出关于k 、b 的方程(组) ⑶解:解出k 、b ; ⑷写:写出一次函数式知识点5:一次函数与一元一次方程的关系直线 y=kx+b (k ≠0)与 x 轴交点的横坐标,就是一元一次方程 kx+b=0(k ≠0)的解.求 直线 y=kx+b (k ≠0)与 x 轴交点时,(1)可令 y=0,得到方程 kx+b=0(k ≠0),解方程得 __kb-=x ____________ ,(2)直线 y=kx+b 交 x 轴于点_(0,kb-)_______ , 就是直线 y=kx+b 与 x 轴交点的横坐标.知识点6:一次函数与一元一次不等式(1)由于任何一个一元一次不等式都可以转化为>0或<0或≥0或≤0(、为常数,≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.ax b +ax b +ax b +ax b +a b a y ax b =+(2)如何确定两个不等式的大小关系(≠,且)的解集的函数值大于的函数值时的自变量取值范围直线在直线的上方对应的点的横坐标范围.知识点7:一次函数与二元一次方程组1.一次函数与二元一次方程组的关系2.一次函数与二元一次方程的数形结合【题型1:一次函数的定义】【典例1-1】(2023春•安化县期末)下列关于x 的函数是一次函数的是( ) A .B .C .y =x 2﹣1D .y =3x【典例1-2】(2023春•博兴县期末)一次函数y =(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m ≠2且n =2 B .m =2且n =2C .m ≠2且n =1D .m =2且n =1【变式1-1】(2023春•兴城市期末)若函数y =(a ﹣2)x |a |﹣1+4是一次函数,则a 的值为( ) A .﹣2 B .±2C .2D .0【变式1-2】(2023春•易县期末)下列函数中,y 是x 的一次函数的是( )ax b cx d +>+a c 0ac ≠⇔y ax b =+y cx d =+x ⇔y ax b =+y cx d =+A.y=1B.C.y=2x﹣3D.y=x2【变式1-3】(2023•南关区校级开学)函数y=(2m﹣1)x n+3+(m﹣5)是关于x的一次函数的条件为()A.m≠5且n=﹣2 B.n=﹣2C.m≠且n=﹣2D.m≠【题型2:判断一次函数图像所在象限】【典例2】(2023春•岳阳县期末)一次函数y=x﹣1的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【变式2-1】(2023春•长沙期末)一次函数y=3x﹣5的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【变式2-2】(2023春•郧西县期末)在平面直角坐标系xOy中,函数y=2x﹣1的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【变式2-3】(2023春•黔东南州期末)一次函数y=3x﹣2的图象经过的象限是()A.第一、二、四象限B.第一、二、三象限C.第一、三、四象限D.第二、三、四象限【题型3:一次函数图像的性质】【典例3】(2023春•西城区校级期中)关于一次函数y=2x﹣4的图象和性质,下列叙述正确的是()A.与y轴交于点(0,2)B.函数图象不经过第二象限C.y随x的增大而减小D.当时,y<0【变式3-1】(2023春•启东市期末)下列关于一次函数y=﹣2x+2的图象的说法中,错误的是()A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小【变式3-2】(2022秋•罗湖区期末)关于函数y=﹣2x﹣5,下列说法不正确的是()A.图象是一条直线B.y的值随着x值的增大而减小C.图象不经过第一象限D.图象与x轴的交点坐标为(﹣5,0)【变式3-3】(2023春•邓州市期末)下列四个选项中,不符合直线y=﹣x﹣3的性质特征的选项是()A.经过第二、三、四象限B.y随x的增大而减小C.与x轴交于(3,0)D.与y轴交于(0,﹣3)【变式3-4】(2023春•建华区期末)关于函数y=﹣x+3的图象,下列结论错误的是()A.图象经过一、二、四象限B.与y轴的交点坐标为(3,0)C.y随x的增大而减小D.图象与两坐标轴相交所形成的直角三角形的面积为【题型4:根据一次函数增减性求含参取值范围】【典例4】(2023秋•射阳县校级月考)若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【变式4-1】(2023春•铜仁市期末)已知一次函数y=(m+1)x﹣2,y的值随x的增大而减小,则点P(﹣m,m)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【变式4-2】(2023•雁塔区校级四模)若一次函数y=(k﹣2)x+1的函数值y随x增大而增大,则()A.k>0B.k<0C.k<2D.k>2【变式4-3】(2023•贵阳模拟)已知函数y=(2m﹣1)x是正比例函数,且y 随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>0D.m<0【题型5:根据k、b值判断一次函数图像的】【典例5】(2023春•港北区期末)两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是()A.B.C.D.【变式5-1】(2023春•富锦市期末)同一平面直角坐标系中,函数y=ax+b与y =bx+a的图象可能是()A.B.C.D.【变式5-2】(2023春•易县期末)已知kb>0,且b<0,则一次函数y=kx+b 的图象大致是()A.B.C.D.【变式5-3】(2023春•商城县期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【题型6:比较一次函数值的大小】【典例6】(2023春•丹江口市期末)一次函数y=4x+m的图象上有三个点A(﹣2,a),B(3,b),C(﹣0.5,c),据此可以判断a,b,c的大小关系为()A.a<c<b B.a<b<c C.c<a<b D.b<c<a【变式6-1】(2023春•甘井子区期末)已知点A(﹣2,m),B(3,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定【变式6-2】(2023春•庐江县期末)若点M(﹣1,y1),N(2,y2)都在直线y=﹣x+b上,则下列大小关系成立的是()A.y1>y2>b B.y2>y1>b C.y2>b>y1D.y1>b>y2【变式6-3】(2022秋•太仓市期末)已知点,(1,y2),(﹣2,y3)都在直线上,则y1,y2,y3的大小关系是()A.y2<y3<y1B.y2<y1<y3C.y1<y3<y2D.y3<y2<y1【题型7:一次函数的变换问题】【典例7】(2023春•东兰县期末)在平面直角坐标系中,将直线y=2x+b沿y 轴向下平移2个单位后恰好经过原点,则b的值为()A.﹣2B.2C.4D.﹣4【变式7-1】(2023春•通河县期末)直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2【变式7-2】(2023春•卫滨区校级期末)一次函数y=﹣2x+b的图象向下平移3个单位长度后,恰好经过点A(2,﹣3),则b的值为()A.4B.﹣4C.2D.﹣2【变式7-3】(2023•娄底)将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3【变式7-4】(2023•临潼区一模)在平面直角坐标系中,若将一次函数y=2x+m ﹣1的图象向右平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣7B.7C.﹣6D.6【题型8:求一次函数解析式】【典例8】(2023春•西华县期末)已知直线l1:y=x+3与x轴、y轴分别交于点A、点B.(1)求A、B两点的坐标;(2)将直线l1向右平移8个单位后得到直线l2,求直线l2的解析式;(3)设直线l2与x轴的交点为P,求△P AB的面积.【变式8-1】(2023春•庐江县期末)已知某一次函数的图象与y轴的交点坐标为(0,﹣4),当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象沿x轴向右平移3个单位,求平移后的图象与坐标轴围成三角形面积.【变式8-2】(2023春•商南县校级期末)如图,直线y=﹣2x+2与x轴交于点A,与y轴交于点B.(1)求点A,B的坐标.(2)若点C在x轴上,且S△ABC =2S△AOB,求点C的坐标.【变式8-3】(2023春•鼓楼区校级期末)已知一次函数y=kx+4的图象过点B (2,3).(1)求k的值;(2)直线y=kx+b与x轴的交点为C点,点P在该函数图象上,且点P在x 轴上方,△POC的面积为4,求P点的坐标.【题型9:一次函数与一元一次方程】【典例9】(2022春•围场县期末)一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=﹣2B.y=﹣2C.x=1D.y=1【变式9-1】(2022秋•固镇县校级月考)如图,直线y=ax+b过点(0,﹣2)和点(﹣3,0),则方程ax+b+1=0的解是()A.x=﹣3B.x=﹣2C.x=﹣1.5D.x=﹣1【变式9-2】(2022春•冠县期末)如图所示,一次函数y=kx+b(k≠0)的图象经过点P(3,2),则方程kx+b=2的解是()A.x=1B.x=2C.x=3D.无法确定【变式9-3】(2022秋•广饶县校级期末)已知关于x的一次函数y=3x+n的图象如图,则关于x的一次方程3x+n=0的解是()A.x=﹣2B.x=﹣3C.D.【典例10】(2022秋•城关区校级期末)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是()A.x=B.x=1C.x=2D.x=4【变式10-1】(2022秋•余姚市校级期末)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是.【变式10-2】(2022秋•高陵区期末)在平面直角坐标系xOy中,函数y=kx和y=﹣x+b的图象,如图所示,则方程kx=﹣x+b的解为.【题型10:一次函数与一元一次不等式】【典例11】(2023春•阿克苏地区期末)如图,直线y=﹣2x+b与x轴交于点(3,0),那么不等式﹣2x+b<0的解集为()A.x<3B.x≤3C.x≥3D.x>3【变式11-1】(2023春•两江新区期末)如图,一次函数y=kx+b的图象与x轴和y轴的交点分别为(﹣2,0)、(0,1),求关于x的不等式kx+b<1的解集.【变式11-2】(2023春•松江区期末)如图:点(﹣2,3)在直线y=kx+b(k ≠0)上,则不等式kx+b≥3关于x的解集是.【变式11-3】(2021秋•建邺区期末)表1、表2分别是函数y1=k1x+b1与y2=k2x+b2中自变量x与函数y的对应值.则不等式y1>y2的解集是.表1x﹣4﹣3﹣2﹣1y﹣1﹣2﹣3﹣4表2x﹣4﹣3﹣2﹣1y﹣9﹣6﹣301.(2023•乐山)下列各点在函数y=2x﹣1图象上的是()A.(﹣1,3)B.(0,1)C.(1,﹣1)D.(2,3)2.(2023•兰州)一次函数y=kx﹣1的函数值y随x的增大而减小,当x=2时,y的值可以是()A.2B.1C.﹣1D.﹣2 3.(2023•鄂州)象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点(﹣2,﹣1)的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为()A.y=x+1B.y=x﹣1C.y=2x+1D.y=2x﹣14.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 5.(2023•益阳)关于一次函数y=x+1,下列说法正确的是()A.图象经过第一、三、四象限B.图象与y轴交于点(0,1)C.函数值y随自变量x的增大而减小D.当x>﹣1时,y<06.(2023•娄底)将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 7.(2023•台湾)坐标平面上,一次函数y=﹣2x﹣6的图象通过下列哪一个点()A.(﹣4,1)B.(﹣4,2)C.(﹣4,﹣1)D.(﹣4,﹣2)8.(2023•通辽)在平面直角坐标系中,一次函数y=2x﹣3的图象是()A.B.C.D.9.(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是()A.(2,5)B.(3,5)C.(5,2)D.(,2)10.(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.11.(2023•丹东)如图,直线y=ax+b(a≠0)过点A(0,3),B(4,0),则不等式ax+b>0的解集是()A.x>4B.x<4C.x>3D.x<3 12.(2023•宁夏)在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是()A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组的解为13.(2023•盘锦)关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.14.(2023•西宁)一次函数y=2x﹣4的图象与x轴交于点A,且经过点B(m,4).(1)求点A和点B的坐标;(2)直接在图的平面直角坐标系中画出一次函数y=2x﹣4的图象;(3)点P在x轴的正半轴上,若△ABP是以AB为腰的等腰三角形,请直接写出所有符合条件的P点坐标.15.(2023•温州)如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.1.(2023秋•白银期中)下列函数中是一次函数的是()A.y=B.y=x2C.y=1D.y=x+1 2.(2023秋•济南期中)若函数y=(m﹣1)x+3是一次函数,则m的值为()A.﹣1B.1C.0D.﹣1或1 3.(2023•船营区一模)一次函数y=﹣2x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(2023•东莞市校级一模)已知点(﹣1,y1),(3,y2)在一次函数y=2x+1的图象上,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定5.(2023•雁江区校级模拟)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx﹣k的图象大致是()A.B.C.D.6.(2023秋•叶县期中)已知一次函数y=kx+k过点(1,﹣4),则下列结论正确的是()A.y随x增大而增大B.k=2C.直线过点(﹣1,0)D.与坐标轴围成的三角形面积为27.(2023秋•青羊区校级期中)一次函数y=5x﹣2的图象经过的()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限8.(2023秋•福田区校级期中)下列关于函数y=3x+2的结论中,错误的是()A.图象经过点(﹣1,﹣1)B.点A(x1,y1),B(x2,y2)在该函数图象上,若x1>x2,则y1>y2C.将函数图象向下平移2个单位长度后,经过点(0,1)D.图象不经过第四象限9.(2023秋•青岛期中)若一次函数y=2x﹣b的图象经过点(0,﹣3),则下列各点在该一次函数图象上的是()A.(2,1)B.(2,3)C.(﹣1,1)D.(1,5)10.(2023秋•榆次区期中)小磊在画一次函数的图象时列出了如下表格,小颖看到后说有一个函数值求错了.这个错误的函数值是()x…﹣3﹣2﹣1012…y…852﹣2﹣4﹣7…A.5B.2C.﹣2D.﹣4 11.(2023秋•碑林区校级期中)在平面直角坐标系中,将直线l1:y=﹣3x﹣2平移后,得到直线l2:y=﹣3x+4,则下列平移的做法正确的是()A.将l1向下平移6个单位B.将l1向下平移2个单位C.将l1向右平移6个单位D.将l1向右平移2个单位12.(2023秋•滕州市期中)若点P(a,b)在直线y=2x+1上,则代数式1﹣4a+2b的值为()A.3B.﹣1C.2D.0 13.(2023秋•雁塔区校级月考)已知直线与直线l关于x轴对称,则直线l与y轴的交点坐标是()A.(0,﹣1)B.(0,1)C.(2,0)D.(﹣2,0)14.(2023秋•市南区校级期中)已知函数y1=﹣x﹣3,y2=2x+9,当y1>y2时,x的取值范围为.15.(2023•西和县一模)直线y=kx+b经过点A(0,﹣4),且与坐标轴围成的三角形面积为4,则k=.16.(2023秋•紫金县期中)如图,已知直线y=kx+b的图象经过点A(0,﹣4),B(3,2),且与x轴交于点C.(1)求直线y=kx+b的解析式;(2)求△BOC的面积.17.(2023春•鼓楼区校级期末)如图,在平面直角坐标系xOy中,已知点A(﹣2,0),点B(0,1).(1)求直线AB的解析式;(2)若点C在直线AB上,且点C到x轴的距离为2,求点C的坐标.。

一次函数的图象和性质专题练习题

一次函数的图象和性质专题练习题

专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。

一次函数图像性质总结

一次函数图像性质总结

一次函数图像性质总结
一次函数是数学中一类具有特殊性质的函数,大家常常会在学习中接触它。

一次函数的图像性质是我们极其重要的研究内容,对此,在数学中有其独特的作用,也是我们理解数学过程中不可或缺的重要因素。

首先,一次函数的图像性质是连续的,也就是说,它的值不会在某个点出现突变的情况,而是一直保持连续的变化,这使得我们可以用它来模拟实际现象中的变化,从而丰富我们的见解。

其次,一次函数的图像性质是完全的,也就是说,它的值不会出现空洞的情况,我们可以作出一个完整的一次函数图象,从而熟悉它的变化特性,理解它的图像性质。

此外,一次函数的图像性质还有着开口性、单调性和有界性等特征,这些特征给我们提供了更全面的理解和分析能力,对我们对一次函数而言,这是极其重要的。

而对一次函数而言,绝对值函数也是极其重要的,它有一个特殊的性质,就是它的值永远介于零和正数之间,这让我们可以用它来研究实际现象中的变化情形,可以从中掌握它的变化特性,从而准确地掌握了一次函数的图像性质。

最后,对于一次函数,我们还可以进行一些拓展研究,比如二次函数,这种函数的性质与一次函数大有不同,它的形状是介于开口性和闭合性之间,我们可以进一步探索它的性质,拓展我们对一次函数的认识。

总结起来,一次函数是一种具有特殊性质的函数,它的图像特性对于我们理解数学过程而言极其重要,我们可以用它来模拟实际现象,也可以拓展研究一次函数以外的函数,从而进一步理解数学,甚至掌握其它科学方面的知识。

因此,我们在学习数学时,要多多研究一次函数的图像特性,以便更好地理解数学,掌握它所涉及到的科学知识。

一次函数图像及性质专项总结练习

一次函数图像及性质专项总结练习

一次函数的图像和性质考生1、以下函数(1)y=πx(2)y=2x-1(3)y=(4)y=2-1-3x(5)y=x2-1中,是一次函数的有()(A)4个(B)3个(C)2个(D)1个2、假如函数y=(m+2)x|m|-1是正比率函数,求m的值。

3、y+1与x-2成正比率,且当x=1时,y=1,求y与x的函数关系式。

4、m的值为多少时,函数y=(m+2)x|m|-2+m-3.(1)函数是正比率函数(2)函数是一次函数5、如图,火车匀速经过地道(地道长大于火车长)时,火车进入地道的时间x与火车在地道内的长度y之间的关系用图象描绘大概是()火车地道yyyyoxooxxxoA.B.C.D.6、若把一次函数y=2x-3,向上平移3个单位长度,获得图象分析式是()(A)y=2x(B)y=2x-6(C)y=5x-3(D)y=-x-37、函数yx1,14y2x.当y1y2时,x的范围是()33A..x<-1B.-1<x<2C.x<-1或x>2D.x>28、如图,一次函数1yx2的图像上有两点A、B,A点的横坐标为2,B点的横坐标为a(0a4且a2),过点A、B 2分别作x的垂线,垂足为C、D,AOC、BOD的面积分别为S、S,则S1、S2的大小关系是12A.SSB.S1S2C.S1S2D.没法确立129、已知点(-4,y1),(2,y2)都在直线y=(-k 2-1)x+2上,则y1y1y2大小关系是()(A)y1>y2(B)y1=y2(C)y1<y2(D)不可以比较10、一次函数y=-5x+3的图象经过的象限是()A.一、二、三B.二、三、四C.一、二、四D.一、三、四11、一次函数y=kx+b知足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<313.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的分析式为()A.y=-x-2B.y=-x-6C.y=-x+10D.y=-x-114、如图,直线1:y3x3与x轴、y轴分别订交于点A、B,△AOB与△ACB对于直线l对称,则点C的坐标为15、若直线x2y2m与直线2xy2m3(m为常数)的交点在第四象限,则整数m的值为()A.—3,—2,—1,0B.—2,—1,0,1C.—1,0,1,2D.0,1,2,316、一次函数ykxb(k为常数且k0)的图象如下图,则使y0建立的x的取值范围为.LyBCxOA图14一次函数图像及性质专项总结练习图17图1817、如图,直线y1=kx+b过点A(0《2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是.18、一次函数y=(m+3)x+2-m当x=-2时,y=1,那么这个以次函数的分析式为_______________变式(1):一次函数y=(m+3)x+2-m与y轴的交点在x轴的上方,则m=____________变式(2):一次函数y=(m+3)x+2-m经过二、三、四象限,则m=_________变式(3):一次函数y=(m+3)x+2-m不经过第三象限,则m=___________变式(4):一次函数y=(m+3)x+2-m的函数值y跟着x值的增大而减小,那么m=_____________变式(5):一次函数y=(m+3)x+2-m与y=2x+1的图像平行,则直线方程为________________变式(6):一次函数y=(m+3)x+2-m向上平移一个单位与y=x+1重合,则m=_______________19、已知一次函数y=kx+b的图象经过点(-1,-5),且与正比率函数y=x的图象订交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.20、如图,直线PA是一次函数y=x+n(n>0)的图象,直线PB是一次函数y=–2x+m(m>0)的图象。

一次函数的图像和性质练习题答案

一次函数的图像和性质练习题答案

一次函数的图像和性质练习题答案一次函数的图像和性质练习题答案一次函数是数学中的基础概念,也是我们日常生活中常见的函数类型之一。

它的数学表达式为y = ax + b,其中a和b为常数,x为自变量,y为因变量。

在这篇文章中,我们将通过一些练习题来探讨一次函数的图像和性质。

题目一:已知一次函数的图像经过点(2, 5),且斜率为3,求该函数的表达式。

解析:根据题意,我们可以得到函数的斜率为3,即a = 3。

又因为函数经过点(2, 5),代入函数表达式可得5 = 3*2 + b,解方程可得b = -1。

因此,该一次函数的表达式为y = 3x - 1。

题目二:已知一次函数的图像经过点(-1, 4),且与x轴交于点(3, 0),求该函数的表达式。

解析:根据题意,我们可以得到函数经过点(-1, 4)和(3, 0)。

由于函数与x轴交于点(3, 0),可知当x = 3时,y = 0。

代入函数表达式可得0 = 3*3 + b,解方程可得b = -9。

因此,该一次函数的表达式为y = 3x - 9。

题目三:已知一次函数的图像经过点(1, 3),斜率为-2,求该函数的表达式。

解析:根据题意,我们可以得到函数的斜率为-2,即a = -2。

又因为函数经过点(1, 3),代入函数表达式可得3 = -2*1 + b,解方程可得b = 5。

因此,该一次函数的表达式为y = -2x + 5。

通过以上的练习题,我们可以发现一次函数的图像和性质之间的关系。

斜率决定了函数图像的倾斜程度,正斜率表示图像向上倾斜,负斜率表示图像向下倾斜,斜率为0表示图像平行于x轴。

截距则决定了函数图像与y轴的交点位置,正截距表示图像在y轴上方,负截距表示图像在y轴下方。

除了斜率和截距外,一次函数还有其他重要的性质。

首先,一次函数的图像是一条直线,因此它是连续的。

其次,一次函数的定义域为所有实数,即函数对任意实数都有定义。

最后,一次函数的值域也为所有实数,即函数的取值范围没有限制。

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。

2. 一次函数的图像:是不经过原点的一条直线。

3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。

专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
一次函数的图像性质总结(阅读+理解)
一、一次函数的图像
1.正比例函数y=kx(k≠0,k是常数)的图像是经过O(0,0)和M(1,k)两点的一条直线(如图13-17).(1)当k>0时,图像经过原点和第一、三像限;(2
,0)
),因此
b)和B
(1)一次函数y=kx+b(k≠0)的图像是一条直线,因此y=kx+b(k≠0)也叫直线方程.但直线方程不一定都是一次函数.
(2)与坐标轴平行的直线的方程.
①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;
a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)
②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).
二、两条直线的关系
1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b,若l1与l2相交,则k1≠k1=k
2.
1.
2,y2)
(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b①
y2=kx2+b ②
(3)联立①②解方程组,从而求出k、b值.
这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.
一次函数的图像和性质练习题
题组一:
1.正比例函数(0)
y kx k
=≠一定经过点,经过(1,,一次函数y kx b k
=+≠经过(0,点,(0),点.
(0)
2.直线26
=-+与x轴的交点坐标是,与y轴的交点坐标是。

与坐标
y x
3.
4.坐标
5.
轴分
1.2)y
2.的取
3.一次函数(1)5
=++中,y的值随x的减小而减小,则m的取值范围是
y m x
()
A.1
m<
m=-D.1
m>-B.1
m<-C.1
1x+k(k为常数)的图像上,则4.已知点A(-4,a),B(-2,b)都在一次函数y=
2
a与b的大小关系是a____b(填”<””=”或”>”)
5.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( )A.12y y > B.12y y < C.12y y = D.不能确定
题组三:
1.在同一坐标系内函数2y x =与26y x =+的图象的位置关系是 . 3.1.
2. )
3.
4.是 .
5.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第 象限.
6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过()
A.第一象限 ................ B.第二象限C.第三象限
D.第四象限
7.若一次函数y=kx+b的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过()
A.第一象限................ B.第二象限C.第三象限D.第四象限
8.错误!未定义书签。

下列图象中不可能是一次函数(3)
=--的图象的是
y mx m
()
9。

相关文档
最新文档