线性规划经典例题

合集下载

线性规划典型例题

线性规划典型例题

例1:生产计划问题某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。

若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。

现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。

试建立模型。

解:法1 设每个季度分别生产x1,x2,x3,x4则要满足每个季度的需求x4≥26x1+ x2≥40x1+ x2+ x3≥70x1+ x2+ x3+ x4=80考虑到每个季度的生产能力 0≤x1≤300≤x2≤400≤x3≤200≤x4≤10每个季度的费用为:此季度生产费用+上季度储存费用第一季度15.0x1第二季度14 x2 0.2(x1-20)第三季度15.3x3+0.2(x1+ x2-40)第四季度14.8x4+0.2(x1+ x2+ x3-70)工厂一年的费用即为这四个季度费用之和,得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26s.t.x1+ x2≥40x1+ x2+ x3≥70x1+ x2+ x3+ x4=8020≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。

法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨根据合同要求有:xll=20x12+x22=20x13+x23+x33=30x14+x24+x34+x44=10又根据每季度的生产能力有:xll+x12+x13+x14≤30x22+x23+x24≤40x33+x34≤20x44≤10第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。

minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44s.t. xll=20,x12+x22=20,x13+x23+x13=30,x14+x24+x34+x44=10,x1l+x12+x13+x14≤30,x22+x23+x24≤40,x33+x34≤20,x44≤10,xij≥0, i=1,…,4;j=1,…,4,j≥i。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述假设有一家生产玩具的工厂,该工厂生产两种类型的玩具:A型和B型。

工厂有两个车间可供使用,分别是车间1和车间2。

每一个车间生产一种类型的玩具,并且每一个车间每天的生产时间有限。

玩具A的生产需要1个小时在车间1和2个小时在车间2,而玩具B的生产需要3个小时在车间1和1个小时在车间2。

每一个车间每天的生产能力分别是8个小时和6个小时。

每一个玩具A的利润为100元,而玩具B的利润为200元。

现在的问题是,如何安排每一个车间每天的生产时间,以使得利润最大化?二、数学建模1. 定义变量:设x1为在车间1生产的玩具A的数量(单位:个);设x2为在车间2生产的玩具A的数量(单位:个);设y1为在车间1生产的玩具B的数量(单位:个);设y2为在车间2生产的玩具B的数量(单位:个)。

2. 建立目标函数:目标函数为最大化利润,即:Maximize Z = 100x1 + 200y13. 建立约束条件:a) 车间1每天的生产时间限制:x1 + 3y1 ≤ 8b) 车间2每天的生产时间限制:2x1 + y1 ≤ 6c) 非负约束条件:x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0三、求解线性规划问题使用线性规划求解器,可以求解出最优的生产方案。

1. 求解结果:根据线性规划求解器的结果,最优解为:x1 = 2, x2 = 0, y1 = 2, y2 = 0即在车间1生产2个玩具A,在车间2生产2个玩具B,可以实现最大利润。

2. 最大利润:根据最优解,可以计算出最大利润:Z = 100x1 + 200y1= 100(2) + 200(2)= 600元因此,在给定的生产时间限制下,最大利润为600元。

四、结果分析根据线性规划求解结果,我们可以得出以下结论:1. 最优生产方案:根据最优解,最优生产方案为在车间1生产2个玩具A,在车间2生产2个玩具B。

2. 最大利润:在给定的生产时间限制下,最大利润为600元。

线性规划经典例题及详细解析

线性规划经典例题及详细解析

一、 已知线性约束条件,探求线性目标关系最值问题1. 设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

二、 已知线性约束条件,探求非线性目标关系最值问题2. 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值就是 。

3. 已知变量x,y 满足约束条件+201-70x y x x y -≤⎧⎪≥⎨⎪+≤⎩,则 y x 的取值范围就是( )、 A 、 [95,6] B 、(-∞,95]∪[6,+∞) C 、(-∞,3]∪[6,+∞) D 、 [3,6]三、 研究线性规划中的整点最优解问题4. 某公司招收男职员x 名,女职员y 名,x 与y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值就是 。

四、 已知最优解成立条件,探求目标函数参数范围问题5. 已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。

若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。

6. 已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的值为( )A. -3 B 、 3 C 、 -1 D 、 1五、 求可行域的面积7. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A. 4 B 、 1 C 、 5 D 、 无穷大图1解析:1.如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z最大值为18。

图22. 如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。

六种经典线性规划例题

六种经典线性规划例题

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩ppp p作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C 、13,45D 、13,25 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 六·比值问题当目标函数形如y a z x b -=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。

工厂有两个生产车间:车间1和车间2。

生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。

每一个车间的加工时间和加工费用都是不同的。

我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。

二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。

假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述假设某公司生产两种产品A和B,每种产品的生产需要消耗不同的资源,并且每种产品的利润也不同。

公司希翼通过线性规划来确定每种产品的生产数量,以最大化利润。

二、数据采集根据公司的生产情况和资源消耗情况,我们采集到以下数据:1. 产品A的每单位资源消耗量:2单位人力,3单位材料。

2. 产品B的每单位资源消耗量:4单位人力,2单位材料。

3. 公司目前拥有的资源数量:10单位人力,12单位材料。

4. 产品A的利润:5单位。

5. 产品B的利润:8单位。

三、目标函数我们的目标是最大化利润,因此我们可以定义目标函数为:Maximize Z = 5A + 8B其中A表示生产的产品A的数量,B表示生产的产品B的数量。

四、约束条件根据资源消耗情况和拥有的资源数量,我们可以列出以下约束条件:1. 人力资源消耗约束:2A + 4B <= 102. 材料资源消耗约束:3A + 2B <= 123. 非负约束:A >= 0,B >= 0五、求解过程我们可以使用线性规划的方法来求解该问题。

首先,我们将目标函数和约束条件转化为标准形式:目标函数:Maximize Z = 5A + 8B约束条件:2A + 4B <= 103A + 2B <= 12A >= 0,B >= 0然后,我们可以使用单纯形法或者其他线性规划求解方法来求解该问题。

求解过程中,我们需要进行迭代计算,不断更新变量A和B的取值,直到找到最优解。

六、结果分析经过计算,我们得到最优解为:A = 2,B = 3此时,最大利润为:Z = 5(2) + 8(3) = 34单位根据最优解,公司应该生产2个产品A和3个产品B,以获得最大利润34单位。

七、灵敏度分析在实际情况中,资源消耗量和利润可能会发生变化。

为了评估最优解的稳定性,我们可以进行灵敏度分析。

1. 资源消耗量变化:如果人力资源消耗量增加1单位,即2A + 4B <= 11,则最优解会发生变化。

八种经典线性规划例题(超实用)

八种经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题【问题描述】某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时的生产时间,产品B每件需要3小时的生产时间。

产品A的利润为200元/件,产品B的利润为300元/件。

每天的生产量不能超过100件。

工厂希翼最大化每天的利润。

【数学建模】设工厂每天生产的产品A的件数为x,产品B的件数为y。

根据题目条件,可以得到以下数学模型:目标函数:最大化利润Maximize Z = 200x + 300y约束条件:1. 生产时间限制:2x + 3y ≤ 82. 产量限制:x + y ≤ 1003. 非负性约束:x ≥ 0,y ≥ 0【求解过程】将目标函数和约束条件转化为标准形式,得到如下线性规划模型:Maximize Z = 200x + 300ysubject to2x + 3y ≤ 8x + y ≤ 100x ≥ 0,y ≥ 0使用线性规划求解器进行求解,得到最优解。

【求解结果】经过计算,得到最优解为:x = 50(产品A的件数)y = 16.67(产品B的件数,近似值)此时,工厂每天的最大利润为:Z = 200 * 50 + 300 * 16.67 = 33333.33 元(近似值)【结果分析】根据最优解,工厂每天应该生产50件产品A和16.67件产品B,以达到每天最大利润33333.33元。

由于生产时间和产量限制,工厂无法达到每天生产更多的产品。

【结论】根据线性规划模型的最优解,工厂每天生产50件产品A和16.67件产品B,可以获得每天最大利润33333.33元。

这个结果可以作为工厂生产计划的参考,以实现最大化利润的目标。

【备注】以上的数学模型和求解结果仅为示例,实际问题中的数值和约束条件可能有所不同。

为了得到准确的结果,需要根据具体情况进行调整和求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划常见题型及解法
由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围
例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪
≤⎨⎪+≥⎩
,则z=x+2y 的取值范围是 ( )
A 、[2,6]
B 、[2,5]
C 、[3,6]
D 、(3,5]
解:如图,作出可行域,作直线l :x+2y =0,将
l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A
二、求可行域的面积
例2、不等式组260302x y x y y +-≥⎧⎪
+-≤⎨⎪≤⎩
表示的平面区域的面积为 ( )
A 、4
B 、1
C 、5
D 、无穷大
解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC
的面积减去梯形OMAC 的面积即可,选B
三、求可行域中整点个数
例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个
x y O
2
2 x=2
y =2 x + y =2
B
A
2x + y – 6= 0 = 5
x +y – 3 = 0
O
y
x A B
C M y =2
解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)
2
(0,0)x y x y x y x y x y x y x y x
y
+≤≥≥⎧⎪-≤≥⎪

-+≤≥⎪⎪--≤⎩
作出可行域如右图,是正方形内部(包括边界),容易得到整
点个数为13个,选D
四、求线性目标函数中参数的取值范围
例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪
-+≤⎨⎪≤⎩
,使z=x+ay(a>0)
取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1
解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解
有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D
五、求非线性目标函数的最值
例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪
-+≥⎨⎪--≤⎩
,则z=x 2+y 2的最大值和最小值分别是( )
A 、13,1
B 、13,2
C 、13,4
5
D

5
解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为
4
5
,选C 六、求约束条件中参数的取值范围
例6、已知|2x -y +m|<3表示的平面区域包含点
(0,0)和(-
1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)
解:|2x -y +m|<3等价于230
230
x y m x y m -++>⎧⎨
-+-<⎩
由右图可知33
30
m m +>⎧⎨
-<⎩ ,故0<m <3,选C
七·比值问题
当目标函数形如y a
z x b
-=
-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

例 已知变量x ,y 满足约束条件⎩
⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则 y
x 的取值范围是( ).
(A )[95,6] (B )(-∞,9
5]∪[6,+∞) (C )(-∞,3]∪[6,+∞) (D )[3,6] 解析 y
x 是可行域内的点M (x ,y )与原点O
(0,0)连线的斜率,当直线OM 过点(52,92)时,y
x 取得 最小值95;当直线OM 过点(1,6)时,y
x 取得最大值6. 答案A。

相关文档
最新文档