数字图像处理实验报告 空域图像增强技术

合集下载

数字图像处理实验报告 实验一 图像增强实验

数字图像处理实验报告 实验一 图像增强实验

实验一图像增强实验一、实验目标:掌握图像增强的算法。

二、实验目的:1. 了解灰度变换增强和空域滤波增强的Matlab实现方法2. 掌握直方图灰度变换方法3. 掌握噪声模拟和图像滤波函数的使用方法三、实验内容:(1)图像的点操作、邻域操作算法。

(2)图像的直方图处理算法。

四、实验设备:1.PIII以上微机; 2.MATLAB6.5;五、实验步骤:(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)(原始图像)(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2) count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');图像处理结果六、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。

空域图像增强实验报告

空域图像增强实验报告

一、实验名称:空域图像增强二、实验目的:掌握Matlab语言图像工具箱中空域图像增强的实现三、实验要求:在掌握图像灰度调整、直方图修正和图像锐化的指令基础上,编写程序实现图像的灰度变换,直方图均衡和图像锐化的处理四、实验仪器和设备:计算机,Matlab软件五、实验原理:1、亮度变换S=T(r)点对点的变换(灰度级对灰度级的变换)matlab函数:imadjust()亮度变换的基本函数g=imadjust(f,[low in high in],[low out high out],gamma); low in and high in 参数分别指定输入图像需要映射的灰度空间范围,low out 和high out 参数分别指定输出图像所在的灰度范围。

GAMMA表示曲线的形状,描述输入输出图像之间的关系。

如果GAMMA小于1,则映射的权重趋势向更亮输出,如果GAMMA大于1,则趋向更暗的输出。

默认值为1。

2、直方图均衡化直方图是多种空间域处理技术的基础,能有效用于图像增强,是实时图像处理的流行工具,直方图均衡化的目的是使图像在整个灰度值动态变化范围内分布均匀化,改善图像的亮度分布状态,增强视觉效果。

直方图均衡化是通过灰度变换将一幅图像转换程另一幅具有均衡性的直方图。

即在每个灰度级上都具有相同的像素点数的过程。

3、空域滤波手工滤波与函数提供滤波器的比较六、实验步骤:1、将待处理图片拷到matlab软件’work’文件夹2、实行亮度变换3、对图像进行直方图均衡处理4、空域滤波5、记录实验结果并分析七、实验程序及结果记录:1、亮度变换I=imread(‘E:\fig308.tif’);Imshow(I);Figure,imhist(I);J=imadjust(I,[0.5 0.9],[0,1]);Figure;imshow(J);Figure;imhist(J)2、直方图均衡化I=imread(‘E:\fig308.tig’);J=histea(I);Imshow(I);Title(‘原图像’);Figure;Imshow(J);Title(‘直方图均衡化后的图像’);Figure;Subplot(1,2,1);Imhist(I,64);Title(‘原图像直方图’);Subplot(1,2,2);Imhist(J,64);Title(‘均衡变换后的直方图’);Subplot(1,2,2);Imhist(J,64);Title(‘均衡变换后的直方图’);2、空域滤波F=imread(‘E:\fig3016.tif’);W4=fspecial(‘laplacian’,1);W8=[1 1 1;-8 1;1 1 1];F=im2double(f);G4=f_imfilter(f,w4,’replicate’);G8=f_imfilter(f,w8,’replicate’);Figure;Subplot(1,3,1);Imshow(f);Title(‘原图’);Subplot(1,3,2);Imshow(g4);Title(‘中心为-4拉普拉斯的效果’);Subplot(1,3,3);Imshow(g8);Title(‘中心为-8拉普拉斯的效果’);八、实验结果分析:亮度变换直方图均衡化可以对图像进行处理,进行空域图像增强。

数字图像处理实验报告——图像增强实验

数字图像处理实验报告——图像增强实验

实验报告课程名称数字图像处‎理导论专业班级_____‎_____‎_____‎姓名_____‎_____‎_____‎学号_____‎_____‎_____‎电气与信息‎学院和谐勤奋求是创新‎2.编写函数w‎ = genla‎p laci‎a n(n),自动产生任‎一奇数尺寸‎n的拉普拉‎斯算子,如5×5的拉普拉‎斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的‎梯度算子对‎b lurr‎y_moo‎n.tif进行‎锐化滤波,并比较其效‎果。

[I,m ap]=im rea‎d('trees‎.tif');I=doubl‎e(I);subpl‎o t(2,3,1)imsho‎w(I,m ap);title‎(' Origi‎nal Im age‎');[Gx,Gy]=gradi‎e nt(I); % gradi‎e n t calcu‎l atio‎nG=sqrt(Gx.*Gx+Gy.*Gy); % matri‎xJ1=G; % gradi‎e nt1subpl‎o t(2,3,2)imsho‎w(J1,m ap);title‎(' Opera‎tor1 Im age‎');J2=I; % gradi‎e nt2 K=find(G>=7);J2(K)=G(K);subpl‎o t(2,3,3)im sho‎w(J2,m ap);title‎(' Opera‎tor2 Im age‎');J3=I; % gradi‎e n t3 K=find(G>=7);J3(K)=255;subpl‎o t(2,3,4)im sho‎w(J3,m ap);title‎(' Opera‎tor3 Im age‎');J4=I; % gradi‎e n t4 K=find(G<=7);J4(K)=255;subpl‎o t(2,3,5)im sho‎w(J4,m ap);title‎(' Opera‎tor4 Im age‎');J5=I; % gradi‎e nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subpl‎o t(2,3,6)im sho‎w(J5,m ap);title‎(' Opera‎tor5 Im age‎');5.自己设计锐‎化空间滤波‎器,并将其对噪‎声图像进行‎处理,显示处理后‎的图像;附录:可能用到的‎函数和参考‎结果**************报告里不能‎用参考结果‎中的图像1)采用3×3的拉普拉‎斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im rea‎d('moon.tif');T=doubl‎e(I);subpl‎o t(1,2,1),im sho‎w(T,[]);title‎('Origi‎n al Im age‎');w =[1,1,1;1,-8,1;1,1,1];K=conv2‎(T,w,'sam e');subpl‎o t(1,2,2)im sho‎w(K);title‎('Lapla‎cian Trans‎f orm a‎tion');图2.9 初始图像与‎拉普拉斯算‎子锐化图像‎2)编写函数w‎ = genla‎p laci‎a n(n),自动产生任‎一奇数尺寸‎n的拉普拉‎斯算子,如5×5的拉普拉‎斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]funct‎i on w = genla‎p laci‎a n(5)%Com pu‎t es the Lapla‎c ian opera‎t orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5‎×5,9×9,15×15和25‎×25大小的‎拉普拉斯算‎子对blu‎rry_m‎o on.tif进行‎锐化滤波,并利用式完‎成图像的锐‎化增强,观察其有何‎不同,要求在同一‎窗口中显示‎。

实验二 图像空域锐化增强

实验二   图像空域锐化增强

数字图像处理实验报告姓名:田蕾 学号:20091202098 专业:信号与信息处理 年级:09实验二 图像空域平滑滤波一、 实验目的理解图象锐化的概念,掌握常用空域锐化增强技术。

进一步加深理解和掌握图像锐化的原理和具体算法。

理解图象锐化增强的处理过程和特点。

二、 实验内容1、一阶微分锐化增强设计程序,分别实现Roberts 、Sobel 、Priwitt 算子的锐化处理。

观察处理前后图像效果,分析实验结果和算法特点。

2、拉普拉斯锐化增强设计程序,实现拉普拉斯图像和原始图像叠加的增强处理,即{22(,)(,)(,)(,)(,)f x y f x y f x y f x yg x y -+∇∇ (拉普拉斯模板中心系数为负和拉普拉斯模板中心系数为正) 观察处理前后图像效果,分析实验结果和算法特点。

三、 实验原理Roberts 、Sobel 、Priwitt 算子都是突出图像的细节或者是增强被模糊了的细节。

因此要对图像实现锐化处理,可以用空间微分来完成,但是,这样图像的微分增强了边缘和其他的突变(如噪声)并削弱了灰度变化缓慢区域。

拉普拉斯算子具有各向同性的特点,这种滤波器的响应与滤波器作用的图像的突变方向无关。

即各向同性滤波器旋转不变,原图像旋转后进行滤波后处理给出的结果与先对图像滤波然后再进行旋转地结果相同。

四、 算法设计(含程序设计流程图)五、 实验结果及分析(需要给出原始图像和处理后的图像)原图Roberts 算子锐化处理后图像叠加图原图sobel 算子锐化处理后图像叠加图原图P r w t t 算子锐化处理后的图像叠加图原图L a p a c e 算子锐化处理后图像叠加图实验结果分析:(1)Roberts 算子,Sobel 算子和Priwitt 算子用来实现消除图像模糊地增强的方法。

即“锐化”。

此处理是为了加强图像的边界和细节。

Roberts 算子提出的是在2*2的邻域上计算对角导数,Sobel 算子提出了一种将方向差分局部均匀相结合的方法。

实验一空域图像增强技术

实验一空域图像增强技术

实验一空域图像增强技术实验一、空域图像增强技术班级: 学号: 姓名:实验时间: 实验学时:2学时一、实验目的1、结合实例学习如何在视频显示程序中增加图像处理算法;2、理解和掌握图像的线性变换和直方图均衡化的原理和应用;3、了解平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;4、了解噪声模型及对图像添加噪声的基本方法。

二、实验原理1、灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。

)],([),(y x f T y x g =⎪⎩⎪⎨⎧<≤+-<≤+-≤≤=255),(]),([),( ]),([),(0 ),(),(y x f b g b y x f by x f a g a y x f a y x f y x f y x g b a γβαn y m x ΛΛ,2,1 ,,,2,1== 2、直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。

按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k n n r p k k r通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j k j j j r k k3、均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其周围的临近像素。

将模板中的全体像素的均值(中值)来代替原来像素值的方法。

4、拉普拉斯算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------111181111拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将这个差异加上自身作为新像素的灰度。

三、 实验步骤1、启动MATLAB 程序,对图像文件分别进行灰度线性变换(参考教材50页,例4.1)、直方图均衡化(参考教材56页,例4.6)、均值滤波(参考教材60页,例4.9)、中值滤波(参考教材64页,例4.11)和梯度锐化操作(参考教材66页,例4.12)。

数字图像处理技术-图像增强--空域、频域滤波

数字图像处理技术-图像增强--空域、频域滤波

实验五图像增强--空域、频域滤波课程名称:数字图像处理技术实验日期:2015-11-03 成绩:班级:姓名:学号:一、实验目的1.了解图像空域滤波、频域滤波的基本操作;2.掌握噪声模拟和图像滤波函数的使用方法3. 实现彩色图像的增强。

二、实验内容1. (基础题)制作自己的GUI用户界面,实现图像在空域中的均值滤波、中值滤波、锐化滤波;(提高题)定义自己的过滤器实现锐化滤波。

2. (基础题)在GUI中,实现图像的频域滤波:低通滤波、高通滤波。

3. (基础题)在GUI中,实现彩色图像增强:伪彩色增强、假彩色增强、真彩色增强。

三、实验代码function pushbutton1_Callback(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)clear;figureA=imread('1.jpg');B=rgb2gray(A);h1=ones(7,7)/49;B2=imfilter(B,h1);h2=ones(9,9)/81;B3=imfilter(B,h2);subplot(2,2,1);imshow(B);title('灰度图像');subplot(2,2,3);imshow(B2);title('7*7均值滤波');subplot(2,2,4);imshow(B3);title('9*9均值滤波');% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)clear;figureA=imread('1.jpg');B=rgb2gray(A);B2=medfilt2(B,[5 5]);B3=medfilt2(B,[9 9]);subplot(2,2,1);imshow(B);title('灰度图像');subplot(2,2,3);imshow(B2);title('5*5中值滤波');subplot(2,2,4);imshow(B3);title('9*9中值滤波');% --- Executes on button press in pushbutton3.function pushbutton3_Callback(hObject, eventdata, handles)% hObject handle to pushbutton3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');B=rgb2gray(A);h1=[1 2 1;0 0 0;-1 -2 -1];B2=imfilter(B,h1);h2=[1 0 -1;2 0 -2;1 0 -1];B3=imfilter(B,h2);subplot(2,2,1);imshow(B);title('灰度图像');subplot(2,2,3);imshow(B2);title('水平锐化');subplot(2,2,4);imshow(B3);title('竖直锐化');% --- Executes on button press in pushbutton4.function pushbutton4_Callback(hObject, eventdata, handles)% hObject handle to pushbutton4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');f=rgb2gray(A);subplot(2,2,1);imshow(f);f=im2double(f);F=fftshift(fft2(f));[M,N]=size(F);n = 30;D0 = 40;u0=floor(M/2);v0=floor(N/2);for u=1:Mfor v=1:ND=sqrt((u-u0)^2+(v-v0)^2);H=1/(1+(D/D0)^(2*n));G(u,v)=H*F(u,v);endendg=ifft2(ifftshift(G));g=im2uint8(real(g));subplot(2,2,4);imshow(g);% --- Executes on button press in pushbutton5.function pushbutton5_Callback(hObject, eventdata, handles)% hObject handle to pushbutton5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');f=rgb2gray(A);subplot(2,2,1);imshow(f);f=im2double(f);F=fftshift(fft2(f));[M,N]=size(F);n = 30;D0 = 40;u0=floor(M/2);v0=floor(N/2);for u=1:Mfor v=1:ND=sqrt((u-u0)^2+(v-v0)^2);H=1/(1+(D0/D)^(2*n));G(u,v)=H*F(u,v);endendg=ifft2(ifftshift(G));g=im2uint8(real(g));subplot(2,2,4);imshow(g);% --- Executes on button press in pushbutton6.function pushbutton6_Callback(hObject, eventdata, handles)% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');B=rgb2gray(A);subplot(1,2,1);imshow(B);title('灰度图像');Y=floor(B/64);[M,N]=size(Y);for i=1:Mfor j=1:Nswitch Y(i,j)case 0Y1(i,j,1:3)=[0 0 255];case 1Y1(i,j,1:3)=[200 0 200];case 2Y1(i,j,1:3)=[255 150 0];case 3Y1(i,j,1:3)=[255 255 0];otherwiseY1(i,j,1:3)=[255 255 255];endendendsubplot(1,2,2);imshow(Y1);% --- Executes on button press in pushbutton7.function pushbutton7_Callback(hObject, eventdata, handles)% hObject handle to pushbutton7 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');f=rgb2gray(A);subplot(1,2,1);imshow(f);title('灰度图像');[M,N]=size(f);L=255;f=double(f);f1=floor(f/64);R=f1;G=f1;B=f1;for i=1:Mfor j=1:Nswitch f1(i,j)case 0R(i,j)=0;G(i,j)=4*f(i,j);B(i,j)=L;case 1R(i,j)=0;G(i,j)=L;B(i,j)=-4*f(i,j)+2*L;case 2R(i,j)=4*f(i,j)-2*L;G(i,j)=L;B(i,j)=0;case 3R(i,j)=L;G(i,j)=-4*f(i,j)+4*L;B(i,j)=0;endendendg(:,:,1)=R;g(:,:,2)=G;g(:,:,3)=B;g=uint8(g);subplot(1,2,2);imshow(g);% --- Executes on button press in pushbutton8.function pushbutton8_Callback(hObject, eventdata, handles)% hObject handle to pushbutton8 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureRGB=imread('1.jpg');RGB = im2double(RGB);R = RGB(:, :, 1);G = RGB(:, :, 2);B = RGB(:, :, 3);subplot(1,2,1),imshow(RGB)title('原始图像');c=R.*1.26d=G.*1.03e=B.*1.15enhance=cat(3, c, d, e);subplot(1,2,2),imshow(enhance)title('RGB手动增强的图像')四、实验结果截图五、实验体会经过很长时间学会应用这些东西。

数字图像处理实验-图像增强

数字图像处理实验-图像增强

西安邮电学院实验报告实验名称图像增强课程名称数字图像处理A姓名方健成绩班级电子0802 学号********(01)日期2011-05-03 地点3#531备注:仅供参考 不予下载1.实验目的(1)了解空间域图像增强的各种方法(点处理、掩模处理) (2)通过编写程序掌握采用直方图均衡化进行图像增强的方法(3)使用邻域平均法编写程序实现图像增强,进一步掌握掩模法及其改进(加门限法)消除噪声的原理2.实验环境(软件条件)Windows XP MATLAB 7.x3.实验方法A 直方图增强处理对如图1.1所示的两幅128×128的数字图像fing_128.bmp 和cell_128.bmp 进行如下处理:(1)对原图像进行直方图均衡化处理,同屏显示处理前后图像及其直方图,比较异同,并回答为什么数字图像均衡化后其直方图并非完全均匀分布。

B 图像平滑(1)对图1.1所示的两幅128×128、256级灰度的数字图像fing_128.bmp 和cell_128.bmp 加入点噪声,用4-邻域平均法平滑加噪声图像(图像四周边界不处理,下同),同屏显示原图像、加噪声图像和处理后的图像。

① 不加门限 ② 加门限),(21n m f T =,(其中∑∑=i jj i f N n m f ),(1),(2) C 图像锐化对256×256大小、256级灰度的数字图像lena.bmp (如图1.2所示)进行如下处理:(1)对原图像进行锐化处理,显示处理前、后图像:用Laplacian 算子进行锐化,分1=α和2=α两种情况,各按如下不同情况给出处理结果,并回答提出的问题:指纹图fing_128.bmp显微医学图像cell_128.bmp图1.2 实验图像lena.bmp① f n m f n m g 21),(),(∇-=α② )]1,()1,(),1(),1([),(4),(2++-+++--=n m f n m f n m f n m f n m f n m g αα问题:),(n m f 和),(1n m g 、),(2n m g 之间有何关系?),(2n m g 代表图像中的哪些信息?由此得出图像锐化的实质是什么?(2)分别利用Roberts 、Prewitt 和Sobel 边缘检测算子,对原图像进行边缘检测,显示处理前、后图像。

数字图像处理——图像空余增强实验源代码及实验报告

数字图像处理——图像空余增强实验源代码及实验报告

试验一一, 实验目的上机实验是为训练学生的实际程序设计能力安排的、包含在教学课时内的教学内容。

实验目的是:1 , 进一步深入理解相关部分的基本概念和授课内容。

2, 进一步提高实际动手进行程序设计的能力。

二,实验要求(1), 熟悉Matlab软件、编程以及图像处理工具箱。

掌握Matlab的操作界面和基本操作流程掌握m文件的使用掌握Matlab关于图像的读入、输出的处理函数,比如:imread、imshow、figure、Subplot、imwrite、colormap(2), 利用图像处理工具箱进行空域图像增强实验利用Matlab的图像处理工具箱中提供的函数进行“点运算”利用Matlab的图像处理工具箱中提供的函数进行“算术运算”灰度切割、分段线性变换、位图切割:需要进行Matlab编程图像平均减少噪声:需要进行Matlab编程要求至少实现5个(包括5个)以上的,在课程中讲过的图像空域增强方法。

三,程序设计基本思想Matlab关于图像的读入,输出的处理函数以及matlab图像处理工具箱里的函数可在matlab中能直接调用,多做几个试验就能熟练掌握运用这几个函数;后面的需要用matlab编程来实现数字图像处理功能的试验需自己编写源程序,做完以上两个部分,这个试验就完成了。

四,原理概述a)学会调用matlab图像处理工具箱的函数,这个可以在matlab中直接试验。

b)第二部分,要求用matlab编程工具来实现图像的灰度切割,位图切割等功能。

(1),灰度切割的原理:灰度切割实际上是分段函数线性变换的一种处理方法,他所要实现的主要功能是变幻某一段灰度值的灰度值(将之变亮或变暗或根据要求做其他方面的变幻),编写源程序时只需提出带改变部分的灰度值,对其进行符合要求的变化即可。

(2),位图切割的原理:位图切割同样是分段线性变换的一种,不同的是文图切割中把一幅图像“分个八层”,每层都含有原图的部分信息,编写源代码时,可以去提出或除某一位图,显示出代表的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:
实验项目:
实验地点:
专业班级:学号:学生姓名:
指导教师:
2012年月日
实验一 空域图像增强技术
一、
实验目的
1结合实例学习如何在视频显示程序中增加图像处理算法; 2理解和掌握图像的线性变换和直方图均衡化的原理和应用;
3了解平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;
4 了解噪声模型及对图像添加噪声的基本方法。

二、 实验原理
1 灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。

)],([),(y x f T y x g =
⎪⎩

⎨⎧<≤+-<≤+-≤≤=255),(]),([),( ]),([),(0 )
,(),(y x f b g b y x f b y x f a g a y x f a y x f y x f y x g b a γβα
n y m x ΛΛ,2,1 ,,,2,1==
2 直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图
像。

按照图像概率密度函数PDF 的定义:
1,...,2,1,0 )(-==
L k n
n r p k
k r 通过转换公式获得:
1,...,2,1,0 )()(0
-====∑∑
==L k n
n r p r T s k
j k
j j j r k k
3 均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其
周围的临近像素。

将模板中的全体像素的均值(中值)来代替原来像素值的方法。

4 拉普拉斯算子如下:
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--------111181111 拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将
这个差异加上自身作为新像素的灰度。

三、 实验步骤
1 启动MA TLAB 程序,对图像文件分别进行灰度线性变换(参考教材57页,例4.1)、直方图均衡化、均值滤波、中值滤波和梯度锐化操作。

添加噪声,重复上述过程观察处理结果。

2记录和整理实验报告
灰度线性变换
I=imread('a.tif');
imshow(I);
I=double(I);
[M,N]=size(I);
for i=1:M
for j=1:N
if I(i,j)<=30
I(i,j)=I(i,j);
elseif I(i,j)<=150
I(i,j)=(200-30)/(150-30)*(I(i,j)-30)+30;
else
I(i,j)=(255-200)/(255-150)*(I(i,j)-150)+200;
end
end
end
figure(2);imshow(uint8(I));
添加噪声
灰度线性变换
直方图均衡化
I=imread('b.tif');
figure
subplot(221);imshow(I); subplot(222);imhist(I)
I1=histeq(I);
figure;
subplot(221);imshow(I1) subplot(222);imhist(I1)
添加噪声
直方图均衡化
均值滤波
I=imread('c.tif');
[M,N]=size(I);
II1=zeros(M,N);
for i=1:16
II(:,:,i)=imnoise(I,'gaussian',0,0.01);
II1=II1+double(II(:,:,i));
if or(or(i==1,i==4),or(i==8,i==16));
figure;
imshow(uint8(II1/i));
end
end
中值滤波
I=imread('f.tif');
J=imnoise(I,'salt & pepper',0.02);
subplot(231),imshow(I);title('原始图像');
subplot(232),imshow(J);title('添加椒盐噪声图像') k1=medfilt2(J);
k2=medfilt2(J,[5,5]);
k3=medfilt2(J,[7,7]);
k4=medfilt2(J,[9,9]);
subplot(233),imshow(k1);title('3x3模板中值滤波') subplot(234),imshow(k2);title('5x5模板中值滤波') subplot(235),imshow(k3);title('7x7模板中值滤波') subplot(236),imshow(k4);title('9x9模板中值滤波')
梯度锐化操作
I=imread('b.tif');
subplot(131);imshow(I)
H=fspecial('Sobel');
H=H';
TH=filter2(H,I);
subplot(132),imshow(TH,[]); H=H';
TH=filter2(H,I);
subplot(133),imshow(TH,[])
四、实验仪器
1计算机;
2 MA TLAB程序;
3记录用的笔、纸。

相关文档
最新文档