排列组合八种方法

合集下载

排列组合难题八种方法

排列组合难题八种方法

一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法乙甲丁丙练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有1种坐法,则共有47A 种方法。

思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法C 14A 34C 13位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

排列组合方法

排列组合方法

排列、组合题解题方法一、相邻问题捆绑法1、A,B,C,D,E共5人并排站成一排,若A,B必须相邻,则不同的排法种数有多少?2、A,B,C,D,E共5人并排站成一排,若A,B必须相邻且B在A的右边,则不同的排法种数有多少?二、相离问题插空法1、A,B,C,D,E共5人并排站成一排,若A,B不能相邻,则不同的排法种数有多少?2、用1,2,3,4,5,6,7七个数字排成一个七位数,(1)偶数数字不相邻的有多少个?(2)奇数与偶数数字相间的有多少个?3、4男4女排成一排,男女要相间排列,则不同的排法种数有多少?4、某人射击8枪,命中4枪,4枪命中且恰有3枪连在一起的不同种数?射击7枪,击中5枪,击中与未击中的不同顺序?三、定序问题缩倍法1、A,B,C,D,E共5人并排站成一排,若A必须站在B的右方,(A,B可以不相邻),则不同的排法种数有多少?2、书架上放有6本不同的书,现把另外3本不同的新书也放上去,并且不改变原来书的相对顺序,则共有多少种不同的摆放方法?3、一条街上有10盏路灯,为了节约用电,需关掉其中的3盏,但不能关两端的2盏,也不能关相邻的2盏或3盏,则共有多少种关灯方法?4、某人上楼共10级,上楼可以一步上一级,也可一步上两级,规定要用8步走完,则不同的上楼方法?四、定位问题优先法1、一名老师和4名同学排成一排照相,若老师不能在两端,则不同的排法种数有多少?2、用0,1,3,5,7五个数字,可组成多少个没有重复数字且5不在十位位置上的五位数?3、10双不同的鞋子混装在一只口袋中,从中任取4只,(1)4只鞋子没有成双的(2)4只鞋子恰成两双(3)4只鞋子,有2只成双,另2只不成双五、相同元素隔板法1、方程)(*∈=+++NnnxxxmΛ21,共有多少组不同的正整数解?2、某校召开代表会,把6个代表分配给3个班,每班至少一个名额,有多少种方法?3、4()a b c d f++++展开式再合并同类项共有多少项?4、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子至少有一个球的不同放法?(2)12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,不同放法?(3)12个相同的小球放入编号为1,2,3,4的盒子中,每个盒子的小球数不小于其编号数,不同放法?六、有序分配问题逐分法1、有甲,乙,丙三项任务,甲需2人承担,乙,丙各需一人承担,从10人中选出4人承担这3项任务,不同的选法总数有多少?2、6本不同的书,按下列条件,各有多少种不同的分法?(1)分给甲,乙,丙三人,每人两本书(2)分成三份,每份2本(3)分成三份,1份1本,1份2本,1份3本(4)分给甲,乙,丙三人,1人1本,1人2本,1人3本(5)分给甲,乙,丙三人,每人至少1本3、用黄,蓝,白3种颜色粉刷6间办公室,一种颜色粉刷3间,一种颜色粉刷2间,一种颜色粉刷1间,问粉刷这6间办公室有多少种安排方法?七、标号排位树图法1、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有几种?八、多元问题分类法1、由数字0,1,2,3,4,5组成且没有重复数字的六位数,其中个位数字小于十位数字的共有几个?2、从1,2,…,100这100个数中,任取2个数,使其和能被4整除的取法有多少种?3、有11名外语翻译,其中7名英语翻译,6名日语翻译,从中找出8人,组成两个翻译小组,其中4人翻译英语,另4人翻译日语,这两组能同时工作,问这样的8人名单共有多少种?4、9名歌舞演员,7人会唱歌,5人回舞蹈,从中选出2人,一人唱歌,一人跳舞,则不同的选法?5、划船运动员8人,其中3人只会划右舷,2人只会划右舷,3人会划右舷也会划左舷,从这8人中选出6人,平均分配在船的两侧,有多少种选法?九、交叉问题集合法1、从6名运动员中选出4个参加接力赛,若甲不跑第一棒,乙不跑第二棒,共有多少种方式?十、多排问题单排法1、6个不同的元素排成前后两排,每排3个元素,则不同的排法总数?2、8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素要排在后排,则不同的排法总数?十一、“至少”问题间接法1、从4台甲型和5台乙型电视机中任选3台,其中至少有甲型和乙型电视机各一台,则不同的取法有几种?十二、选排问题先选后排法1、4个不同的球放入编号为1,2,3,4的4个盒中,则恰有一个空盒的放法有几种?2、9名乒乓球运动员,其中男5名,女4名,要进行混合双打比赛,有多少种分组方法?十三、部分符合条件问题排除法1、以一个正方体的顶点为顶点的四面体共有多少个?异面直线有多少对?(174)2、从正方体的6个面中选取3个面,其中有两个不相邻的选法有多少种?3、四面体的顶点和各棱的中点共10个点,在其中取不共面的4个点,不同的取法有多少种?4、有1克,2克,3克,4克,的四个砝码,可以称不同重量的物体种数?5、从0,1,2,3,4,5中取出3个不同的元素作为方程ax+by+c=0的系数,则可表示的不同直线的条数?十四、注意问题的转化1、某区有7条南北街道,5条东西街道,如图(1)图中共有多少个矩形?(2)从A到B路径最短的走法有多少种?2、圆内接n边形(n ≥4)的对角线在圆内最多可以有多少个不同的交点?十五、平均分堆问题1、有6本不同的书,(1)平均分成3堆,有多少种分法?(2)平均分给甲,乙,丙三人,有多少种分法?2、8本不同的书,分成三堆,一堆4本,另两堆2本,有多少种分法?。

排列组合常见的九种方法

排列组合常见的九种方法

排列组合常见的九种方法
1. 直接排列法:将元素按照一定次序排列,每种排列方案都是一个不同的结果。

例如,3个元素的排列数为 3! = 3 × 2 × 1 = 6。

2. 递归法:将问题逐步分解成每一步只有相对简单的子问题,从而不断求解。

通过递归,经过一系列不同的子过程,得到最终的结果。

3. 循环法:使用循环来枚举所有的可能的排列组合情况。

通常用于数组、字符串等元素的排列组合问题。

4. 分组排列法:将待排列的元素按照一定属性分组,再对每组内的元素进行排列组合,最终将每组的结果进行组合得到最终的结果。

5. 交换法:通过元素间的交换,对所有可能的排列组合进行枚举。

该方法需要注意元素交换时的顺序。

6. 邻项对换法:将相邻的两项进行对换,直到所有项都被排列组合了一遍。

7. 插入法:将新的元素依次插入已有元素的任意位置,直到所有元素都被排列组合了一遍。

8. 非递增排列法:将待排列的元素按照一定属性进行排序,然后将元素从最大的开始进行排列组合。

9. 非递减排列法:将待排列的元素按照一定属性进行排序,然后将元素从最小的开始进行排列组合。

排列组合插板法、插空法、捆绑法

排列组合插板法、插空法、捆绑法

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。

注意:这样对于很多的问题,是不能直接利用插板法解题的。

但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。

插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。

排列组合常见21种解题方法

排列组合常见21种解题方法

排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。

在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。

1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。

2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。

3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。

4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。

5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。

6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。

7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。

8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。

9. 对称性法,利用排列组合的对称性质,简化计算过程。

10. 逆向思维法,从问题的逆向思考,求解排列组合问题。

11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。

12. 构造法,通过构造合适的排列组合模型,求解问题。

13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。

14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。

15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。

16. 模拟法,通过模拟排列组合过程,求解问题。

17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。

18. 穷举法,通过穷举所有可能的情况,求解问题。

19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。

排列组合常见类型及方法

排列组合常见类型及方法

1.有限制条件的排列问题常见命题形式: “在”与“不在” ,“邻”与“不邻”⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是 ⑵“不邻”问题在解题时最常用的是“插空排列法”.⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.2.有限制条件的组合问题, “含”与“不含” ,“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”.3.闸板法 名额分配或相同物品的分配问题4.合并单元格解决染色问题练习 1.3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?2.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有( )(A)140种 (B)84种 (C)70种 (D)35种3.有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有( ) (A)1260种 (B)2025种 (C)2520种 (D)5040种4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__5.在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法? 9906.有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 4327.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )8.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ) 9.某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

排列组合问题的八种求法(免费)

排列组合问题的八种求法(免费)
排列组合问题的八种求法
云南昭通鲁甸一中 李明健 云南昭通站 张中华推荐 排列组合是高中数学的重点、难点内容之一,同时也是解决概 率问题的重要 “工具 ”,下面举例说明排列组合问题的八种求法: 一、特殊位置或特殊元素:优先法 例 1:由 0、 1、 2、 3、 4、 5 六个数字可组成多少个没有重复数 字且不能被 10 整除的六位数? 解法一:先安排首末两个特殊位置,从 1、2、3、4、5 中任取 两个排在首位和末位,然后把 0 和剩余的三个数字排在中间四个位 置上,符合条件的六位数共有 A A 个。
种分法
( 5)不属平均分堆,故有:
C C C
6 5 1 2 3 3
60
种不同的分法
求解完毕,仅以以上几例抛砖引玉,解题时注意积累经验,总 结规律,掌握技巧,定会柳暗花明。
- 4-Biblioteka 6 5 1 2 3 3 60
2 4
种分法
2 2
( 2)有: C C C A
6 3 3
2
15
种分法
2 2 4 2 2 6
( 3)先均分,再不指明分配,故有: C C C A
3 3

A
3 3
90

( 4)不是平均分堆,故有:
C C C A
6 5 3 1 2 3 3 3
360
5 5
男?男?男?男?男?) ,共有 6 个空档可插,选其中的 3 个空档, 共有 A 种排法,由乘法原理可得:
3 6
- 2-
A A
5
5
3 6
14400
即共有 14400 种不同的排法。 六、至多、至少问题可用:间接法(或排除法) 例 6、四面体的 4 个顶点和 6 个各棱中点,从中取出 4 个不共 面的点,不同的取法有多少种? 解:将四点共面的情形分为三类: ① 4 点位于同一表面,有 4 C 种;

排列组合方法归类大全

排列组合方法归类大全

排列组合的常见题型及其解法一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。

解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。

例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种) 三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种) 四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。

解题方法是:先将n 个元素进行全排列有A n n 种,m m n ()≤个元素的全排列有A m m种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,则有A A n n mm 种排列方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

占位法
• 七人排队,其中甲乙丙三人 顺序一定一共有多少种排法
调序法
• 4个男生,3个女生站成一排。 三个女生的顺序一定,共多 少种排法?

平均法
• 六个学生平均分为三组,共 几种分法
隔板法
• 设有n+1个不同颜色的球, 放入n个不同的盒子中,要求 每个盒子至少有一个球,则 不同的放法有
•甲乙丙丁等七人排成一 排,要求甲在中间,乙 丙相邻,且丁不在两端, 则不同的排法有?
排列组合八种解法
• • • • • • • • 直接法 排除法 捆绑法 插空法 占位法 调序法 平均法 隔板法
直接法
•若0,1作为特殊号码不 能放在首位,则电话号 码由7位升为8位后, 理论上可以增加多少电 话资源。
排除法
四面体的顶点和各棱中 点共有10个点,在其 中取四个不共面的点, 不同取法有
捆绑法 • 将甲乙丙丁四名大学 毕业生分到3个不同车 间实习,每个车间至少 分到一名,且甲乙两人 不能分到同一个车间, 则不同的分法种数为
插空法
• 一条马路上有编号为1、 2、……、9的九盏路灯,为 了节约用电,可以把其中的 三盏关掉,但不能同时关掉 相邻的两盏或三盏,则所有 不同的关灯方法有多少种?
相关文档
最新文档