北京市西城区2014年高三一模数学理科答案
2014年北京市各区高三一模试题汇编理科解析几何

2014年北京市各区高三一模试题汇编—解析几何(理科)1 (2014年东城一模理科)若双曲线()2222100x y a b a b -=>>,的渐近线与圆()2221x y -+=相切,则双曲线的离心率为( ).A .2 BCD答案:C2 (2014年西城一模理科)若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =___8__;C 的准线方程为__4x =-___.3 (2014年西城一模理科) “8m <”是“方程221108x y m m -=--表示双曲线”的(A ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件4 (2014年海淀一模理科)已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则( B ).A .0a =B .1a =C .2a =D .2a >5 (2014年海淀一模理科)已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m ____34___.6 (2014年朝阳一模理科) 直线y x m =+与圆2216x y +=交于不同的两点M ,N ,且MN ON ≥+uuu r r uuu r,其中O 是坐标原点,则实数m的取值范围是(D )A.(-UB.(⎡--⎣UC .[2,2]-D.[-7 (2014年朝阳一模理科)双曲线2221(0)y x b b-=>的一个焦点到其渐近线的距离是2,则b =2此双曲线的离心率为8 (2014年丰台一模理科)已知点F,B 分别为双曲线C:的焦点和虚22221(0,0)x y a b a b -=>>轴端点,若线段FB 的中点在双曲线C 上,则双曲线C 的离心率是___________.9 (2014年石景山一模理科)在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为(D ) A .2B .8C D .410 (2014年石景山一模理科) 已知动点()P x y ,在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足||1MF =且0MP MF ⋅=,则||PM 的最小值为(A )A B .3C .125D .111 (2014年顺义一模理科)已知抛物线()的焦点为,准线为,为抛物线上一点,,垂足为.如果是边长为的正三角形,则此抛物线的焦点坐标为____(1,0)_,点的横坐标__3_.12 (2014年延庆一模理科)设m 是常数,若点)5,0(F 是双曲线2219y x m -=的一个焦点,则m=___16___1. 13 (2014年东城一模理科) (本小题共13分)已知椭圆()2222:10x y G a b a b +=>>过点1,A ⎛ ⎝⎭和点()0,1B -. (1)求椭圆G 的方程;(2)设过点30,2P ⎛⎫ ⎪⎝⎭的直线l 与椭圆G 交于,M N 两点,且||||BM BN =,求直线l 的方程.解:(Ⅰ)因为椭圆()2222:10x y G a b a b +=>>过点1A ⎛ ⎝⎭和点()01B -,.所以1b =,由22111a ⎝⎭+=,得23a =. 所以椭圆G 的方程为2213x y +=.(Ⅱ)显然直线l 的斜率k 存在,且0k ≠.设直线l 的方程为32y kx =+.由22133.2x y y kx ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并整理得22153034k x kx ⎛⎫+++= ⎪⎝⎭,由2219503k k ⎛⎫=-+> ⎪⎝⎭△,2512k >.设()11M x y ,,()22N x y ,,MN 中点为()22Q x y ,, 得12229262x x k x k +==-+,12623262y y y k +==+. 由BM BN =,知BQ MN ⊥,所以6611y x k +=-,即2231162962k k k k ++=--+. 化简得223k =,满足0>△.所以k = 因此直线l的方程为32y =+. 14 (2014年西城一模理科)(本小题满分14分)已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点. (Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . …………… 1分则线段CD 的中点11(,)24,||CD ==, ………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. …………… 5分(Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ………… 7分所以 2216880k m ∆=-+>, (*) …… 8分由韦达定理,得122412kmx x k -+=+, 21222212m x x k -=+. ………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k m k-+==+-, …………10分解得2k =±. …………… 11分 由,C D 是线段MN 的两个三等分点,得||3||MN CD =.12|x x -= ………… 12分 即12||3||m x x k-==, 解得m =.……… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y x =,或y x =. ……………… 14分 15 (2014年海淀一模理科)(本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形. 解:(Ⅰ)设00(,)A x y ,00(,)-B x y ,————————————————1分因为∆ABM为等边三角形,所以00|||1|=-y x .————————2分 又点00(,)A x y 在椭圆上,所以002200||1|,239,y x x y ⎧=-⎪⎨⎪+=⎩消去0y ,———————————3分 得到2003280--=x x ,解得02=x 或043=-x ,—————————4分 当02=x时,||=AB 当043=-x时,||=AB .———————————————————5分 {说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为00(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y 得222(23)6390+++-=k x kmx m ,————6分由0∆>得到222960--<m k ①————————————7分 所以122623+=-+km x x k ,121224()223+=++=+my y k x x m k ,——————8分 所以2232(,)2323-++km mN k k,又(1,0)M 如果∆ABM 为等边三角形,则有⊥MN AB ,————————————9分所以1MN k k ⨯=-,即2222313123mk k km k+⨯=---+,—————————————10分 化简2320k km ++=,②—————————————11分由②得232k m k+=-,代入①得2222(32)23(32)0k k k +-+<,化简得2340+<k ,不成立,————————————————13分{此步化简成42291880k k k++<或4291880k k ++<或22(32)(34)0k k ++<都给分} 故∆ABM 不能为等边三角形.——————————14分法2:设11(,)A x y ,则2211239x y +=,且1[3,3]x ∈-,所以||MA ==———8分 设22(,)B x y,同理可得||MB =2[3,3]x ∈-———————9分 因为21(3)13y x =-+在[3,3]-上单调 所以,有12x x =⇔||||MA MB =,————————————11分 因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠,————————————————13分所以∆ABM 不可能为等边三角形.———————————————14分16 (2014年朝阳一模理科)已知椭圆2222:1(0)x y C a b a b+=>>经过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)直线(1)(0)y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.解:(Ⅰ)由题意得221314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =.所以椭圆C 的方程是2214x y +=.………………………… 4分(Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)14y k x x y =-⎧⎪⎨+=⎪⎩得2222(14)8440k x k x k +-+-=.设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为11(2)2y y x x =--,故点112(0,)2y P x --. 直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --. 若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=u u u r u u u r恒成立. 又因为1012(,)2y PN x x =-uuu r ,2022(,)2y QN x x =-uuu r , 所以221212001212224022(2)(2)y y y y PN QN x x x x x x ⋅=+⋅=+=----uuu r uuu r 恒成立.又因为121212(2)(2)2()4x x x x x x --=-++2222448241414k k k k -=-+++22414k k =+, 212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22222448(1)1414k k k k k -=-+++22314k k -=+, 所以222221200021212414304(2)(2)14k y y k x x x k x x k -++=+=-=--+.解得0x = 故以线段PQ 为直径的圆过x轴上的定点(.………………………… 14分 17 (2014年丰台一模理科) 已知椭圆E:的离心率为,过左焦点且斜率为的直线交椭圆E 于A,B 两点,线段AB的中点为M,直线:交椭圆E 于C,D 两点.(Ⅰ)求椭圆E 的方程;(Ⅱ)求证:点M 在直线上;(Ⅲ)是否存在实数k,使得三角形BDM 的面积是三角形ACM 的3倍?若存在,求出k 的值;若不存在,说明理由. 解:(Ⅰ)由题意可知,,于是. 所以,椭圆的标准方程为程.------ ---------3分(Ⅱ)设,,,22221(0)x y a b a b +=>>(F k l 40x ky +=l c e a ==c =2,1a b ==2214x y +=11(,)A x y 22(,)B x y 00(,)M xy即.所以,,,, 于是.,所以在直线上----8分(Ⅲ)由(Ⅱ)知点A 到直线CD 的距离与点B 到直线CD 的距离相等,若∆BDM 的面积是∆ACM 面积的3倍,则|DM|=3|CM|,因为|OD|=|OC|,于是M 为OC 中点,;设点C 的坐标为,则.因为,解得. 于是,解得,所以.----------------14分 18 (2014年石景山一模理科) 给定椭圆C :22221(0)x y a b ab+=>>,称圆心在原点O ,半C的“准圆”.若椭圆C 的一个焦点为0)F ,,其短轴上的一个端点到F(Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值. 解:(Ⅰ)21c a b ==∴=,,∴椭圆方程为2213x y +=,………………………………2分准圆方程为224x y +=.………………………………3分22(14y k x x y ⎧=+⎪⎨+=⎪⎩2222(41)1240k x x k +++-=12x x +=1202x x x +==00(y k x =+=M ∴40k +=M l 33(,)x y 302y y =22414x kyx y =-⎧⎪⎨+=⎪⎩3y =2|41k k =+218k =4k =±(Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±,………………………………6分所以12l l ,方程为22y x y x =+=-+,.………………………………7分 ,12l l ∴⊥.………………………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l:x =1l:x =与准圆交于点1)1)-, 此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l:x =12l l ,垂直.………………………………10分 ②当12l l ,斜率存在时,设点00()P x y ,,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,,得2220000(13)6()3()30t x t y tx x y tx ++-+--=. 由0∆=化简整理得2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直.………………………………12分 综合①②知:因为12l l ,经过点00(,)P x y ,又分别交其准圆于点M N ,,且12l l ,垂直. 121l l k k ⋅=-1l所以线段MN 为准圆224x y +=的直径,||4MN =, 所以线段MN 的长为定值.………………………………14分 19 (2014年顺义一模理科)已知椭圆的离心率,长轴的左右端点分别为,.(Ⅰ)求椭圆的方程;(Ⅱ)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.解:(Ⅰ)由已知————2分,椭圆的方程为;————4分,即————10分,对满足恒成立,,故在轴上存在定点,使得以为直径的圆恒过定点.——14分20 (2014年延庆一模理科) 已知直线022=+-y x 经过椭圆)0(1:2222>>=+b a bya x C 的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆上位于x 轴上方的动点,直线AS ,BS 与直线4:=x l 分别交于N M ,两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求线段MN 的长度的最小值.解:(Ⅰ).椭圆C 的方程为1422=+y x .………………3分(Ⅱ)直线AS 的斜率k 显然存在,且0>k ,故可设直线AS 的方程为)2(+=x k y ,………………4分 从而)6,4(k M ………………5分由⎪⎩⎪⎨⎧=++=14)2(22y x x k y 得041616)41(2222=-+++k x k x k ,………………7分 设),(11y x S ,则22141416)2(k k x +-=⨯-,得2214182k k x +-=,………………8分 从而21414k k y +=,即)414,4182(222kkk k S ++-,………………9分 又)0,2(B ,故直线BS 的方程为)2(41--=x ky ………………10分 由⎪⎩⎪⎨⎧=--=4)2(41x x k y 得⎪⎩⎪⎨⎧-==k y x 214∴)21,4(k N -,………………11分 故kk MN 216||+=,………………12分 又∵0>k ,∴322162216||=⨯≥+=kk k k MN ,………………13分 当且仅当k k 216=,即63=k 时等号成立, ∴63=k 时,线段MN 的长度取得最小值为32.……………………14分。
北京市西城区2014-2015学年度高三第一学期期末试数学理-含答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP?o ,则实数m 的取值范围是( )(A )(4,8) (B )(4,)+? (C )(0,4)(D )(8,)+?侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面A B CD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p =, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则C AB AB AB =U U ,且A ,B 独立. 由上表可知, 1()2P A =,()P B p =.所以()()()()P C P AB P AB P AB =++ ……………… 5分 111(1)222p p p =?+?? 1122p =+. ……………… 6分因为114()225P C p =+>,所以35p >. ……………… 7分 又因为113p q ++=,0q ≥,所以23p ≤.所以3253p ≤<. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >,所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N . 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k ,所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增. 故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。
2014年北京西城区高三一模数学试题解析

2014年北京西城区高三一模数学试题解析拿到西城一模数学试卷,隐隐觉得有点“不详”的预感。
通观全卷,感觉这份卷子出得有点让人哭笑不得。
【选择分析】8个选择,题型设计非常常规。
需要提一下的是第7题,一个函数应用题,此题的出现基本上和考试说明中提出的“考察实际能力”的精神是相符合的。
但其实,真要纠结于这一点的话,函数应用题,并不是一个特别生僻的点,即使把它勉强算成较少考察大的点,那么整张卷子,也没有第二道题出现了所谓的考察实际能力。
此题难度一般。
第8题,传统意义上的选择压轴。
题目本身没有设置特别大的难度,但是题干的用语却十分复杂纠结。
一个正四面体、任意一点到定点距离、距离构成的集合、集合元素还有限。
如果考生被这些或有用或无用的条件耽误太多时间,那么可能此题真的就成了一个难点。
但只要是有一个比较良好的审题习惯,并且对于高中的一百多知识点都非常熟悉,此题其实难度也没有想象中那么大。
【选择解读】逃离第八题本身的难度讨论,但是从第八题的出题方式也许能成为某种信号:绝对难度值降下来了,但是难度方式却发生了转移,更强调对于数学术语和数学逻辑的理解的考察。
如果命题者真是把这样的考察方式理解为考察数学思想。
那么本题的参考价值或许真的不小。
(当然,平心而论,笔者并不觉得这种出题方式和所谓的数学思想有多大关系,但或多或少,为数学思想提供了一个试题出口。
这个信号对于考生的价值其实还是比较大的。
)【填空分析】6个填空也没有太大的变化,平稳为主。
值得注意的是14题,和前面所说的第8题在某种程度上,如出一辙:绕!直角梯形,向量,内积加上莫名其妙的函数,或许会让部分学生有点晕头转向。
但其实,如果我们把这个题稍稍做调整,把函数换成“对应关系”四个字,也许晕的同学会减少不少,在很多同学考后给我的信息是:在考场上纠结函数大的解析式是什么纠结了很久,然后无果只能放弃。
这或许正式出题人的意图,用复杂的“条件们”去阻碍思路。
【填空解读】其实,14题算是一道好题,对于数学思想的考察明显比第8题要好很多。
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科)

北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科)一、选择题(共8小题;共40分)1. 设集合A=x x+1<3,x∈R,B=0,1,2,则A∩B= A. x0<x<2B. x−4<x<2C. 0,1,2D. 0,12. 已知复数z满足z=2i1+i,那么z的虚部为______A. −1B. −iC. 1D. i3. 在△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos A+B=13,则c= ______A. 4B.C. 3D.4. 执行如图所示的程序框图,输出的S值为______A. 34B. 45C. 56D. 15. 已知圆C:x+12+y−12=1与x轴切于A点,与y轴切于B点,设劣弧AB的中点为M,则过点M的圆C的切线方程是______A. y=x+2−B. y=x+12C. y=x−2+D. y=x+1−6. 若曲线ax2+by2=1为焦点在x轴上的椭圆,则实数a,b满足______A. a2>b2B. 1a <1bC. 0<a<bD. 0<b<a7. 定义域为R的函数f x满足f x+1=2f x,且当x∈0,1时,f x=x2−x,则当x∈−2,−1时,f x的最小值为______A. −116B. −18C. −14D. 08. 如图,正方体ABCD−A1B1C1D1的棱长为23,动点P在对角线BD1上,过点P作垂直于BD1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设BP=x,则当x∈1,5时,函数y=f x的值域为______A. 26,66B. 26,18C. 36,18D. 36,66二、填空题(共6小题;共30分)9. 在平面直角坐标系xOy中,点A1,3,B−2,k,若向量OA⊥AB,则实数k= ______.10. 若等差数列a n满足a1=12,a4+a6=5,则公差d= ______;a2+a4+a6+⋯+a20= ______.11. 已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12. 甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______.(用数字作答)13. 如图,B,C为圆O上的两个点,P为CB延长线上一点,PA为圆O的切线,A为切点.若PA=2,BC=3,则PB= ______;ACAB= ______.14. 在平面直角坐标系xOy中,记不等式组x+y≥0,x−y≤0,x2+y2≤2所表示的平面区域为D.在映射T:u=x+y,v=x−y的作用下,区域D内的点x,y对应的象为点u,v.(1)在映射T的作用下,点2,0的原象是______;(2)由点u,v所形成的平面区域的面积为______.三、解答题(共6小题;共78分)15. 已知函数f x=3cosωx,g x=sin ωx−π3ω>0,且g x的最小正周期为π.(1)若fα=62,α∈−π,π,求α的值;(2)求函数y=f x+g x的单调增区间.16. 以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.(1)若甲、乙两个小组的数学平均成绩相同,求a的值;(2)求乙组平均成绩超过甲组平均成绩的概率;(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X,求随机变量X的分布列和数学期望.17. 如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60∘,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求直线DH与平面BDEF所成角的正弦值;(3)求二面角H−BD−C的大小.18. 已知函数f x=x+a e x,其中e是自然对数的底数,a∈R.(1)求函数f x的单调区间;(2)当a<1时,试确定函数g x=f x−a−x2的零点个数,并说明理由.19. 已知A,B是抛物线W:y=x2上的两个点,点A的坐标为1,1,直线AB的斜率为k,O为坐标原点.(1)若抛物线W的焦点在直线AB的下方,求k的取值范围;(2)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求 OD 的最小值.20. 设无穷等比数列a n的公比为q,且a n>0n∈N∗,a n表示不超过实数a n的最大整数(如2.5=2),记b n=a n,数列a n的前n项和为S n,数列b n的前n项和为T n.(1)若a1=4,q=12,求T n;(2)若对于任意不超过2014的正整数n,都有T n=2n+1,证明:2312012<q<1.(3)证明:S n=T n n=1,2,3,⋯的充分必要条件为a1∈N∗,q∈N∗.答案第一部分1. D2. C3. D4. B5. A6. C7. A8. D第二部分9. 410. 12;5511. 2312. 2413. 1;214. 1,1;π第三部分15. (1)因为g x=sin ωx−π3ω>0的最小正周期为π,所以2πω=π,解得ω=2.由fα=62,得3cos2α=62,即cos2α=22,所以2α=2kπ±π4,k∈Z.因为α∈−π,π,所以α∈ −7π8,−π8,π8,7π8.(2)y=f x+g x=3cos2x+sin2x−π3=3cos2x+sin2x cosπ3−cos2x sinπ3 =12sin2x+32cos2x=sin2x+π3,由2kπ−π2≤2x+π3≤2kπ+π2,解得kπ−5π12≤x≤kπ+π12.所以函数y=f x+g x的单调增区间为 kπ−5π12,π+π12k∈Z.16. (1)依题意,得1388+92+92=1390+91+90+a,解得a=1.(2)设“乙组平均成绩超过甲组平均成绩”为事件A,依题意a=0,1,2,⋯,9,共有10种可能.由(1)可知,当a=1时甲、乙两个小组的数学平均成绩相同,所以当a=2,3,4,⋯,9时,乙组平均成绩超过甲组平均成绩,共有8种可能.所以乙组平均成绩超过甲组平均成绩的概率P A=810=45.(3)当a=2时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有3×3=9种,它们是:88,90,88,91,88,92,92,90,92,91,92,92,92,90,92,91,92,92,则这两名同学成绩之差的绝对值X的所有取值为0,1,2,3,4.因此P X=0=29,P X=1=29,P X=2=13,P X=3=19,P X=4=19.所以随机变量X的分布列为:X01234P2929131919所以X的数学期望E X=0×29+1×29+2×13+3×19+4×19=53.17. (1)因为四边形ABCD是菱形,所以AC⊥BD.因为平面BDEF⊥平面ABCD,且四边形BDEF是矩形,所以ED⊥平面ABCD,又因为AC⊂平面ABCD,所以ED⊥AC.因为ED∩BD=D,所以AC⊥平面BDEF.(2)设AC∩BD=O,取EF的中点N,连接ON.因为四边形BDEF是矩形,O,N分别为BD,EF的中点,所以ON∥ED.又因为ED⊥平面ABCD,所以ON⊥平面ABCD,由AC⊥BD,得OB,OC,ON两两垂直.O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.因为底面ABCD是边长为2的菱形,∠BAD=60∘,BF=3,所以A 0,−3,0,B1,0,0,D−1,0,0,E−1,0,3,F1,0,3,C 0,3,0,H12,32,32.因为AC⊥平面BDEF,所以平面BDEF的法向量AC=0,23,0.设直线DH与平面BDEF所成角为α,由DH=32,32,32,得sinα=cos DH,AC=DH⋅ACDH AC=32×0+32×23+32×021×23=77,所以直线DH与平面BDEF所成角的正弦值为77.(3)由(2),得BH= −12,32,32,DB=2,0,0.设平面BDH的法向量为n=x1,y1,z1,所以n⋅BH=0,n⋅DB=0,即−x1+3y1+3z1=0,2x1=0,令z1=1,得n=0,−3,1.由 ED ⊥平面ABCD ,得平面 BCD 的法向量为 ED= 0,0,−3 ,则cos n ,ED =n ⋅EDn ED=0×0+ − 3 ×0+1× −3 2×3=−12.由图可知二面角 H −BD −C 为锐角,所以二面角 H −BD −C 的大小为 60∘. 18. (1) 因为 f x = x +a e x ,x ∈R , 所以 fʹ x = x +a +1 e x . 令 fʹ x =0,得 x =−a −1.当 x 变化时,f x 和 fʹ x 的变化情况如下:x−∞,−a −1 −a −1 −a −1,+∞ fʹ x −0+f x ↘↗故 f x 的单调减区间为 −∞,−a −1 ;单调增区间为 −a −1,+∞ . (2) 结论:函数 g x 有且仅有一个零点.理由如下: 由 g x =f x −a −x 2=0,得方程 x e x−a =x 2, 显然 x =0 为此方程的一个实数解. 所以 x =0 是函数 g x 的一个零点. 当 x ≠0 时,方程可化简为 e x−a =x .设函数 F x =e x−a −x ,则 Fʹ x =e x−a −1,令 Fʹ x =0,得 x =a . 当 x 变化时,F x 和 Fʹ x 的变化情况如下:x−∞,a a a ,+∞Fʹ x−0+F x ↘↗即 F x 的单调增区间为 a ,+∞ ;单调减区间为 −∞,a .所以 F x 的最小值 F x min =F a =1−a . 因为 a <1,所以 F x min =F a =1−a >0, 所以对于任意 x ∈R ,F x >0, 因此方程 e x−a =x 无实数解.所以当 x ≠0 时,函数 g x 不存在零点. 综上,函数 g x 有且仅有一个零点. 19. (1) 抛物线 y =x 2 的焦点为 0,14 . 由题意,得直线 AB 的方程为 y −1=k x −1 ,令 x =0,得 y =1−k ,即直线 AB 与 y 轴相交于点 0,1−k . 因为抛物线 W 的焦点在直线 AB 的下方, 所以 1−k >14,解得 k <34.(2) 由题意,设 B x 1,x 12 ,C x 2,x 22 ,D x 3,y 3 ,联立方程 y −1=k x −1 ,y =x 2, 消去 y ,得x 2−kx +k −1=0,由韦达定理,得 1+x 1=k ,所以 x 1=k −1. 同理,得 AC 的方程为 y −1=−1k x −1 ,x 2=−1k −1. 对函数 y =x 2 求导,得 yʹ=2x ,所以抛物线y=x2在点B处的切线斜率为2x1,所以切线BD的方程为y−x12=2x1x−x1,即y=2x1x−x12.同理,抛物线y=x2在点C处的切线CD的方程为y=2x2x−x22.联立两条切线的方程y=2x1x−x12,y=2x2x−x22,解得x3=x1+x22=12k−1k−2,y3=x1x2=1k−k,所以点D的坐标为12 k−1k−2,1k−k .因此点D在定直线2x+y+2=0上.因为点O到直线2x+y+2=0的距离d=22+12=255,所以 OD ≥255,当且仅当点D的坐标为−45,−25时等号成立.由y3=1k −k=−25,得k=1±265,验证知符合题意.所以当k=1±265时, OD 有最小值255.20. (1)由等比数列a n的a1=4,q=12,得a1=4,a2=2,a3=1,且当n>3时,0<a n<1.所以b1=4,b2=2,b3=1,且当n>3时,b n=a n=0.即T n=4,n=1, 6,n=2, 7,n≥3.(2)因为T n=2n+1n≤2014,所以b1=T1=3,b n=T n−T n−1=22≤n≤2014.因为b n=a n,所以a1∈3,4,a n∈2,32≤n≤2014.由q=a2a1,得q<1.因为a2014=a2q2012∈2,3,所以q2012≥2a2>23,所以23<q2012<1,即231<q<1.(3)(充分性)因为a1∈N∗,q∈N∗,所以a n=a1q n−1∈N∗,所以b n=a n=a n对一切正整数n都成立.因为S n=a1+a2+⋯+a n,T n=b1+b2+⋯+b n,所以S n=T n.(必要性)因为对于任意的n∈N∗,S n=T n,当n=1时,由a1=S1,b1=T1,得a1=b1;当n≥2时,由a n=S n−S n−1,b n=T n−T n−1,得a n=b n.所以对一切正整数n都有a n=b n.由b n∈Z,a n>0,得对一切正整数n都有a n∈N∗,所以公比q=a2a1为正有理数.假设q∉N∗,令q=pr,其中p,r∈N∗,r>1,且p与r的最大公约数为1.因为a1是一个整数,所以必然存在一个整数k k∈N,使得a1能被r k整除,而不能被r k+1整除.又因为a k+2=a1q k+1=a1p k+1,且p与r的最大公约数为1.r所以a k+2∉Z,这与a n∈N∗(n∈N∗)矛盾.所以q∈N∗.因此a1∈N∗,q∈N∗.。
北京市西城区实验学校2014届高三1月月考数学(理)Word版及答案

北京市西城区实验学校2014年1月月考 高三数学(理科)试题班级 姓名 学号题号I 卷 II 卷总分一二 151617 18 19 20 得分试卷说明:试卷分值 150 ,考试时间 120分钟,I 卷为选择题,共8个小题,II 卷为填空题和解答题,包括第9至第20题。
I 卷一.选择题(共8个小题,每题5分,共40分。
每小题只有一个正确选项,请选择正确答案填在本题后边相应的答题框内)1.命题“x ∀∈R ,3210x x -+≤”的否定是( ).A. 不存在x ∈R ,3210x x -+≤ B. 存在x ∈R ,3210x x -+≤ C. 存在x ∈R ,3210x x -+> D. 对任意的x ∈R ,3210x x -+>2.已知集合2{|1}M x x ==,集合{|1}N x ax ==,若N M ⊆,则a 的值为( ). A. 1 B. 1- C. 1或1- D. 0,1或1- 3.在△ABC 中,角A 、B 、C 的对边分别为,,,a b c若222()tan a c b B +-=,则角B 为( ).A.6πB.3πC.6π或56πD.3π或23π 4.已知) ,(4sin )(实数为b a bx x a x f ++=,且5)10(ln =f ,则)101(ln f 的值是( ).A .5-B .3-C .3D .随b a ,取不同值而取不同值5.某工厂从2000年开始,近八年以来生产某种产品的情况是:前四年年产量的增长速度越来越慢,后四年年产量的增长速度保持不变,则该厂八年来这种产品的年产量y 可用图像表A .B .C . D.6.某正弦型函数的图像如右图,则该函数的解析式可以为(A .2sin()26x y π=-B .52sin()212x y π=+C .332sin()24x y π=-- D .32sin()24x y π=-+7.设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,则f (x )的图象的一条对称轴的方程是( ). A .9π=xB .6π=xC .3π=xD .2π=x8.设)(x f 是定义在实数集R 上的函数,且满足下列关系)10()10(x f x f -=+,)20()20(x f x f +-=-,则)(x f 是( ).A .偶函数,但不是周期函数B .偶函数,又是周期函数C .奇函数,但不是周期函数D .奇函数,又是周期函数选择题答案填入以下答题框1 2345678II 卷二.填空题(共6个小题,每空5分,共30分,请将正确答案填写在横线上)9. 等差数列}{n a 中,若15741=++a a a ,3963=++a a a ,则852a a a ++=______.10.数列{}n a 的前n 项和2n S 231,,n n n N +=++∈则n a = .11.已知两个单位向量a 与b 的夹角为3π,若(a b λ+)⊥(a b λ-),则λ= .12.已知α是第二象限角,3sin()35πα+=-,则cos α=_________.13.已知51cos sin =+θθ,且2πθπ≤≤,则θ2cos = .14.已知凸函数的性质定理:“若函数f (x )区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有)...()](...)()([12121nx x x f x f x f x f n nn +++≤+++”,若函数y =sin x 在区间(0,π)上是凸函数,则在∆ABC 中,sinA+sinB+sinC 的最大值是 .三.解答题(共6个小题,共80分,请写出必要的演算过程和证明步骤) 15.(16分) 设)1,(cos -=x ,)1,cos (sin --=x x ,函数1()2f x a b =⋅- (1)用五点作图法画出函数)(x f 在一个周期上的图象; (2)求函数)(x f 的单调递减区间和对称中心的坐标;(3)求不等式1()2f x ≥的解集; (4)如何由y x =的图象变换得到)(x f 的图象. 解: (1)16.(12分)已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求,a b 的值;(2)若对任意的()1,1t ∈-,不等式22(2)(2)0f t t f t k -+->恒成立,求k 的取值范围.xyo17.(13分)已知函数3211()132f x x x =-+,x ∈R . (1)求函数()f x 的极大值和极小值; (2)求函数图象经过点3(,1)2的切线的方程; (3)求函数3211()132f x x x =-+的图象与直线1y =所围成的封闭图形的面积.18.(12分)在ABC 中,角,,A B C 分别对应边,,a b c ,已知,,a b c 成等比数列,且3cos 4B =. (1)若32BA BC =,求a c +的值; (2)求11tan tan A C+的值.19.(13分)已知函数()ln af x x x=-. (Ⅰ)若0,a >求函数()f x 的单调区间; (Ⅱ)若()f x 在[1,]e 上的最小值为32,求a 的值; (Ⅲ)若2()f x x <在(1,)+∞上恒成立,求a 的取值范围.20.(14分)已知函数()e x f x kx x =-∈R ,. (Ⅰ)若e k =,试确定函数()f x 的单调区间;(Ⅱ)若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围; (Ⅲ)设函数()()()F x f x f x =+-,求证:12(1)(2)()(e2)()n n F F F n n +*>+∈N .高三理科数学答案一.选择题(每小题5分,共40分)1 234 5 678CD D CBC A D二、填空题(每小题5分,共30分)9. 9 10. 41,26,1n n n +≥⎧⎨=⎩11. -1或112.410+-13. 725-14. 233三、解答题: 15.解:(1)()24f x x π⎛⎫=- ⎪⎝⎭ -----7分 16.(1)因为)(x f 是R 上的奇函数,所以1,021,0)0(==++-=b a bf 解得即从而有.212)(1a x f x x ++-=+ 又由a a f f ++--=++---=1121412)1()1(知,解得2=a -----5分 (2)由(1)知,121212212)(1++-=++-=+x x x x f易知)(x f 在R 上为减函数因)(x f 是奇函数,从而不等式22(2)(2)0f t t f t k -+->等价于222(2)(2)(2)f t t f t k f k t ->--=-因)(x f 是R 上的减函数, 由上式推得 2222t t t k -<-+即对一切()21,1,320t t t k ∈---<横成立,从而()()10, 5.10g k g -≤⎧⎪∴≥⎨≤⎪⎩ -----7分17.解:(1)()f x 的极大值为(0)1;f =()f x 的极小值为5(1);6f =-----4分 (2)1y =或3148y x =-;-----4分(3)()3209(1)64f x dx -=⎰.-----5分18.(1)由23=⋅得:23cos =⋅B ac ,因B cos 43=,所以:2=ac ,即:由余弦定理B ac c a b cos 2222⋅-+=得5cos 2222=⋅+=+B ac b c a于是:()9452222=+=++=+ac c a c a 故c a +3= -----6分 (2)由Bcos 43=得47sin =B ,由ac b =2得C A B sin sin sin 2=,-----6分19.解:(1)由题意:()f x 的定义域为(0,)+∞,且221()a x af x x x x+'=+=. 0,a >当,()f x 单调递增区间是()0,+∞; -----4分(2)由(1)可知:2()x af x x+'=① 若1a ≥-,则0x a +≥,即()0f x '≥在[1,]e 上恒成立,此时()f x 在[1,]e 上为增函数,min 33[()](1),22f x f a a ∴==-=∴=-(舍去).② 若a e ≤-,则0x a +≤,即()0f x '≤在[1,]e 上恒成立,此时()f x 在[1,]e 上为减函数,min 3[()]()122a ef x f e a e ∴==-=⇒=-(舍去). ③ 若1e a -<<-,令()0f x '=得x a =-,当1x a <<-时,()0,()f x f x '<∴在(1,)a -上为减函数, 当a x e -<<时,()0,()f x f x '>∴在(,)a e -上为增函数,min 3[()]()ln()12f x f a a a ∴=-=-+=⇒=11tan tan A C +()B C A C A A C A C C C A A C A 2sin sin sin sin sin cos cos sin sin cos sin cos cot cot +=+=+=+774sin 1sin sin 2===B B B综上可知:a = -----4分(3)22(),ln a f x x x x x <∴-<. 又30,ln x a x x x >∴>-令232116()ln ,()()1ln 3,()6x g x x x x h x g x x x h x x x x -''=-==+-=-=, ()h x 在[1,)+∞上是减函数,()(1)2h x h ∴<=-,即()0g x '<,()g x ∴在[1,)+∞上也是减函数,()(1)1g x g ∴<=-.令1a ≥-得()a g x >,∴当2()f x x <在(1,)+∞恒成立时,1a ≥-. -----5分20.解:(Ⅰ)由e k =得()e e x f x x =-,所以()e e x f x '=-.由()0f x '>得1x >,故()f x 的单调递增区间是(1)+∞,, 由()0f x '<得1x <,故()f x 的单调递减区间是(1)-∞,. -----3分(Ⅱ)由()()f x f x -=可知()f x 是偶函数. 于是()0f x >对任意x ∈R 成立等价于()0f x >对任意0x ≥成立.由()e 0x f x k '=-=得ln x k =.①当(01]k ∈,时,()e 10(0)x f x k k x '=->->≥.此时()f x 在[0)+∞,上单调递增.故()(0)10f x f =>≥,符合题意.②当(1)k ∈+∞,时,ln 0k >. 当x 变化时()()f x f x ',的变化情况如下表:由此可得,在[0)+∞,上,()(ln )ln f x f k k k k =-≥.依题意,ln 0k k k ->,又11e k k >∴<<,. 综合①,②得,实数k 的取值范围是0e k <<. -----5分(Ⅲ)()()()e e x x F x f x f x -=+-=+,12()()F x F x ∴=12121212121212()()e e e e e e 2e 2x x x x x x x x x x x x x x +-+--++-+++++>++>+, 1(1)()e 2n F F n +∴>+,11(2)(1)e 2()(1)e 2.n n F F n F n F ++->+>+由此得,21[(1)(2)()][(1)()][(2)(1)][()(1)](e 2)n n F F F n F F n F F n F n F +=->+ 故12(1)(2)()(e 2)n n F F F n n +*>+∈N ,. -----5分。
2014西城期末试题(理科)

北京市西城区2013—2014学年度第一学期期末试卷高三数学(理科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B = ( ) (A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4 (B(C )3(D4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )12.已知复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1- (B )i -(C )1(D )i6. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b << (D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116- (B ) 18-(C ) 14-(D ) 08. 如图,正方体1111ABCD A BC D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形 (含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)5.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( ) (A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-1第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++= ______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y=+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.侧(左)视图三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()f x x ω,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()f α=[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.甲组乙组 890 1 a822 F BCEAHD18.(本小题满分13分)已知函数()()e x f x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.19.(本小题满分14分)已知A 、B 是抛物线2:W y x =上的两个点,点A 的坐标为()1,1,直线AB 的斜率为k ,O 为坐标原点.(Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.北京市西城区2013 — 2014学年度第一学期期末高三数学(理科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B 5.A 6.C 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9.4 10.125511. 12.24 13.1 214.(1,1) π注:第10、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以 2||ωπ=π,解得2ω=. ……………… 3分由 ()2f α=22α=即 cos 22α=, ……………… 4分 所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-,所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- ……………… 8分1sin 2222x x =+ πsin(2)3x =+, ………………10分由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. ………………12分 所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 2分解得 1a =. ……………… 3分(Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 4分依题意 0,1,2,,9a = ,共有10种可能. ……………… 5分由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同,所以当2,3,4,,9a = 时,乙组平均成绩超过甲组平均成绩,共有8种可能.… 6分 所以乙组平均成绩超过甲组平均成绩的概率84()105P A ==. ……………… 7分(Ⅲ)解:当2a =时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种, 它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92), ……………… 9分则这两名同学成绩之差的绝对值X 的所有取值为0,1,2,3,4. ……………… 10分 因此2(0)9P X ==,2(1)9P X ==,1(2)3P X ==,1(3)9P X ==,1(4)9P X ==. ……………… 11分所以随机变量X 的分布列为:………………12分所以X 的数学期望221115()01234993993E X =⨯+⨯+⨯+⨯+⨯=.……………13分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是菱形,所以 AC BD ⊥. ……………… 1分因为平面BDEF ⊥平面ABCD ,且四边形BDEF 是矩形,所以 ED ⊥平面ABCD , ……………… 2分 又因为 AC ⊂平面ABCD ,所以 ED AC ⊥. ……………… 3分因为 ED BD D = ,所以 AC ⊥平面BDEF . ……………… 4分 (Ⅱ)解:设AC BD O = ,取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,,O N 分别为,BD EF 的中点, 所以 //ON ED ,又因为 ED ⊥平面ABCD ,所以 ON ⊥平面ABCD , 由AC BD ⊥,得,,OB OC ON 两两垂直.所以以O 为原点,,,OB OC ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系. ……………… 5分因为底面ABCD 是边长为2的菱形,60BAD ∠= ,BF =所以 (0,A ,(1,0,0)B ,(1,0,0)D -,(1,0,3)E -,(1,0,3)F,C,13()22H . ………………6分因为 AC ⊥平面BDEF ,所以平面BDEF的法向量AC =. …………7分设直线DH 与平面BDEF 所成角为α,由33()22DH = , 得sin |cos ,|DH AC DH AC DH ACα⋅=<>=== ,所以直线DH 与平面BDEF………………9分(Ⅲ)解:由(Ⅱ),得13(,)222BH =-,(2,0,0)DB = .设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩ n n ………………10分即111130,20,x z x ⎧-+=⎪⎨=⎪⎩ 令11z =,得(0,=n . ………………11分由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-,则00(01(3)1cos ,232ED ED ED⋅⨯+⨯+⨯-<>===-⨯n n n . ………………13分由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60 . ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e x f x x a '=++. ……………… 2分令()0f x '=,得1x a =--. ……………… 3分 当x 变化时,()f x 和()f x '的变化情况如下: (5)分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分 (Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分理由如下:由2()()0g x f x a x =--=,得方程2e x ax x -=,显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点. ……………… 9分 当0x ≠时,方程可化简为e x ax -=.设函数()ex aF x x -=-,则()e 1x a F x -'=-,令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-. ………………11分 因为 1a <,所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程ex ax -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点. ………………13分19.(本小题满分14分)已知A 、B 是抛物线2:W y x =上的两个点,点A 的坐标为()1,1,直线AB 的斜率为k ,O 为坐标原点.(Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值. 19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. ……………… 5分 (Ⅱ)解:由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=, 由韦达定理,得11x k +=,所以 11x k =-. ……………… 7分同理,得AC 的方程为11(1)y x k-=--,211x k =--. (8)分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线斜率为12x ,所以切线BD 的方程为21112()y x x x x -=-, 即2112y x x x =-. (9)分同理,抛物线2y x =在点C 处的切线CD 的方程为2222y x x x =-.………………10分 联立两条切线的方程2112222,2,y x x x y x x x ⎧=-⎪⎨=-⎪⎩ 解得12311(2)22x x x k k +==--,3121y x x k k==-, 所以点D 的坐标为111((2),)2k k k k---. (11)分因此点D 在定直线220x y ++=上. ………………12分因为点O 到直线220x y ++=的距离5d ==,所以5OD ≥,当且仅当点42(,)55D --时等号成立. ………………13分由3125y k k =-=-,得k =.所以当k =OD………………14分20.(本小题满分13分)(Ⅰ)解:由等比数列{}n a 的14a =,12q =, 得14a =,22a =,31a =,且当3n >时,01n a <<. ……………… 1分所以14b =,22b =,31b =,且当3n >时,[]0n n b a ==. (2)分即 ,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥ (3)分(Ⅱ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 4分 因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ……………… 5分 由 21a q a =,得 1q <. ……………… 6分 因为 201220142[2,3)a a q =∈,所以 20122223qa >≥, 所以 2012213q<<,即 120122()13q <<. ……………… 8分 (Ⅲ)证明:(充分性)因为1a N *Î,q N *Î,所以11n n a a q N -*=?,所以 []n n n b a a == 对一切正整数n 都成立. 因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 9分(必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =;当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =. 由 n b Z Î,0n a >,得对一切正整数n 都有n a N *Î, (10)分所以公比21a q a =为正有理数. ………………11分假设 q N *Ï,令p q r=,其中,,1p r r N *?,且p 与r 的最大公约数为1. 因为1a 是一个有限整数,所以必然存在一个整数()k k N Î,使得1a 能被k r 整除,而不能被1k r +整除.又因为111211k k k k a p a a qr++++==,且p 与r 的最大公约数为1.所以2k a Z +Ï,这与n a N *Î(n N *Î)矛盾. 所以q *∈N .因此1a N *Î,q *∈N . ……………13分。
【解析版】北京市西城区2014届高三上学期期末考试试题(数学 理
北京市西城区2013 — 2014学年度第一学期期末试卷 高三数学(理科) 第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B = ( )(A )(0,1) (B )(0,1] (C )(1,2) (D )[1,2)2.已知复数z 满足2i=1i z +,那么z 的虚部为( )(A )1- (B )i - (C ) (D )3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c. 若3a =,2b =,1cos()3A B +=,则c =( )(A )4 (B(C )3 (D4.执行如图所示的程序框图,输出的S值为()(A)34(B)45(C)56(D)5.已知圆22:(1)(1)1C x y++-=与x轴切于A点,与y轴切于B点,设劣弧»AB的中点为M,则过点M的圆C的切线方程是()(A)2y x=+-(B)1y x=+-(C)2y x=-+(D)1y x=+-6.若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b < (C )0a b << (D )0b a <<7..定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( )(A )116-(B ) 18- (C ) 14-(D )8.如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)【答案】D 【解析】试题分析:棱长为,故体对角线1BD =6,根据对称性,只需研究[1,3]x ∈,函数()y f x =的值域,连接11,,AB B C AC ,则1BD ⊥面1AB C ,此时2BP =,当1BP =时,截面周长为截面1AB C 周长的一半,即,当3BP =时,即当截面过体对角线1BD 中点时,此时截面为正六边形,其顶点为个棱的中点,如图所示,截面周长为.,所以函数()y f x =的值域为.考点:1、直线和平面垂直的判定;2、截面周长. 第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.【答案】4 【解析】试题分析:=1,3(3OA AB =- (),,k-3),因为OA AB ⊥ ,故0OA AB ⋅= ,即-3+3(k-3)=0,解得4k =.考点:1、向量的坐标运算;2、向量垂直.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++= ______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示, 那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13.如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点.若2PA =,3BC =,则PB =______;ACAB =______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v .(1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.考点:1、映射的概念;2、不等式组表示的平面区域.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()f α=[π,π]α∈-,求α的值;(Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分) 以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示. (Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.所以X 的数学期望221115()01234993993E X =⨯+⨯+⨯+⨯+⨯=.甲组 乙组 891 a822考点:1、平均数;2、古典概型;3、离散型随机变量的分布列和期望. 17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60=∠BAD ,四边形BDEF是矩形,平面BDEF ⊥平面ABCD ,BF=3, H 是CF 的中点. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.又因为 AC ⊂平面ABCD ,所以 ED AC ⊥. 因为 ED BD D = ,所以AC ⊥平面BDEF .(Ⅲ)解:由(Ⅱ),得13()22BH =- ,(2,0,0)DB =.设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩n n即111130,20,x z x ⎧-++=⎪⎨=⎪⎩令11z =,得(0,=n . 由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-,则1cos ,2ED ED ED⋅<>===-n n n . 由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60.考点:1、直线和平面垂直的判定定理;2、直线和平面所成的角;3、二面角. 18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R .(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.【答案】(Ⅰ)()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)求导得,()(1)e x f x x a '=++,因为0x e >,所以'()0f x >的解集为(1,)a --+∞,即单调递增区间;'()0f x <的解集为(,1)a -∞--,即单调递减区间;(Ⅱ)函数2()x a g x xe x -=-,令()0g x =,得()0x ax e x --=,显然0x =是一个零点,记()e x a F x x -=-,求导得()e 1x a F x -'=-,易知(,)x a ∈-∞时()F x 递减;(,)x a ∈+∞时()F x 递增,故()F x 的最小值min ()()1F x F a a==-,又1a <,故10a ->,即()0F x >,所以函数()g x 的零点个数1个.试题解析:(Ⅰ)解:因为()()e x f x x a =+,x ∈R ,所以()(1)e xf x x a '=++.令()0f x '=,得1x a =--.当x 变化时,()f x 和()f x '的变化情况如下:故()f x的单调减区间为(,1)a-∞--;单调增区间为(1,)a--+∞.19.(本小题满分14分)已知,A B是抛物线2:W y x=上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;(Ⅱ)设C为W上一点,且AB AC⊥,过,B C两点分别作W的切线,记两切线的交点为D,求OD的最小值.【答案】(Ⅰ)34k;【解析】考点:1、直线的方程;2、直线和抛物线的位置关系;3、导数的几何意义.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T .(Ⅰ)若114,2a q ==,求n T ;(Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<.(Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.【答案】(Ⅰ),6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥;(Ⅱ)答案详见解析;(Ⅲ)答案详见解析.(Ⅱ)证明:因为201421()n T n n =+≤,所以113b T ==,120142(2)n n n b T T n -=-=≤≤.因为[] n nb a=,所以1[3,4)a∈,2014[2,3)(2) na n∈≤≤.由21aqa=,得1q<.因为201220142[2,3)a a q=∈,所以20122223qa>≥,所以2012213q<<,即120122()13q<<.考点:1、等比数列的通项公式;2、数列前n项和;3、充要条件.。
2014年北京市西城区高考一模数学试卷(理科)【解析版】
2014年北京市西城区高考数学一模试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)设全集U=R,集合A={x|0<x≤2},B={x|x<1},则集合∁U(A∪B)=()A.(﹣∞,2]B.(﹣∞,1]C.(2,+∞)D.[2,+∞)2.(5分)已知平面向量=(2,﹣1),=(1,1),=(﹣5,1),若(+k)∥,则实数k的值为()A.2B.C.D.﹣3.(5分)在极坐标系中,过点(2,)且与极轴平行的直线方程是()A.ρ=2B.θ=C.ρcosθ=2D.ρsinθ=2 4.(5分)执行图题实数的程序框图,如果输入a=2,b=2,那么输出的a值为()A.44B.16C.256D.log3165.(5分)下列函数中,对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x ﹣π)=f(x)的函数是()A.f(x)=sin x B.f(x)=sin2x C.f(x)=cos x D.f(x)=cos2x 6.(5分)“m<8”是“方程﹣=1表示双曲线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于()A.4B.5C.6D.78.(5分)如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)设复数=x+yi,其中x,y∈R,则x+y=.10.(5分)若抛物线C:y2=2px的焦点在直线x+2y﹣4=0上,则p=;C的准线方程为.11.(5分)已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是.12.(5分)若不等式组表示的平面区域是一个四边形,则实数a的取值范围是.13.(5分)科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是.(用数字作答)14.(5分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设=x,=y,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②∀a∈(0,+∞),都有f(1)=1成立;③∀a∈(0,+∞),函数f(x)的最大值都等于4.其中所有正确结论的序号是.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cos B=,b=2,求△ABC的面积.16.(13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a,b的值;(Ⅱ)某人从灯泡样品中随机地购买了n(n∈N*)个,如果这n个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求n的最小值;(Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X表示此人所购买的灯泡中次品的个数,求X的分布列和数学期望.17.(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.(Ⅰ)求证:BC⊥D1E;(Ⅱ)求证:B1C∥平面BED1;(Ⅲ)若平面BCC1B1与平面BED1所成的锐二面角的大小为,求线段D1E的长度.18.(13分)已知函数f(x)=,其中a≥0.(Ⅰ)当a=0时,求函数f(x)的图象在点(1,f(1))处的切线方程;(Ⅱ)如果对于任意x1,x2∈R,且x1<x2,都有f(x1)<f(x2),求a的取值范围.19.(14分)已知椭圆W:=1,直线l与W相交于M,N两点,l与x 轴、y轴分别相交于C、D两点,O为坐标原点.(Ⅰ)若直线l的方程为x+2y﹣1=0,求△OCD外接圆的方程;(Ⅱ)判断是否存在直线l,使得C,D是线段MN的两个三等分点,若存在,求出直线l的方程;若不存在,说明理由.20.(13分)在数列{a n}中,a n=(n∈N*).从数列{a n}中选出k(k≥3)项并按原顺序组成的新数列记为{b n},并称{b n}为数列{a n}的k项子列.例如数列,,,为{a n}的一个4项子列.(Ⅰ)试写出数列{a n}的一个3项子列,并使其为等差数列;(Ⅱ)如果{b n}为数列{a n}的一个5项子列,且{b n}为等差数列,证明:{b n}的公差d满足﹣<d<0;(Ⅲ)如果{c n}为数列{a n}的一个m(m≥3)项子列,且{c n}为等比数列,证明:c1+c2+c3+…+c m≤2﹣.2014年北京市西城区高考数学一模试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)设全集U=R,集合A={x|0<x≤2},B={x|x<1},则集合∁U(A∪B)=()A.(﹣∞,2]B.(﹣∞,1]C.(2,+∞)D.[2,+∞)【解答】解:∵A=(0,2],B=(﹣∞,1),∴A∪B=(﹣∞,2],∵全集为U=R,∴∁U(A∪B)=(2,+∞).故选:C.2.(5分)已知平面向量=(2,﹣1),=(1,1),=(﹣5,1),若(+k)∥,则实数k的值为()A.2B.C.D.﹣【解答】解:∵=(2,﹣1),=(1,1),∴,又=(﹣5,1),且(+k)∥,∴1×(2+k)﹣(﹣5)×(k﹣1)=0,解得:k=.故选:B.3.(5分)在极坐标系中,过点(2,)且与极轴平行的直线方程是()A.ρ=2B.θ=C.ρcosθ=2D.ρsinθ=2【解答】解:点(2,)在直角坐标系下的坐标为(2,2),即(0,2)∴过点(0,2)且与x轴平行的直线方程为y=2.即为ρsinθ=2.故选:D.4.(5分)执行图题实数的程序框图,如果输入a=2,b=2,那么输出的a值为()A.44B.16C.256D.log316【解答】解:若a=2,则log3a=log32>4不成立,则a=22=4,若a=4,则log3a=log34>4不成立,则a=42=16,若a=16,则log3a=log316>4不成立,则a=162=256若a=256,则log3a=log3256>4成立,输出a=256,故选:C.5.(5分)下列函数中,对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x ﹣π)=f(x)的函数是()A.f(x)=sin x B.f(x)=sin2x C.f(x)=cos x D.f(x)=cos2x 【解答】解:对于任意x∈R,f(x)满足f(x)=f(﹣x),则函数f(x)是偶函数,选项中,A,B显然是奇函数,C,D为偶函数,又对于任意x∈R,f(x)满足f(x﹣π)=f(x),则f(x+π)=f(x),即f(x)的最小正周期是π,选项C的最小正周期是2π,选项D的最小正周期是=π,故同时满足条件的是选项D.故选:D.6.(5分)“m<8”是“方程﹣=1表示双曲线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若方程﹣=1表示双曲线,则(m﹣10)(m﹣8)>0,即m>10或m<8.∴“m<8”是“方程﹣=1表示双曲线”的充分而不必要条件,故选:A.7.(5分)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于()A.4B.5C.6D.7【解答】解:设该设备第n年的营运费为a n万元,则数列{a n}是以2为首项,2为公差的等差数列,则a n=2n,则该设备使用了n年的营运费用总和为T n==n2+n,设第n年的盈利总额为S n,则S n=11n﹣(n2+n)﹣9=﹣n2+10n﹣9=﹣(n﹣5)2+16,∴当n=5时,S n取得最大值16,故选:B.8.(5分)如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个【解答】解:符合条件的点P有两类:(1)6条棱的中点;(2)4个面的中心.共10个点.故集合M中有且只有2个元素,那么符合条件的点P有4+6=10.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)设复数=x+yi,其中x,y∈R,则x+y=.【解答】解:∵,又=x+yi,∴,∴,则x+y=.故答案为:.10.(5分)若抛物线C:y2=2px的焦点在直线x+2y﹣4=0上,则p=8;C 的准线方程为x=﹣4.【解答】解:直线x+2y﹣4=0,令y=0,可得x=4,∴=4,∴p=8,C的准线方程为x=﹣4故答案为:8;x=﹣4.11.(5分)已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是.【解答】解:∵正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,故它的侧(左)视图一定是一个高为2的矩形,当侧(左)视图的底面为俯视图的高时侧(左)视图面积最小,此时侧(左)视图面积S=2×=故答案为:12.(5分)若不等式组表示的平面区域是一个四边形,则实数a的取值范围是(3,5).【解答】解:作出不等式组对应的平面区域,当直线x+y=a经过点A(3,0)时,对应的平面区域是三角形,此时a=3,当经过点B时,对应的平面区域是三角形,由,解得,即B(1,4),此时a=1+4=5,∴要使对应的平面区域是平行四边形,则3<a<5,故答案为:(3,5)13.(5分)科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是48.(用数字作答)【解答】解:采用捆绑及内部调整法,把三对师生看成三个整体,每对师生都有2种排列顺序,故不同的排法种数为A33×2×2×2=6×8=48.故答案为:48.14.(5分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设=x,=y,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②∀a∈(0,+∞),都有f(1)=1成立;③∀a∈(0,+∞),函数f(x)的最大值都等于4.其中所有正确结论的序号是②③.【解答】解:如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=x,(0≤x≤1).∴=(﹣2,0)+x(1,a)=(x﹣2,xa),∴==(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa)∴y=f(x)==(2﹣x,﹣xa)•(2﹣x,a﹣xa)=(2﹣x)2﹣ax(a﹣xa)=(a2+1)x2﹣(4+a2)x+4.①当a=2时,y=f(x)=5x2﹣8x+4=,∵0≤x≤1,∴当x=时,f(x)取得最小值;又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.综上可得:函数f(x)的值域为.因此①不正确.②由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可得:∀a∈(0,+∞),都有f(1)=1成立,因此②正确;③由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可知:对称轴x0=.当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.当时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.因此③正确.综上可知:只有②③正确.故答案为:②③.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cos B=,b=2,求△ABC的面积.【解答】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cos A==,又A∈(0,π),∴A=;(Ⅱ)∵cos B=,B∈(0,π),∴sin B==,由正弦定理=,得a==3,∵b2+c2=a2+bc,即4+c2=9+2c,整理得:c2﹣2c﹣5=0,解得:c=1±,∵c>0,∴c=+1,=bc sin A=.则S△ABC16.(13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a,b的值;(Ⅱ)某人从灯泡样品中随机地购买了n(n∈N*)个,如果这n个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求n的最小值;(Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X表示此人所购买的灯泡中次品的个数,求X的分布列和数学期望.【解答】(本小题满分13分)解:(Ⅰ)a=1﹣0.10﹣0.35﹣0.15﹣0.25=0.15,b=200﹣20﹣30﹣70﹣50=30.…(2分)(Ⅱ)由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,∴优等品、正品和次品的比例为50:100:50=1:2:1.…(4分)∴按分层抽样法,购买灯泡数n=k+2k+k=4k(k∈N*),∴n的最小值为4.…(6分)(Ⅲ)X的所有取值为0,1,2,3.…(7分)由题意,购买一个灯泡,且这个灯泡是次品的概率为0.1+0.15=0.25,…(8分)从本批次灯泡中购买3个,可看成3次独立重复试验,∴,,,.…(11分)∴随机变量X的分布列为:…(12分)∴X的数学期望.…(13分)(注:写出,,k=0,1,2,3.请酌情给分)17.(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.(Ⅰ)求证:BC⊥D1E;(Ⅱ)求证:B1C∥平面BED1;(Ⅲ)若平面BCC1B1与平面BED1所成的锐二面角的大小为,求线段D1E的长度.【解答】(Ⅰ)证明:∵底面ABCD和侧面BCC1B1是矩形,∴BC⊥CD,BC⊥CC1,又∵CD∩CC1=C,∴BC⊥平面DCC1D1,…(2分)∵D1E⊂平面DCC1D1,∴BC⊥D1E.…(4分)(Ⅱ)证明:∵BB1∥DD1,BB1=DD1,∴四边形D1DBB1是平行四边形.连接DB1交D1B于点F,连接EF,则F为DB1的中点.在△B1CD中,∵DE=CE,DF=B1F,∴EF∥B1C.…(6分)又∵B1C⊄平面BED1,EF⊂平面BED1,∴B1C∥平面BED1.…(8分)(Ⅲ)解:由(Ⅰ)知BC⊥D1E,又∵D1E⊥CD,BC∩CD=C,∴D1E⊥平面ABCD.…(9分)设G为AB的中点,以E为原点,EG,EC,ED1所在直线分别为x轴,y轴,z轴如图建立空间直角坐标系,设D1E=a,则E(0,0,0),B(1,1,0),D1(0,0,a),C(0,1,0),B1(1,2,a),G(1,0,0).设平面BED1法向量为=(x,y,z),因为,由,得令x=1,得=(1,﹣1,0).…(11分)设平面BCC1B1法向量为=(x1,y1,z1),∵,∴由,得令z1=1,得=(0,﹣a,1).…(12分)由平面BCC1B1与平面BED1所成的锐二面角的大小为,得,…(13分)解得a=1.∴线段D1E的长度是1.…(14分)18.(13分)已知函数f(x)=,其中a≥0.(Ⅰ)当a=0时,求函数f(x)的图象在点(1,f(1))处的切线方程;(Ⅱ)如果对于任意x1,x2∈R,且x1<x2,都有f(x1)<f(x2),求a的取值范围.【解答】解:(Ⅰ)由题意,得f'(x)=(xlnx)'=lnx+1,其中x>0,…(2分)所以f'(1)=1,又因为f(1)=0,所以函数f(x)的图象在点(1,f(1))处的切线方程为y=x﹣1.…(4分)(Ⅱ)先考察函数g(x)=﹣x2+2x﹣3,x∈R的图象,配方得g(x)=﹣(x﹣1)2﹣2,…(5分)所以函数g(x)在(﹣∞,1)上单调递增,在(1,+∞)单调递减,且g(x)=g(1)=﹣2.…(6分)max因为对于任意x1,x2∈R,且x1<x2,都有f(x1)<f(x2)成立,所以a≤1.…(8分)以下考察函数h(x)=xlnx,x∈(0,+∞)的图象,则h'(x)=lnx+1,令h'(x)=lnx+1=0,解得.…(9分)随着x变化时,h(x)和h'(x)的变化情况如下:即函数h (x )在上单调递减,在上单调递增,且.…(11分)因为对于任意x 1,x 2∈R ,且x 1<x 2,都有f (x 1)<f (x 2)成立, 所以 .…(12分)因为(即h (x )min >g (x )max ),所以a 的取值范围为.…(13分)19.(14分)已知椭圆W :=1,直线l 与W 相交于M ,N 两点,l 与x轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为x +2y ﹣1=0,求△OCD 外接圆的方程;(Ⅱ)判断是否存在直线l ,使得C ,D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由. 【解答】解:(Ⅰ)因为直线l 的方程为x +2y ﹣1=0, 所以与x 轴的交点C (1,0),与y 轴的交点.…(1分)则线段CD 的中点,,…(3分)即△OCD 外接圆的圆心为,半径为, 所以△OCD 外接圆的方程为.…(5分)(Ⅱ)存在直线l ,使得C ,D 是线段MN 的两个三等分点. 理由如下:由题意,设直线l 的方程为y =kx +m (km ≠0),M (x 1,y 1),N (x 2,y 2), 则,D (0,m ),…(6分)由方程组得(1+2k2)x2+4kmx+2m2﹣2=0,…(7分)所以△=16k2﹣8m2+8>0,(*)…(8分)由韦达定理,得,.…(9分)由C,D是线段MN的两个三等分点,得线段MN的中点与线段CD的中点重合.所以,…(10分)解得.…(11分)由C,D是线段MN的两个三等分点,得|MN|=3|CD|.所以,…(12分)即,解得.…(13分)验证知(*)成立.所以存在直线l,使得C,D是线段MN的两个三等分点,此时直线l的方程为,或.…(14分)20.(13分)在数列{a n}中,a n=(n∈N*).从数列{a n}中选出k(k≥3)项并按原顺序组成的新数列记为{b n},并称{b n}为数列{a n}的k项子列.例如数列,,,为{a n}的一个4项子列.(Ⅰ)试写出数列{a n}的一个3项子列,并使其为等差数列;(Ⅱ)如果{b n}为数列{a n}的一个5项子列,且{b n}为等差数列,证明:{b n}的公差d满足﹣<d<0;(Ⅲ)如果{c n}为数列{a n}的一个m(m≥3)项子列,且{c n}为等比数列,证明:c1+c2+c3+…+c m≤2﹣.【解答】(Ⅰ)解:答案不唯一.如3项子列,,;(Ⅱ)证明:由题意,知1≥b1>b2>b3>b4>b5>0,所以d=b2﹣b1<0.假设b1=1,由{b n}为{a n}的一个5项子列,得,所以.因为b5=b1+4d,b5>0,所以4d=b5﹣b1=b5﹣1>﹣1,即.这与矛盾.所以假设不成立,即b1≠1.所以,因为b5=b1+4d,b5>0,所以,即,综上,得.(Ⅲ)证明:由题意,设{c n}的公比为q,则.因为{c n}为{a n}的一个m项子列,所以q为正有理数,且q<1,.设,且K,L互质,L≥2).当K=1时,因为,所以=,所以.当K≠1时,因为是{a n}中的项,且K,L互质,所以a=K m﹣1×M(M∈N*),所以=.因为L≥2,K,M∈N*,所以.综上,.。
2014北京西城区高三期末数学(理)试题答案
2014.1
13.1
2
14. (1,1)
π
注:第 10、13、14 题第一问 2 分,第二问 3 分.
三、解答题:本大题共 6 小题,共 80 分. 其他正确解答过程,请参照评分标准给分.
15.(本小题满分 13 分)
(Ⅰ)解:因为 g ( x )
sin(
x
π )(
0) 的最小正周期为 π
,
3
所以 2 ,解得 ω 2 . |ω|
5
55
分
………………13
由
y3
1 k
k
2 5
,得 k
1
5
26
,验证知符合题意.
所以当 k 1 26 时, O D 有最小值 2 5 .
5
5
分
………………14
20.(本小题满分 13 分)
(Ⅰ)解:由等比数列{an} 的 a1 =
4 ,q =
1, 2
得 a1 = 4 , a2 = 2 , a3 = 1 ,且当 n > 3 时, 0 < an < 1 .
因为 bn = [an ] ,
所以 a1 [3, 4) , an [2, 3)(2≤ n≤2014) . 分
由 q a2 ,得 q 1 . a1
分
因为 a2014 a2 q 2012 [ 2, 3) ,
所以 q 2012 ≥ 2 2 , a2 3
所以
2 q 2012 1 ,即
21 ( ) 2012 q 1 .
(92, 90) , (92, 91) ,
(92, 92) ,
……………… 9 分
则这两名同学成绩之差的绝对值 X 的所有取值为 0,1, 2, 3, 4 .
2014西城区高三(上)期末数学(理科)
2014西城区高三(上)期末数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合A={x|0<x<2},B={x|x﹣1≥0},则集合A∩B=()A.(0,1) B.(0,1]C.(1,2) D.[1,2)2.(5分)已知复数z满足z=,那么z的虚部为()A.﹣1 B.﹣i C.1 D.i3.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos(A+B)=,则c=()A.4 B.C.3 D.4.(5分)执行如图的程序框图,输出的S等于()A.B.C.D.5.(5分)已知圆C:(x+1)2+(y﹣1)2=1与x轴切于A点,与y轴切于B点,设劣弧的中点为M,则过点M的圆C的切线方程是()A.y=x+2﹣B.y=x C.y=x﹣2D.y=x+16.(5分)若曲线ax2+by2=1为焦点在x轴上的椭圆,则实数a,b满足()A.a2>b2B.C.0<a<b D.0<b<a7.(5分)定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2﹣x,则当x∈[﹣2,﹣1]时,f(x)的最小值为()A.﹣B.﹣C.﹣D.08.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点P在对角线BD1上,过点P作垂直于BD1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设BP=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)在平面直角坐标系xOy中,点A(1,3),B(﹣2,k),若向量,则实数k=.10.(5分)若等差数列{a n}满足a1=,a4+a6=5,则公差d=;a2+a4+a6+…+a20=.11.(5分)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为.12.(5分)甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是.(用数字作答)13.(5分)如图,B,C为圆O上的两个点,P为CB延长线上一点,PA为圆O的切线,A为切点.若PA=2,BC=3,则PB=;=.14.(5分)在平面直角坐标系xOy中,记不等式组所表示的平面区域为D.在映射T:的作用下,区域D内的点(x,y)对应的象为点(u,v).(1)在映射T的作用下,点(2,0)的原象是;(2)由点(u,v)所形成的平面区域的面积为.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数f(x)=cosωx,g(x)=sin(ωx﹣)ω>0),且g(x)的最小正周期为π.(Ⅰ)若f(α)=,α∈[﹣π,π],求α的值;(Ⅱ)求函数y=f(x)+g(x)的单调增区间.16.(13分)如图所示茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a的值;(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当a=2时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.17.(14分)如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求直线DH与平面BDEF所成角的正弦值;(Ⅲ)求二面角H﹣BD﹣C的大小.18.(13分)已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a<1时,试确定函数g(x)=f(x﹣a)﹣x2的零点个数,并说明理由.19.(14分)已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.20.(13分)设无穷等比数列{a n}的公比为q,且a n>0(n∈N*),[a n]表示不超过实数a n的最大整数(如[2.5]=2),记b n=[a n],数列{a n}的前n项和为S n,数列{b n}的前n项和为T n.(Ⅰ)若a1=4,q=,求T n;(Ⅱ)若对于任意不超过2014的正整数n,都有T n=2n+1,证明:()<q<1.(Ⅲ)证明:S n=T n(n=1,2,3,…)的充分必要条件为:a1∈N*,q∈N*.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【解答】由B中的不等式解得:x≥1,即B={x|x≥1},∵A={x|0<x<2},∴A∩B={x|1≤x<2}=[1,2).故选D2.【解答】z===1+i,∴z的虚部为1.故选:C.3.【解答】∵cos(A+B)=,∴cosC=﹣,在△ABC中,a=3,b=2,cosC=﹣,∴c2=a2+b2﹣2abcosC=9+4﹣=17,∴c=.故选:D.4.【解答】根据题意,本程序框图为求和运算第1次循环:S=0+n=2第2次循环:S=+n=3…第4次循环:S═++…+n=5此时,n=5输出S=1﹣=故选B.5.【解答】由题意,M为直线y=﹣x与圆的一个交点,代入圆的方程可得:(x+1)2+(﹣x﹣1)2=1.∵劣弧的中点为M,∴x=,∴,∵过点M的圆C的切线的斜率为1,∴过点M的圆C的切线方程是y﹣1+=x﹣+1,即y=x+2﹣.故选A.6.【解答】由题意,曲线ax2+by2=1可化为.∵曲线ax2+by2=1为焦点在x轴上的椭圆,∴,∴b>a>0.故选C.7.【解答】当x∈[﹣2,﹣1]时,x+2∈[0,1],∴f(x+2)=(x+2)2﹣(x+2)=x2+3x+2,又f(x+1)=2f(x),∴f(x+2)=f[(x+1)+1]=2f(x+1)=4f(x),∴4f(x)=x2+3x+2(﹣2≤x≤﹣1),∴f(x)=(x2+3x+2)=﹣(﹣2≤x≤﹣1),∴当x=﹣时,f(x)取得最小值﹣.故选:A.8.【解答】∵正方体ABCD﹣A1B1C1D1的棱长为2,∴正方体的对角线长为6,∵x∈[1,5],∴x=1或5时,三角形的周长最小,设截面正三角形的边长为t,则由等体积可得,∴t=,∴y min=;x=2或4时,三角形的周长最大,截面正三角形的边长为2,∴y max=6.∴当x∈[1,5]时,函数y=f(x)的值域为[3,6].故选D.二、填空题:本大题共6小题,每小题5分,共30分.9.【解答】∵=(1,3),=(﹣2,k)﹣(1,3)=(﹣3,k﹣3),向量,∴=(1,3)•(﹣3,k﹣3)=﹣3+3(k﹣3)=0,解得k=4.故答案为:4.10.【解答】等差数列{a n}满足a1=,a4+a6=5=2a5,∴a5=,∴=+4d,则公差d=.∴a2+a4+a6+…+a20=10(a1+d)+×2d=10×1+45=55,故答案为:,55.11.【解答】由正三棱柱的侧视图可知该三棱柱是平放着的三棱柱,如图:其中三棱柱的棱长为2,则三棱柱的正视图为矩形ABCD,其中AB=2,AD为正三角形的高,即AD=,∴此三棱柱正(主)视图的面积为2×,故答案为:2.12.【解答】由题意知本题需要分步来解,第一步甲大学生选实习公司,有=6种方法,第二步乙大学生选实习公司,有=4种方法,由乘法原理得:两人所选的实习单位中恰有1个相同的选法有6×4=24种.故答案是24.13.【解答】∵PA是圆O的切线,PBC是割线,∴PA2=PB•PC,∵PA=2、BC=3,∴22=PB•(PB+3),解得PB=1(舍负).∵PA切圆O于点A,∴∠BAP=∠C,又∵∠APB=∠CPA,∴△CPA∽△APB,可得==2.故答案为:1,214.【解答】不等式组所表示的平面区域D如图,(1)由,解得:.∴在映射T的作用下,点(2,0)的原象是(1,1).(2)由,得.代入不等式组,得.可行域如图,∴点(u,v)所形成的平面区域的面积为.故答案为:(1)(1,1);(2)π.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.【解答】(Ⅰ)解:因为g(x)=sin(ωx﹣)的最小正周期π,∴,解得ω=2,由f(α)=,得=,即,∴2,k∈Z,∵α∈[﹣π,π],∴α∈{};(Ⅱ)函数y=f(x)+g(x)=+=+sin2xcos﹣cos2xsin=sin2x+cos2x=sin(2x+),由,解得kπ﹣,所以函数y=f(x)+g(x)的单调增区间为[kπ﹣],k∈Z.16.【解答】(Ⅰ)由甲、乙两个小组的数学平均成绩相等,得,解得a=1;(Ⅱ)设“乙组平均成绩超过甲组平均成绩”为事件A,a的取值有:0,1,2,…,9共有10种可能.由(Ⅰ)可知,当a=1时甲、乙两个小组的数学平均成绩相同,∴当a=2,…,9时,乙组平均成绩超过甲组平均成绩,共有8种可能.∴乙组平均成绩超过甲组平均成绩的概率P(A)=;(Ⅲ)设“这两名同学的数学成绩之差的绝对值不超过(2分)”为事件B,当a=2时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有3×3=9种,它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92).∴事件B的结果有7种,它们是:(88,90),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92).∴两名同学的数学成绩之差的绝对值不超过(2分)的概率P(B)=.17.【解答】(Ⅰ)证明:∵四边形ABCD是菱形,∴AC⊥BD.又∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,∴AC⊥平面BDEF;(Ⅱ)解:设AC∩BD=O,取EF的中点N,连接ON,∵四边形BDEF是矩形,O,N分别为BD,EF的中点,∴ON∥ED,∵ED⊥平面ABCD,∴ON⊥平面ABCD,由AC⊥BD,得OB,OC,ON两两垂直.∴以O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.∵底面ABCD是边长为2的菱形,∠BAD=60°,BF=3,∴A(0,﹣,0),B(1,0,0),D(﹣1,0,0),E(﹣1,0,3),F(1,0,3),C(0,,0),H(,,)∵AC⊥平面BDEF,∴平面BDEF的法向量=(0,2,0).设直线DH与平面BDEF所成角为α,∵=(,,),∴sinα=|cos<,>|=||=,∴直线DH与平面BDEF所成角的正弦值为;(Ⅲ)解:由(Ⅱ),得=(﹣,,),=(2,0,0).设平面BDH的法向量为=(x,y,z),则令z=1,得=(0,﹣,1)由ED⊥平面ABCD,得平面BCD的法向量为=(0,0,﹣3),则cos<,>==﹣,由图可知二面角H﹣BD﹣C为锐角,∴二面角H﹣BD﹣C的大小为60°.18.【解答】(Ⅰ)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=﹣a﹣1.当x变化时,f(x)和f′(x)的变化情况如下:故f(x)的单调减区间为(﹣∞,﹣a﹣1);单调增区间为(﹣a﹣1,+∞).(Ⅱ)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x﹣a)﹣x2,得方程xe x﹣a=x2,显然x=0为此方程的一个实数解.所以x=0是函数g(x)的一个零点.当x≠0时,方程可化简为e x﹣a=x.设函数F(x)=e x﹣a﹣x,则F′(x)=e x﹣a﹣1,令F′(x)=0,得x=a.当x变化时,F(x)和F′(x)的变化情况如下:即F(x)的单调增区间为(a,+∞);单调减区间为(﹣∞,a).所以F(x)的最小值F(x)min=F(a)=1﹣a.因为a<1,所以F(x)min=F(a)=1﹣a>0,所以对于任意x∈R,F(x)>0,因此方程e x﹣a=x无实数解.所以当x≠0时,函数g(x)不存在零点.综上,函数g(x)有且仅有一个零点.19.【解答】(Ⅰ)抛物线y=x2的焦点为(0,).…(1分)由题意,得直线AB的方程为y﹣1=k(x﹣1),…(2分)令x=0,得y=1﹣k,即直线AB与y轴相交于点(0,1﹣k).…(3分)∵抛物线W的焦点在直线AB的下方,∴1﹣k>,解得k<.…(5分)(Ⅱ)设B(x1,x12),C(x2,x22),则∵A(1,1)且AB⊥AC,∴即(x1+x2)+x1•x2=﹣2﹣﹣﹣﹣﹣﹣(6分)又∵y′=2x,∴B、C处的切线的斜率为k1=2x1,k2=2x2,∴B、C处的切线方程为y﹣x12=2x1(x﹣x1)和y﹣x22=2x2(x﹣x2),联立解得D(,x1•x2)﹣﹣﹣﹣﹣﹣(8分)设x1x2=t,由(x1+x2)+x1•x2=﹣2得=﹣1﹣,∴|OD|2=(﹣1﹣)2+t2=t2+t+1﹣﹣﹣﹣﹣(10分)当t=﹣时,|OD|2min=,∴|OD|min=﹣﹣﹣﹣﹣(12分)20.【解答】(Ⅰ)解:∵等比数列{a n}中,a1=4,q=,∴a1=4,a2=2,a3=1,且当n>3时,0<a n<1.…(1分)∵b n=[a n],∴b1=4,b2=2,b3=1,且当n>3时,b n=[a n]=0.…(2分)∴T n=.…(3分)(Ⅱ)证明:∵T n=2n+1(n≤2014),∴b1=T1=3,b n=T n﹣T n﹣1=2,(2≤n≤2014).…(4分)∵b n=[a n],∴a1∈[3,4),a n∈[2,3),(2≤n≤2014).…(5分)由q=,得q<1.…(6分)∵∈[2,3),∴,∴,即()<q<1.…(8分)(Ⅲ)证明:(充分性)∵a1∈N*,q∈N*,∴∈N*,∴b n=[a n]=a n对一切正整数n都成立.∴S n=a1+a2+…+a n,T n=b1+b2+…+b n,∴S n=T n.…(9分)(必要性)∵对于任意的n∈N*,S n=T n,当n=1时,由a1=S1,b1=T1,得a1=b1;当n≥2时,由a n=S n﹣S n﹣1,b n=T n﹣T n﹣1,得a n=b n.对一切正整数n都有a n=b n.由,a n>0,得对一切正整数n都有,…(10分)公比q=为正有理数.…(11分)假设q不属于N*,令q=,其中p,r∈,r≠1,且p与r的最大公约数为1.∵a1是一个有限整数,∴必然存在一个整数k(k∈N),使得a1能被r k整除,而不能被r k+1整除.又∵,且p与r的最大公约数为1.不属于Z,这与(n∈N*)矛盾.∴a k+2∴q∈N*.∴.…(13分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(理科)2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.8 4x =-11. 12.(3,5) 13.4814.○2,○3注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, ……………… 3分又因为 (0,π)∈A ,所以 π3A =. ……………… 5分(Ⅱ)解:因为 cos 3=B ,(0,π)∈B ,所以 sin B ==. ………………7分由正弦定理 sin sin =a bA B, ………………9分得 sin 3sin ==b Aa B. ………………10分因为 222b c a bc +=+,所以 2250--=c c ,解得 1=±c 因为 0>c ,所以 1=c . ………………11分故△ABC 的面积1sin 2S bc A ==. ………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. ……………… 2分(Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. ……………… 4分所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N ,所以n 的最小值为4. ……………… 6分(Ⅲ)解:X 的所有取值为0,1,2,3. ……………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, ……… 8分从本批次灯泡中购买3个,可看成3次独立重复试验, 所以033127(0)C (1)464P X ==⨯-=, 1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=, 33311(3)C ()464P X ==⨯=. ……………… 11分所以随机变量X 的分布列为: (12)分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. (13)分(注:写出1(3,)4X B ,3311()C ()(1)44k kk P X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥, 又因为 1=CDCC C ,所以 BC ⊥平面11DCC D , ………………2分因为 1D E ⊂平面11DCC D ,所以 1BC D E ⊥. (4)分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以 1//EF B C . ………………6分又因为 1⊄B C 平面1BED ,⊂EF平面1BED ,所以 1//B C 平面1BED . (8)(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥, 又因为 1D E CD ⊥,BCCD C =,所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴 如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G . 设平面1BED 法向量为(,,)x y z =n , 因为1(1,1,0), (0,0,)EB ED a ==,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0.x y z +=⎧⎨=⎩令1x =,得(1,1,0)=-n . ………………11分设平面11BCC B 法向量为111(,,)x y z =m , 因为1(1,0,0), (1,1,)CB CB a ==,1由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩m m得11110,0.x x y az =⎧⎨++=⎩令11z =,得(0,,1)a =-m . (12)分由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3, 得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分解得1a =. ………………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=, 又因为(1)0f =, 所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. (4)分(Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, (5)分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-. (6)分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. (8)分以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+,令()ln 10h x x '=+=,解得1e=x . ……………… 9分随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,且min 11()()e e==-h x h . ……………… 11分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . (12)分因为 12e->-(即min max ()()h x g x >), 所以a 的取值范围为1,e[1]. (13)分19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||CD ==, ……………… 3分即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分(Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, (7)分所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412kmx x k -+=+, 21222212m x x k -=+. (9)分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k mk-+==+-, ………………10分解得2k =±. ……………… 11分由,C D 是线段MN 的两个三等分点,得||3||MN CD =.12|x x -= ……………… 12分即12||3||mx x k-==,解得 m =. ……………… 13分验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为2y x =±,或2y x =-±. ……………… 14分20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥, 所以 210d b b =-<. ……………… 3分若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤, 所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠.所以 112b ≤, ……………… 6分因为 514b b d =+,50b >, 所以 51511422d b b b =-->-≥,即18d >-, 综上,得108d -<<. (7)分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q -++++=++++.因为{}n c 为{}n a 的一个m 项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. 设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥). 当1K =时,因为 112q L =≤,所以 211231(1)m m c c c c c q q q -++++=++++211111()()222≤-++++m , 112()2-=-m ,所以 112312()2m m c c c c -++++-≤. (10)分当1K ≠时,因为 11111m m m m K c c q a L---==⨯是{}n a 中的项,且,K L 互质,所以 1*()-=⨯∈m a KM M N ,所以 211231(1)m m c c c c c q q q -++++=++++1232111111()----=++++m m m m M K K L K LL. 因为 2L ≥,*K M ∈N ,, 所以 21112311111()()2()2222m m m c c c c --++++++++=-≤.综上, 1231122m m c c c c -++++-≤. (13)分。