2018版 第3章 §2 2.3 两角和与差的正切函数
三角函数专题2:两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式考点要求(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式. (2)二倍角的三角函数公式①能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.②利用两角和的公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 一 两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β. (2)cos(α±β)=cos_αcos_β∓sin_αsin_β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.公式的变形 公式T (α±β)的变形:(1)tan α+tan β=tan(α+β)(1-tan_αtan_β). (2)tan α-tan β=tan(α-β)(1+tan_αtan_β). 3.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin_αcos_α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α. 4.公式C 2α的变形(1)sin 2α=12(1-cos 2α).(2)cos 2α=12(1+cos 2α).5.公式的逆用(1)1±sin 2α=(sin α±cos α)2. (2)sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4. 二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.题型一 给角求值1.(2015·高考全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .-32B.32 C .-12 D.12解析:原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=12.答案:D 2.2cos 10°sin 70°-tan 20°=( )A. 3B.3-12 C .1 D.32解析:利用三角函数公式求解.2cos 10°sin 70°-tan 20°=2cos 10°cos 20°-sin 20°cos 20°=2cos 30°-20°-sin 20°cos 20°=2⎝ ⎛⎭⎪⎫32cos 20°+12sin 20°-sin 20°cos 20°=3,故选A.答案:A题型二 给值求值问题1. (1)(2015·高考重庆卷)若tan α=13,tan(α+β)=12,则tan β=( )A.17B.16C.57D.56[解析] tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17.[答案] A2.(2016·贵阳一模)已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( )A.79B.13 C .-13 D .-79[解析] 法一:∵sin ⎝ ⎛⎭⎪⎫π6-α=13,∴cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=79,∴cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=cos ⎝ ⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2α=-cos ⎝ ⎛⎭⎪⎫π3-2α=-79.法二:∵sin ⎝ ⎛⎭⎪⎫π6-α=13,∴cos ⎝ ⎛⎭⎪⎫π3+α=13, ∴cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=29-1=-79.[答案] D3.已知sin 2α=13,则cos 2⎝⎛⎭⎪⎫α-π4=( )A .-13B .-23 C.13 D.23解析:∵cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎪⎫α-π4=23.答案:D4.已知α为第二象限角,cos α=-35,则tan 2α的值为( )A.2425 B.247 C .-247 D .-2425解析:因为α为第二象限角, 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45, 所以tan α=sin αcos α=-43,tan 2α=2tan α1-tan 2α=2·⎝ ⎛⎭⎪⎫-431-⎝ ⎛⎭⎪⎫-432=247.题型三 三角函数式的化简1.化简(0<θ<π).【解析】因为0<θ<π,所以0<θ2<π2,所以原式===-cos θ.【点拨】先从角度统一入手,将θ化成θ2,然后再观察结构特征,如此题中sin2θ2-cos2θ2=-cos θ. 2.化简2cos4x -2cos2x +122tan(π4-x)sin2(π4+x).θθθθθ cos 22)2cos 2 )(sin cos sin 1(+-++2cos 2)2cos 2 )(sin 2 cos 22 cos 2 sin 2(22θθθθθθ-+2cos 2)2cos 2 (sin 2 sin 222θθθθ-【解析】原式=12(2cos2x -1)22tan(π4-x)cos2(π4-x)=cos22x 4cos(π4-x)sin(π4-x)=cos22x 2sin(π2-2x)=12cos 2x.3. 三角函数式的求值【例2】已知sin x 2-2cos x2=0.(1)求tan x 的值; (2)求cos 2x2cos(π4+x)sin x的值.【解析】(1)由sin x 2-2cos x 2=0⇒tan x2=2,所以tan x ==2×21-22=-43.(2)原式=cos2x -sin2x 2(22cos x -22sin x)sin x [=(cos x -sin x)(cos x +sin x)(cos x -sin x)sin x =cos x +sin x sin x =1tan x +1=(-34)+1=14.【变式训练2】2cos 5°-sin 25°sin 65°= .【解析】原式=2cos(30°-25°)-sin 25°cos 25°=3cos 25°cos 25°= 3.4.已知f(x)=1-x ,θ∈(3π4,π),则f(sin 2θ)+f(-sin 2θ)= .【解析】f(sin 2θ)+f(-si n 2θ)=1-sin 2θ+1+sin 2θ=(sin θ-cos θ)2+(sin θ+cos θ)2=|sin θ-co s θ|+|sin θ+cos θ|.因为θ∈(3π4,π),所以sin θ-cos θ>0,sin θ+cos θ<0.所以|sin θ-cos θ|+|sin θ+cos θ|=sin θ-cos θ-sin θ-cos θ=-2cos θ.题型四 三角函数式的简单应用问题1.】已知-π2<x <0且sin x +cos x =15,求:(1)sin x -cos x 的值;(2)sin3(π2-x)+cos3(π2+x)的值.【解析】(1)由已知得2sin xcos x =-2425,且sin x <0<cos x ,所以sin x -cos x =-(sin x -cos x)2=-1-2sin xcos x =-1+2425=-75. (2)sin3(π2-x)+cos3(π2+x )=cos3x -sin3x =(cos x -sin x)(cos2x +cos xsin x +s in2x)2tan 12tan 22xx=75×(1-1225)=91125. 【点拨】求形如sin x ±cos x 的值,一般先平方后利用基本关系式,再求sin x ±cos x 取值符号. 2.化简1-cos4α-sin4α1-cos6α-sin6α.【解析】原式=1-[(cos2α+sin2α)2-2sin2αcos2α]1-[(cos2α+sin2α)(cos4α+sin4α-sin2αcos2α)]=2sin2αcos2α1-[(cos2α+sin2α)2-3sin2αcos2α]=23.总结提高1.两角和与差的三角函数公式以及倍角公式等是三角函数恒等变形的主要工具. (1)它能够解答三类基本题型:求值题,化简题,证明题; (2)对公式会“正用”、“逆用”、“变形使用”;(3)掌握角的演变规律,如“2α=(α+β)+(α-β)”等.2.通过运用公式,实现对函数式中角的形式、升幂、降幂、和与差、函数名称的转化,以达到求解的目的,在运用公式时,注意公式成立的条件.题组 基础能力提升1、已知cos α=k ,k ∈R ,α∈⎝ ⎛⎭⎪⎫π2,π,则sin(π+α)=( ) A .-1-k 2B .1-k 2C .±1-k 2D .-k【答案】A【解析】由cos α=k ,α∈⎝⎛⎭⎪⎫π2,π得sin α=1-k 2,∴sin(π+α)=-sin α=-1-k 2.故选A.2、已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B .3715 C.3720D .1315【答案】D【解析】.∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315.故选D.3、已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ=( )A .-π6B .-π3C .π6D .π3【答案】D【解析】∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3. ∵|θ|<π2,∴θ=π3.4、已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan x 的值为( )A.34 B .-34C.43 D .-43【答案】B【解析】因为x ∈⎝ ⎛⎭⎪⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34.故选B.5、已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α=( )A.2 23B .-223C .13D .-13【答案】D【解析】∵cos ⎝ ⎛⎭⎪⎫π4+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4-α=-sin ⎝ ⎛⎭⎪⎫α-π4=-13. 6、若sin ⎝ ⎛⎭⎪⎫π2+θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】B【解析】∵sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0,所以θ是第二象限角,故选B.7、已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( ) A .150° B .135° C .300° D .60°【答案】C【解析】因为sin 150°=12>0,cos 150°=-32<0,所以角α终边上一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以该点在第四象限,由三角函数的定义得sin α=-32,又0°≤α<360°,所以角α的值是300°,故选C. 8、已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15B .-35C .15D .35【答案】B9.已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A.43 B.34 C .-34D .±34解析:因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35,显然α在第三象限,所以cos α=-45,故tan α=34.答案:B10.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377C.31010D.13解析:由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.答案:C11.(2015·枣庄模拟)已知cos α=15,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫π2+αtan α+πcos -αtan α的值为( )A .2 6B .-2 6C .-612D.612解析:cos ⎝ ⎛⎭⎪⎫π2+αtan α+πcos -αtan α=-sin αtan αsin α=-cos αsin α,∵cos α=15,-π2<α<0,∴sin α=-265,原式=612.答案:D12.已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:由2tan α·sin α=3,得2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32.答案:B13.若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限14、现有如下命题:①若点P (a ,2a )(a ≠0)为角α终边上一点,则sin α=255;②同时满足sin α=12,cos α=32的角有且仅有一个;③设tan α=12且π<α<3π2,则sin α=-55;④设cos(sin θ)·tan(cos θ)>0(θ为象限角),则θ在第一象限. 则其中正确的命题是________.(将正确命题的序号填在横线上) 【答案】③【解析】①中,当α在第三象限时,sin α=-255,故①错误;②中,同时满足sin α=12,cos α=32的角为α=2k π+π6(k ∈Z),有无数个,故②错误;③正确;④θ可能在第一象限或第四象限,故④错误.综上选③.15、已知sin x +3cos x 3cos x -sin x =5,则sin x cos x +cos 2x =________.【答案】35.【解析】由已知,得tan x +33-tan x=5,解得tan x =2,所以sin x cos x +cos 2x =sin x cos x +cos 2x sin 2x +cos 2x =tan x +1tan 2x +1=2+122+1=35. 16、已知在△ABC 中,tan A =-512,则cos A =________.【答案】-1213【解析】∵在△ABC 中,tan A =-512,∴A 为钝角,cos A <0.由sin A cos A =-512,sin 2A +cos 2A =1,可得cos A=-1213.17、若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________. 【答案】1- 5【解析】由题意知:sin θ+cos θ=-m 2,sin θcos θ=m4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得:m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 18、若sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin αcos α的值等于________.【答案】-25【解析】由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,可得sin α=-2cos α,则tan α=-2,所以sin α cos α=tan α1+tan 2α=-25. 19.(2015·高考广东卷)已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α-1-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.20、已知f (α)=sin π-αcos 2π-αtan ⎝⎛⎭⎪⎫-α+3π2tan ⎝ ⎛⎭⎪⎫π2+α·sin -π-α.(1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值.【答案】(1) -cos α (2)265【解析】(1)f (α)=sin α·cos α·tan ⎝ ⎛⎭⎪⎫-α+3π2-2πtan ⎝ ⎛⎭⎪⎫π2+α·sin α=sin α·cos α·⎣⎢⎡⎦⎥⎤-tan ⎝ ⎛⎭⎪⎫π2+αtan ⎝ ⎛⎭⎪⎫π2+α·sin α=-cosα.(2)∵cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α=15,∴sin α=-15,又α是第三象限角,∴cos α=-1-sin 2α=-2 65.故f (α)=265.。
3.2.3两角和与差的正切函数-----导学案

两角和与差的正切函数使用说明: 1、请同学认真阅读课本119-120页,划出重要知识,规范完成预习案内容并记熟基础知识,用红笔做好 疑难标记。
2、在课堂上联系课本知识和学过的知识,小组合作、讨论完成探究案内容;组长负责,拿出讨论结果,准备展示、点评。
3、及时整理展示、点评结果,规范完成训练案内容,改正完善并落实好学案所有内容。
4、把学案中自己的疑难问题和易忘、易出错的知识点以及解题方法规律,及时整理在典型题本上, 多复习记忆。
【学习目标】1.掌握两角和与差的正切公式,并会加以应用; 2.独立思考,合作学习公式的正用、逆用、变形用;3.激情投入,积极主动地发现问题和提出问题,形成严谨的数学思维习惯。
学习重点:两角和与差的正切公式。
教学难点:公式的正用、逆用、变形用公式,角的演变。
【预习案】一、相关知识前面我们学习了两角和与差的正弦、余弦函数,公式分别是在这基础上,你推导出两角和与差的正切函数的公式吗? 二、教材助读=-=+)tan()tan(βαβα两角和与差的正切公式T αβ±: 注意问题:角的取值范围预习自测1、求下列各式的值:(1)tan75° = (2)tan15° = (3)tan105°= 2、已知2tan ,31tan -==βα则=-)tan(βα =+)tan(βα 。
3、︒︒+︒+︒88tan 58tan 192tan 58tan = 3tan15 _________13tan15-︒=+︒4、已知βαtan tan ,是方程0652=-+x x 的两根,求)tan(βα+的值。
【探究案】基础知识探究:应用T αβ±求值已知tan α = 12 ,tan β = 13 ,0<α<π2 , π<β<3π2 , 求α+β的值。
综合应用探究: T αβ±的逆用、变形用 求值:o o o o 50tan 10tan 3)50tan 10(tan ⋅++当堂检测:1、若tan α= 32 ,tan β= 13 ,则tan (α-β)=A .113 B .79 C .119 D .732、若tan α= 2, ,tan (β-α)=3,则tan (β-2α)=A .-1B .-15C .57D .173.已知3)tan(,2)tan(-=--=+βαβα,则==βα2tan ,2tan 。
两角和与差的正弦、余弦和正切公式

三角恒等变换课标要求:1、掌握两角和与差的正弦、余弦和正切公式2、运用两角和与差的正弦、余弦和正切公式,二倍角公式进行简单的三角恒等变换3、发展学生的推理能力和运算能力§3.1两角和与差的正弦、余弦和正切公式课标要求:1、经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用2、能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系学习目标:1、掌握两角和与差的正弦、余弦和正切公式,二倍角公式2、学会利用公式进行简单的三角恒等变换教学重点:两角和与差的正弦、余弦和正切公式,二倍角公式教学难点:两角和与差的正弦、余弦和正切公式,二倍角公式的灵活应用课时安排:6课时教具:直尺、圆规、背投、电脑第一课时师:这节课我们开始学习第三章第一节:两角差的余弦公式(板书)。
请看本节课的学习目标。
展示学习目标。
学习目标:1、记忆两角差的余弦公式2、利用两角差的余弦公式求值师:目标明确的同学请举手。
(老师根据情况进行下一步)。
请看自学指导。
(展示自学指导) 请认真阅读P124—P126的内容(其中公式的推导不看),完成下列问题,10分钟后检测大家自学效果。
1、βαβαcos cos )cos(-=-成立吗?若成立,说明理由;若不成立,则举例说明。
2、两角差的余弦公式是什么?当已知哪些量时,就可以使用公式计算两角差的余弦了?师:看完并理解掌握的同学请举手。
(根据情况判断是否理解,若有没举手的,老师要问其原因,并解决)师:请 同学解决第一个问题。
(老师根据学生的解答板书,并请其他同学进行纠正)师:请 同学解决第二个问题。
老师根据学生的解答板书,同时强调:1、若已知ββααcos sin cos sin 、之一和、之一及βα、所在的象限,就可以求)cos(βα- 2、若不知角所在的象限,则)cos(βα-的结果可能有多个课堂检测:1、利用差角余弦公式求 105cos 。
312两角和与差的正切

tan15。 tan15。
tan 45。 tan15。 1- tan 45。tan15。
tan(45。 15。) tan 60。 3
1: 求tan15和tan75的值:
解: tan15= tan(4530)
tan45o - tan30o = 1+ tan45otan30o
1
3 3
3
1 3 3
=1 tan17tan28
∴原式=1 tan17tan28+ tan17tan28=1
把下列各式化为一个角的三角函数形式
(1) 3 sin 1 cos
2
2
(2)sin cos
(3)a sin x b cos x
化 a sin x b cos x 为一个角的三角函数形式
a sin x b cos x
tan(α-β)= tanα- tanβ 1+ tanαtanβ
变形:
tanα+ tanβ= tan(α+β)(1- tanαtanβ)
tanα- tanβ= tan(α-β)(1+ tanαtanβ)
(1 tanαtanβ)= tan tan tan( )
求下列各式的值:
(1) 1 tan 75 1 tan 75
两角和的正切公式:
tan(
)
sin(α+β) cos(α+β)
sinαcosβ+ cosαsinβ cosαcosβ- sinαsinβ
当cos cos 0时,分子分母同时除以cos cos
tan(α+β)= tanα+ tanβ 1- tanαtanβ
tan(α+β)= tanα+ tanβ 1- tanαtanβ
北师大版数学必修四课件:第3章§2 2.3 两角和与差的正切函数

tan tan tan( ) 记:T + 1 tan tan
得到: tan( )
理解:
tan tan 1 tan tan
T( α + β )
1.两角和的正切值可以用α和β的正切值表示. 2.公式的右端是分数形式,它是两角正切的和比1减两角正 切的积. 3.公式成立的条件是:
tan tan T : tan 1 tan tan
请同学们说出对公式的理解:
1.两角差的正切值可以用α和β的正切值表示. 2.公式的右端是分数形式,它是两角正切的差比1加两角 正切的积. 3.公式成立的条件是:
k
学会恰当赋值、逆用公式等技能.
复习
1、两角和、差的余弦公式
cos( ) cos cos sin sin cos( ) cos cos sin sin
2、两角和、差的正弦公式
C
C
sin( ) sin cos cos sin sin( ) sin cos cos sin
k
2
且 k
2
且 k
2
k Z .
tan tan
tan
tan tan 1 tan tan
用 代替 得到
tan tan tan 1 tan tan
2.3 两角和与差的正切函数
1.知识目标:
(1)掌握两角和与差的正切公式的推导 ;
(2)掌握公式的正、逆向及变形运用 ; (3)正确寻找角之间的关系,选用恰当的公式形式解决
课件-两角和与差的正切函数

通过公式的变形,可以进一步推导出 其他形式的正切和差公式,如二倍角 公式等。
利用三角函数的减法公式和同角三角 函数的基本关系推导两角差的正切公 式。
03
两角和与差的正切函数的性 质
奇偶性
奇偶性
两角和与差的正切函数具有奇偶 性,即对于任意实数x,有tan(x)=-tan(x),这是正切函数的基本
性质之一。
tan(15°)
tan(30° + 45°)
习题
tan(60° - 30°) tan(180° - 45°)
已知 tanα = 2/3,求 tan(α + 45°) 的值。
习题
若 tanα = -√3,求 tan(α + 15°) 的值。 若 tan2α = -√3,求 tan(α + 45°) 的值。
解决物理问题
在物理问题中,常常需要计算一些特定条件下的物理量,例如振动 、波动等,利用两角和与差的正切函数公式可以方便地解决这些问 题。
解决工程问题
在工程问题中,常常需要计算一些特定条件下的参数,例如机械、建 筑等,利用两角和与差的正切函数公式可以方便地解决这些问题。
05
习题与解答
习题
计算下列各式的值
推导过程
利用三角函数的加法公式和减法公式 ,通过代数运算推导得出。
符号表示
01
tan(α±β)表示两角和与差的正切 函数,其中α和β为任意角度。
02
tanα和tanβ分别表示两个角的正 切值,tan(α±β)表示这两个角的 和或差的正切值。
特殊角的正切值
特殊角的正切值
0°、30°、45°、60°、90°等特殊 角的正切值分别为0、√3/3、1、 √3、不存在等。
两角和与差的正弦、余弦与正切公式

2
(sin
2
A.a>b>c
C.c>a>b
(2)已知
56°-cos 56°),c=
1-ta n 2 39°
,则 a,b,c 的大小关系是(
1+ta n 2 39°
B.b>a>c
D.a>c>b
π
cos(α-6 )+sin
4 3
α= 5 ,则
π
si(nα+6 )=
.
)
答案 (1)D
4
(2)
5
解析 (1)a=cos 50°cos 127°+cos 40°cos 37°
1
D.
2
.
答案 (1)B (2)D (3) 3
解析 (1)根据两角和的正弦公式展开得 sin
3
θ= sin
2
3
θ+ cos
2
θ=1,即
π
3sin(θ+ )=1,解得
6
π
θ+sin(θ+ )=sin
3
1
θ+ sin
2
π
3
sin(θ+ )= .故选
6
3
B.
(2)∵t=2sin 18°,
2cos2 27°-1
.
1+cos
5.积化和差公式
sin αcos
1
β=
2
sin( + ) + sin(-) ,
cos αsin
1
β=2
sin( + )-sin(-) ,
cos αcos
1
β=2
两角和差的正切公式课件

两角和差公式的定义
1 定义
两角和差公式是一种用于计算两个角的和与差的三角函数关系。
2 证明
通过三角函数的性质和恒等变换可以证明两角和差公式的正确性。
3 应用
两角和差公式在解决三角函数方程和计算复杂角度时非常有用。
正切函数的两角和差公式
1
两角和公式
正切函数的两角和公式可以帮助我们计
两角差公式
2
算两个角度之和的正切值。
课程评价
如果你对正切函数和两角和差公式有了更深入的认识,那么这堂课就是成功的!
正切函数的两角差公式可以帮助我们计
算两个角度之差的正切值。
3
推导
我们将通过代数化简和三角恒等变换推
应用
4
导出两角和差的正切公式。
正切函数的两角和差公式在解决实际问 题和三角函数方程时非常重要。
总结
内容回顾
我们回顾了正切函数的定义、两角和差公式的定义和应用以及推导的过程。
公式记忆技巧
通过反复练习和理解数学推导,我们可以更好地记住两角和差的正切公式。
两角和差的正切公式课件
欢迎来到本课程!我们将学习有关两角和差的正切公式的知识,探索其定义 和应用。让我们开始吧!
正切函数的定义
Байду номын сангаас正切函数定义
正切函数通过直角三角形来定 义,是一种关于角度的三角函 数。
值域
正切函数的值域覆盖了整个实 数轴。
图像
正切函数的图像在不同的周期 内具有对称性,呈现出典型的 振荡曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页
返回首页
下一页
解决化简与求值问题的注意事项 (1)公式的逆用 一方面要熟记公式的结构, 另一方面要注意常值代换, 如 tan 45° =1, tan 30° 3 = 3 ,tan 60° = 3等.
π 1± tan α ± . α 特别要注意1± = tan tan α 4
【答案】 A
上一页
ቤተ መጻሕፍቲ ባይዱ
返回首页
下一页
3.已知
π tanα-4=2,则
tan α 等于
.
【解析】
π tan α-1 tanα-4= =2,解得 1+tan α
tan α=-3.
【答案】 -3
上一页
返回首页
下一页
4.已知 tan α+tan β=2,tan(α+β)=4,则 tan α· tan β=
【提示】 ∵A+B+C=π,∴A+B=π-C ∴tan (A+B)=-tan C, tan A+tan B ∴ =-tan C 1-tan AtanB ∴tan A+tan B+tan C=tan Atan BtanC.
探究 3 在△ABC 中,A,B,C 三个角有什么关系?
A B π C 【提示】 A+B+C=π 或 2 + 2 =2- 2 .
上一页
返回首页
下一页
两角和与差的正切公式 名称 两角和 的正切 两角差 的正切 简记符号 T(α+β) 公式 使用条件 π α , β , α + β≠kπ + 2 (k∈Z) 且 tan α· tan β≠1 π α,β,α-β≠kπ+2(k∈Z)
tan α+tan β tan(α+β)= 1-tan αtan β
上一页
返回首页
下一页
【解】
(1)tan 15° +tan 30° =tan(15° +30° )(1-tan 15° · tan 30° )
=tan 45° (1-tan 15° · tan 30° ) =1-tan 15° · tan 30° , 所以原式=1-tan 15° · tan 30° +tan 15° · tan 30° =1.
上一页 返回首页 下一页
在△ABC 中, tan B+tan C+ 3tan Btan C= 3, 且 3tan A+ 3tan B +1=tan Atan B,判断△ABC 的形状.
【精彩点拨】 可先求出 tan(B+C)和 tan(A+B)的值.再由诱导公式分别求 tan A 和 tan C 的值,从而可得 A,B,C,即可判断三角形形状.
上一页
返回首页
下一页
3π ∴ 4 <β<π, 3π ∴-π<-β<- 4 , π ∴-π<α-β<-2, π ∴-π<2α-β<-4, 3π ∴2α-β=- 4 .
上一页
返回首页
下一页
1.本题中隐含着角 α,β 的范围,需通过 tan α,tan β 的值缩小其范围. 2.已知某三角函数值求角问题,通常分两步:(1)先求角的某个三角函数值 (由题中已知名称和范围确定);(2)根据角的范围确定角,必要时可利用值缩小角 的范围.
T(α-β)
tan α-tan β tan(α-β)=1+tan αtan β
上一页
返回首页
下一页
1.变形公式 tan α+tan β=tan(α+β)(1-tan αtan β); tan α-tan β=tan(α-β)(1+tan αtan β); tan α+tan β tan αtan β=1- . tanα+β 2.公式的特例
上一页
返回首页
下一页
tan 所以原式=
40° -tan 30° tan 50° -tan 40° tan 60° -tan 50° tan 10° + + · tan 10° tan 10° tan 10°
=tan 40° -tan 30° +tan 50° -tan 40° +tan 60° -tan 50° 3 2 3 =-tan 30° +tan 60° =- 3 + 3= 3 .
上一页
返回首页
下一页
【自主解答】
1 1 ∵tan(α-β)=2,tan β=-7.
∴tan α=tan [(α-β)+β] tanα-β+tan β = 1-tanα-βtan β 1 1 2-7 1 = 1 1=3. 1+7×2
上一页
返回首页
下一页
∴tan(2α-β)=tan[(α-β)+α] tanα-β+tan α = 1-tanα-βtan α 1 1 2+3 = 1 1=1. 1-2×3 π 1 ∵0<α<4,又 0<β<π,tan β=-7>-1.
上一页
返回首页
下一页
给值求角 XXX
已知 的值.
π α∈0,4,β∈(0,π),且
1 1 tan(α-β)=2,tan β=-7.求(2α-β)
【导学号:66470070】
【精彩点拨】 先由 α=(α-β)+β,求出 tan α,再由 2α-β=(α-β)+α 求 出 tan(2α-β),然后根据 α,β 的范围,求出 2α-β 的值.
上一页
返回首页
下一页
1 1 1.若 tan α=2,tan β=3,则 tan(α+β)=( 1 A.2 2 C. 2 B.1 D. 2
)
1 1 tan α+tan β 2+3 【解析】 tan(α+β)= = 1 1=1. 1-tan αtan β 1-2×3 【答案】 B
上一页 返回首页 下一页
上一页
返回首页
下一页
[再练一题] 2 3 3.在△ABC 中,∠C=120° ,tan A+tan B= 3 .求 tan A· tan B.
上一页
返回首页
下一页
【解】
因为 A+B+C=180° ,∠C=120° ,
所以 tan(A+B)=tan 60° = 3. tan A+tan B 又 tan(A+B)= , 1-tan A· tan B 2 3 3 所以 = 3, 1-tan A· tan B 1 解得 tan A· tan B=3.
上一页
返回首页
下一页
【自主解答】
tan 60° +tan 15° (1)原式= 1-tan 60° tan 15°
=tan 75° =tan(45° +30° ) 3 1+ 3 3+ 3 9+3+6 3 = = = =2+ 3. 6 3 3- 3 1- 3
上一页
返回首页
下一页
(2)∵tan(23° +37° )=tan 60° tan 37° +tan 23° = = 3, 1-tan 23° tan 37° ∴tan 23° +tan 37° = 3(1-tan 23° tan 37° ), ∴原式= 3(1-tan 23° tan 37° )+ 3tan 23° tan 37° = 3.
上一页
返回首页
下一页
【自主解答】 tan A=tan[π-(B+C)]=-tan(B+C) tan B+tan C 3- 3tan Btan C = = =- 3, tan Btan C-1 tan Btan C-1 又 0° <A<180° ,∴A=120° , tan A+tan B 而 tan C=tan[π-(A+B)]= tan Atan B-1 tan A+tan B 3 = =3. 3tan A+ 3tan B
π 1+tan tan4+α= 1-tan π 1-tan tan4-α= 1+tan
α ; α α . α
上一页 返回首页 下一页
判断(正确的打“√”,错误的打“×”) (1)tan αtan β, tan(α+β), tan α+tan β 三者知二, 可表示或求出第三个. (
上一页
返回首页
下一页
(2)原式=(1+tan 30° tan 40° +1+tan 40° tan 50° +1+tan 50° tan 60° )· tan 10° , tan 40° -tan 30° 因为 tan 10° =tan(40° -30° )= , 1+tan 40° tan 30° tan 40° -tan 30° 所以 1+tan 40° tan 30° = . tan 10° tan 50° -tan 40° 同理,1+tan 40° tan 50° = , tan 10° tan 60° -tan 50° 1+tan 50° tan 60° = . tan 10°
【答案】 (1)√ (2)× (3)√ (4)×
上一页
返回首页
下一页
[小组合作型]
两角和与差的正切公式的灵活运用
求下列各式的值. 3+tan 15° (1) ; 1- 3tan 15° (2)tan 23° +tan 37° + 3tan 23° tan 37° .
上一页
返回首页
下一页
【精彩点拨】 解决(1)题可考虑 3=tan 60° ,再逆用公式,解决(2)题注意 到 23° +37° =60° ,而 tan 60° = 3,故联想 tan(23° +37° )的展开形式,并变形, 即可解决.
(2)公式的变形运用 见到 tan α± tan β,tan αtan β 时,要有灵活变形应用公式 Tα±β 的意识.
上一页 返回首页 下一页
[再练一题] 1.(1)tan 15° +tan 30° +tan 15° tan 30° ; (2)(3+tan 30° · tan 40° +tan 40° · tan 50° +tan 50° · tan 60° )· tan 10° .
上一页 返回首页 下一页
[探究共研型]
正切公式的综合应用
探究 1 若 α+β=π,则 tan α 与 tan β 存在怎样关系?