数显温度计实验报告
DS18B20温控实验报告 - 副本

桂林航院电子工程系单片机课程设计与制作说明书设计题目:DS18B20数字温度计的设计专业:通信技术班级:学号:姓名:指导教师:2012年 6 月 28 日桂林航天工业学院单片机课程设计与制作成绩评定表单片机课程设计与制作任务书专业:通信技术学号: 2 姓名:一、设计题目:DS18B20数字温度计的设计二、设计要求:1.要求采集温度精确到度。
2.显示测量温度三、设计内容:硬件设计、软件设计及样品制作四、设计成果形式:1、设计说明书一份(不少于4000字);2、样品一套。
五.完成期限: 2010 年月日指导教师:贾磊磊年月日教研室:年月日目录一摘要 (1)设计要求 (1)二理论设计 (2)硬件电路计 (2)2.1.1芯片介绍 (2)2.1.2 DS18B20简介 (7)设计方案 (9)2.2.1.显示方案 (9)2.2.2.系统硬件电路设计 (11)2.2.3软件设计流程及描述 (11)三.系统的调试 (13).硬件的调试 (13)实验结果 (19)四、设计注意事项 (19)点阵设计注意事项 (20)单片机注意事项 (16)仿真器使用注意事项 (16)五.设计心得体会 (17)总结与体会 (17)摘要在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
其中,温度控制也越来越重要。
在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。
因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。
单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。
因此,单片机广泛用于现代工业控制中。
本论文侧重介绍“单片机温度控制系统”的软件设计及相关内容。
电子温度计实验报告

电子温度计实验报告
篇一:电子温度计的设计与实现实验报告
实验六电子温度计的设计与实现
摘要:设计一个用铂电阻作为传感器的电子温度计,用非平衡电桥测量铂电阻的温度系数。并对温度计进行标定
关键词:电桥铂电阻电子温度计
一.引言
传感器在现实生活中的应用越来越广泛,常用的有力敏传感器、气敏传感器、温度传感器等。利用温度传感器和电阻配合,可将温度这一热学量转化为电学量,这样在实践应用中便于自控和遥测,为工业自动化创造了有利条件。本实验用非平衡电桥和铂电阻传感器构成测温电路,并用电表显示读书,从而实现对温度的测量。
八.结束语
操作过程中过于心急以及对操作程序步骤和实验仪器的不熟悉造成误差。了解到实验最需要的是耐心与仔细。
九.参考文献
[1]期刊:郭雷.仿真物理实验教学系统的设计与实现[J].中国科学技术大学学报,20XX,32(3):373-380
[2]书籍:赵丽华等,编大学物理实验[m],浙江大学出版社20XX.3
①
②当电源e的输出电压一定时,非平衡电桥桥路的输出电压uout
五、实验内容
1.按图1连接电路,取R1=R2=2500V,R0=99.8欧,电源电压u=3V。2.标定测温范围下限。将数字温度计和铂电阻传感器放入冰水混合物中,在T=0℃时,调节电桥平衡,记录,和数值,由此确定铂电阻的数值。3.改变温度(不断加温),记录数字温度计的读书,用数字式万用电表测量,确定铂电阻的阻值与温度在20~70℃时之间的关系,共测量30个点,温度分布尽量均匀。用微安表的读数作为温度显示,要求零刻度线对应20℃,满刻度对应70℃,每隔5℃标定一刻度。
0.引言
单片机技术作为计算机技术的一个分支,广泛地应用于工业控制,智能仪器仪表,机电一体化产品,家用电器等各个领域。“单片机原理与应用”在工科院校各专业中已作为一门重要的技术基础课而普遍开设。学生在课程设计,毕业设计,科研项目中会广泛应用到单片机知识,而且,进入社会后也会广泛接触到单片机的工程项目。鉴于此,提高“单片机原理及应用”课的教学效果,让学生参与课程设计实习甚为重要。单片机应用技术涉及的内容十分广泛,如何使学生在有限的时间内掌握单片机应用的基本原理及方法,是一个很有价值的教学项目。为此,我们进行了“单片机的学习与应用”方面的课程设计,锻炼学生的动脑动手以及协作能力。
常见温度测量实验报告

一、实验目的1. 了解常用温度测量方法的基本原理。
2. 掌握温度计的使用方法及注意事项。
3. 通过实验,提高对温度测量仪器的操作技能和数据分析能力。
二、实验原理温度是表征物体冷热程度的一个物理量,温度测量是科学研究、工业生产及日常生活中不可或缺的一部分。
本实验主要涉及以下几种温度测量方法:1. 液体膨胀法:利用液体受热膨胀、冷却收缩的性质来测量温度。
2. 热电偶法:利用两种不同金属导线在温度梯度作用下产生电动势(热电势)的性质来测量温度。
3. 半导体热敏电阻法:利用半导体材料的电阻值随温度变化的特性来测量温度。
三、实验器材1. 恒温水浴锅2. 比重瓶3. 温度计(液体膨胀式、热电偶式、热敏电阻式)4. 数据采集器5. 计算机软件6. 烧杯、玻璃棒、温度计夹具等四、实验步骤1. 液体膨胀法测量温度(1)将比重瓶放入恒温水浴锅中,调整水浴锅温度至预定值,保持一段时间。
(2)用温度计测量水浴锅内的水温,记录数据。
(3)将比重瓶取出,立即用温度计测量比重瓶内的液体温度,记录数据。
(4)计算液体膨胀引起的体积变化,根据液体膨胀系数计算温度变化。
2. 热电偶法测量温度(1)将热电偶插入恒温水浴锅中,调整水浴锅温度至预定值,保持一段时间。
(2)用温度计测量水浴锅内的水温,记录数据。
(3)读取热电偶的电动势值,根据热电偶分度表计算温度值。
3. 热敏电阻法测量温度(1)将热敏电阻传感器插入恒温水浴锅中,调整水浴锅温度至预定值,保持一段时间。
(2)用温度计测量水浴锅内的水温,记录数据。
(3)读取热敏电阻的电阻值,根据热敏电阻的温度特性曲线计算温度值。
五、数据处理1. 将实验数据整理成表格,包括实验条件、测量值、计算结果等。
2. 对实验数据进行误差分析,计算实验误差和相对误差。
3. 分析实验结果,总结温度测量方法的特点和适用范围。
六、实验结果与分析1. 通过实验,验证了液体膨胀法、热电偶法和热敏电阻法在温度测量中的可靠性。
DS18B20数字温度计设计实验报告(1)【范本模板】

单片机原理及应用课程设计报告书题目:DS18B20数字温度计姓名: 李成学号:133010220指导老师:周灵彬设计时间: 2015年1月目录1. 引言 (3)1。
1.设计意义31.2。
系统功能要求32。
方案设计 (4)3. 硬件设计 (4)4. 软件设计 (8)5。
系统调试106. 设计总结 (11)7. 附录 (12)8. 参考文献 (15)DS18B20数字温度计设计1.引言1.1. 设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。
而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。
其缺点如下:●硬件电路复杂;●软件调试复杂;●制作成本高.本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为—55~125℃,最高分辨率可达0。
0625℃。
DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。
1.2. 系统功能要求设计出的DS18B20数字温度计测温范围在0~125℃,误差在±1℃以内,采用LED数码管直接读显示.2. 方案设计按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路.数字温度计总体电路结构框图如4。
1图所示:图4.13。
硬件设计温度计电路设计原理图如下图所示,控制器使用单片机AT89C2051,温度传感器使用DS18B20,使用四位共阳LED 数码管以动态扫描法实现温度显示。
AT89C51 主 控制器 DS18B20 显示电路 扫描驱动主控制器单片机AT89C51具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适合便携手持式产品的设计使用.系统可用两节电池供电。
AT89C51的引脚图如右图所示:VCC:供电电压。
数字温度计设计实验报告

数字温度计设计实验报告一、实验任务温度计是工农业生产及科学研究中最常用的测量仪表。
本课题要求用中小规模集成芯片设计并制作一数字式温度计,即用数字显示被测温度。
具体要求如下:(1). 测量范围-20,150度。
(2). 测量精度0.5度。
(3). 4位LED数码管显示。
通过温度传感器LM35采集到温度信号,经过整形电路送到A/D转换器,然后通过译码器驱动数码管显示温度。
ICL7107集A/D转换和译码器于一体,可以直接驱动数码管,省去了译码器的接线,使电路精简了不少,而且成本也不是很高。
ICL7107只需要很少的外部元件就可以精确测量0到200mv电压,LM35本身就可以将温度线性转换成电压输出。
综上所述,采用LM35采集信号,用ICL7107驱动数码管实现信号的显示。
故采用基于LM35与ICL7107的数字温度计设计方案。
二、原理框图传感器数码管驱A/D转化温度显示温度采集动三、电路原理及其电路组成数字温度计的设计原理图见附录1。
它通过LM35对温度进行采集,通过温度与电压近乎线性关系,以此来确定输出电压和相应的电流,不同的温度对应不同的电压值,故我们可以通过电压电流值经过放大进入到A/D转换器和译码器,再由数码管表示出来。
1、传感电路LM35具有很高的工作精度和较宽的线性工作范围,该器件输出电压与摄氏温度线性成比例。
因而,从使用角度来说,LM35与用开尔文标准的线性温度传感器相比更有优越之处,LM35无需外部校准或微调,可以提供?1/4?的常用的室温精度。
LM35具有以下特点:(1)工作电压:直流4,30V;(2)工作电流:小于133μA(3)输出电压:+6V,-1.0V(4)输出阻抗:1mA 负载时0.1Ω;(5)精度:0.5?精度(在+25?时);(6)漏泄电流:小于60μA;(7)比例因数:线性+10.0mV/?;(8)非线性值:?1/4?;(9)校准方式:直接用摄氏温度校准;(10)封装:密封TO-46 晶体管封装或塑料TO-92 晶体管封装;(11)使用温度范围:-55,+150?额定范围电压输出采用下图接法:2、A/D转化器ICL7107是高性能、低功耗的三位半A\D转换器,同时包含有七段译码器、显示驱动器、参考源和时钟系统。
数字温度计实验报告_hcs_2007011218

实验日期:2009年7月6日~8日实验室:3—228 座位号:10 清华大学电子工程系数模混合硬件系统设计——数字温度计实验报告班级:无七九班姓名:胡聪世学号:2007011218实验日期:2009年7月6日~8日交报告日期: 2009年7月11日一、实验目的:1.解决实际问题的能力。
(方案→结果)2.电路系统的设计能力。
(模块化,EDA)3.电路系统的调试能力。
(系统调试)4.实验研究,表达能力。
(报告,结果数据处理分析,创新性见解和改进措施)二、实验题目:用热敏电阻作为温度传感器,设计一个数字温度温度计。
热敏电阻的典型特性如下表所示。
具体数据要求如下:实验的要求1. 按照上表接入所列的电阻,电路应显示相应的温度值,温度范围不得小于20~50℃,误差不的大于±2℃2.按照上表接入所列的电阻,电路应显示相应的温度值,温度范围不得小于20~50℃,误差不的大于±1℃3. 按照上表接入所列的电阻,电路应显示相应的温度值,温度范围不得小于5~70℃,误差不的大于±1℃4.* 温度范围不得小于-10~+80℃,误差不的大于±1℃,电路应能显示一昼夜的最高温度与最低的温度值。
三、实验设计:(1)总体思路:将表示温度的自然量与电阻关系,通过合理的拟合曲线,得到函数关系F1,通过构造相应的电路,得到电压与电阻的函数关系F2,F2与F1满足正比关系。
这样就可以得到将温度线性表示的电压值——容易进行相关操作。
此为电路的电阻电压线性化部分。
为了将温度通过数码管表示出来,需要通过计数器进行计数,使得数码管可以显示0~99℃的温度值。
此为温度显示计数部分。
由于数码管计数为数字量,为了能够通过比较,使得计数在何时的情况下停止,需要引进数模转换部分,将数字量变为模拟量,方便与电阻电压进行比较,此为DA 转换部分。
将上面得到的两部分比较,并在电阻电压低于数码管电压时计数,否则停止计数。
温度计实验报告

1 设计原理 (2)1.1 温度计的实现 (2)温度传感器DS18B20介绍 (2)显示电路 (5)2 单片机小系统基本组成 (5)2.1 AT89S52芯片 (5)供电电路 (6)晶振电路 (6)3 硬件设计 (9)3.1 DS18B20与单片机的接口电路 (9)3.2 PROTEUS仿真电路图 (10)4 软件设计 (10)4.1 主程序流程图 (10)4.2 各子程序流程图 (11)5 调试过程 (14)调试结果 (14)调试出现的问题 (14)6 电路特点及方案优缺点 (14)7 收获与体会 (14)8 参考文献 (15)1 设计原理1.1 温度计的实现设计中采用数字温度芯片DS18B20测量温度,输出信号全数字化。
采用了单总线的数据传输,由数字温度计DS18B20和AT89S52单片机构成的温度测量装置,它直接输出温度的数字信号。
实验中采用AT89S52单片机控制,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。
该系统利用AT89S52芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限温度。
最后控制LED数码管,显示出所测量到的温度。
该测温系统电路简单、精确度较高、实现方便、软件设计也比较简单。
系统框图如图1所示。
图1 DS18B20温度测温系统框图1.2温度传感器DS18B20介绍DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。
可选更小的封装方式,更宽的电压适用范围。
分辨率设定,及用户设定的报警温度存储在EPROM 中,掉电后依然保存。
温度传感器DS18B20引脚如图2所示。
8引脚封装TO-92封装图2 温度传感器引脚功能说明:NC :空引脚,悬空不使用;VDD :可选电源脚,电源电压范围。
当工作于寄生电源时,此引脚必须接地。
DQ :数据输入/输出脚。
漏极开路,常态下高电平。
温度技术测量实验报告(3篇)

第1篇一、实验目的1. 了解温度测量的基本原理和方法;2. 掌握常用温度传感器的性能特点及适用范围;3. 学会使用温度传感器进行实际测量;4. 分析实验数据,提高对温度测量技术的理解。
二、实验仪器与材料1. 温度传感器:热电偶、热敏电阻、PT100等;2. 温度测量仪器:数字温度计、温度测试仪等;3. 实验装置:电加热炉、万用表、连接电缆等;4. 待测物体:不同材质、不同形状的物体。
三、实验原理1. 热电偶测温原理:利用两种不同金属导体的热电效应,即当两种导体在两端接触时,若两端温度不同,则会在回路中产生电动势。
通过测量电动势的大小,可以计算出温度。
2. 热敏电阻测温原理:热敏电阻的电阻值随温度变化而变化,根据电阻值的变化,可以计算出温度。
3. PT100测温原理:PT100是一种铂电阻温度传感器,其电阻值随温度变化而线性变化,通过测量电阻值,可以计算出温度。
四、实验步骤1. 实验一:热电偶测温实验(1)将热电偶插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量热电偶冷端温度;(3)根据热电偶分度表,计算热电偶热端温度;(4)比较实验数据与实际温度,分析误差。
2. 实验二:热敏电阻测温实验(1)将热敏电阻插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量热敏电阻温度;(3)根据热敏电阻温度-电阻关系曲线,计算热敏电阻温度;(4)比较实验数据与实际温度,分析误差。
3. 实验三:PT100测温实验(1)将PT100插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量PT100温度;(3)根据PT100温度-电阻关系曲线,计算PT100温度;(4)比较实验数据与实际温度,分析误差。
五、实验结果与分析1. 实验一:热电偶测温实验实验结果显示,热电偶测温具有较高的准确性,误差在±0.5℃以内。
分析误差原因,可能包括热电偶冷端补偿不准确、热电偶分度表误差等。
2. 实验二:热敏电阻测温实验实验结果显示,热敏电阻测温具有较高的准确性,误差在±1℃以内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目编号:大学生课外开放实验校级普通项目实验报告立项时间:项目名称:数显温度计的设计与制作学生姓名:指导教师:学院:完成时间:2014.5设备与实验室管理处制0. 引言单片机技术作为计算机技术的一个分支,广泛地应用于工业控制,智能仪器仪表,机电一体化产品,家用电器等各个领域。
“单片机原理与应用”在工科院校各专业中已作为一门重要的技术基础课而普遍开设。
学生在课程设计,毕业设计,科研项目中会广泛应用到单片机知识,而且,进入社会后也会广泛接触到单片机的工程项目。
鉴于此,提高“单片机原理及应用”课的教学效果,让学生参与课程设计实习甚为重要。
单片机应用技术涉及的内容十分广泛,如何使学生在有限的时间内掌握单片机应用的基本原理及方法,是一个很有价值的教学项目。
为此,我们进行了“单片机的学习与应用”方面的课程设计,锻炼学生的动脑动手以及协作能力。
单片机课程设计是针对模拟电子技术,数字逻辑电路,电路,单片机的原理及应用课程的要求,对我们进行综合性实践训练的实践学习环节,它包括选择课设任务、软件设计,硬件设计,调试和编写课设报告等实践内容。
通过此次课程设计实现以下三个目标:第一,让学生初步掌握单片机课程的试验、设计方法,即学生根据设计要求和性能约束,查阅文献资料,收集、分析类似的相关题目,并通过元器件的组装调试等实践环节,使最终硬件电路达到题目要求的性能指标;第二,课程设计为后续的毕业设计打好基础,毕业设计是系统的工程设计实践,而课程设计的着眼点是让学生开始从理论学习的轨道上逐渐引向实际运用,从已学过的定性分析、定量计算的方法,逐步掌握工程设计的步骤和方法,了解科学实验的程序和实施方法。
第三,培养学生勤于思考乐于动手的习惯,同时通过设计并制作单片机类产品,使学生能够自己不断地学习接受新知识(如在本课设题目中存在智能测温器件DS18B20,就是课堂环节中不曾提及的“新器件”),通过多人的合作解决现实中存在的问题,从而不断地增强学生在该方面的自信心及兴趣,也提高了学生的动手能力,对学生以后步入社会参加工作打下一定良好的实践基础。
1.设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。
而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。
其缺点如下:●硬件电路复杂;2●软件调试复杂;●制作成本高。
本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达0.0625℃。
DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。
2.实验目的了解DS18B20数字式温度传感器的工作原理。
利用DS18B20数字式温度传感器和微机实验平台实现数字温度计。
学习并掌握单片机编程原理。
设计并制作出数字温度计测温范围在-55~125℃,误差在±0.5℃以内,采用LED数码管直接读显示。
3.实验原理3.1 DS18B20测温原理3.1.1 DS18B20结构简介DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。
DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。
温度测量范围为-55~+125 摄氏度,可编程为9位~12 位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。
被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上,CPU只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
3.1.2 DS18B20性能特点●独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯;34 ●DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温;●DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内;●适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电;;●温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃;●零待机功耗;●可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温;●在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms 内把温度值转换为数字,速度更快;●用户可定义报警设置;●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;●测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力;图 1 外部封装形式图 2 传感器电路图●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。
以上特点使DS18B20非常适用与多点、远距离温度检测系统。
DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
DS18B20的管脚排列、各种封装形式如图 1 所示,DQ 为数据输入/输出引脚。
开漏单总线接口引脚。
当被用着在寄生电源下,也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚。
当工作于寄生电源时,此引脚必须接地。
其电路图 2 所示。
3.1.3 DS18B20使用中注意事项较小的硬件开销需要相对复杂的软件进行补偿,由于DS18B20温度传感器与微处理器间采用串行数据传送,因此,在对DS18B20进行读写编程时,必须严格地保证读写时序,否则将无法读取测温结果。
在使用PL/M、C等高级语言进行系统程序设计时,对DS18B20操作部分最好采用汇编语言实现。
在DS18B20温度传感器的有关资料中均未提及单总线上所挂DS18B20数量问题,容易使人误认为可以挂任意多个DS18B20,在实际应用中并非如此。
连接DS18B20温度传感器的总线电缆是有长度限制的。
在采用DS18B20进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。
在DS18B20温度传感器测温程序设计中,向DS18B20发出温度转换命令后,程序总要等待DS18B20的返回信号,一旦某个DS18B20接触不好或断线,当程序读该DS18B20时,将没有返回信号,程序进入死循环。
测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一对线接VCC 和地线,屏蔽层在源端单点接地。
3.2 AT89S51简介AT89S51是一个低功耗,高性能CMOS8位单片机,片内含4k Bytes ISPIn-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,AT89S51在众多嵌入式控制应用系统中得到广泛应用。
5图3 AT89S51引脚图AT89S51的引脚图如图3所示,其主要性能特点如下:1、4k Bytes Flash片内程序存储器;2、128 bytes的随机存取数据存储器(RAM);3、32个外部双向输入/输出(I/O)口;4、2个中断优先级、2层中断嵌套中断;5、5个中断源;6、2个16位可编程定时器/计数器;7、2个全双工串行通信口;8、看门狗(WDT)电路;9、片内振荡器和时钟电路;10、与MCS-51兼容;11、全静态工作:0Hz-33MHz;12、三级程序存储器保密锁定;13、可编程串行通道;14、低功耗的闲置和掉电模式。
AT89S51具有完整的输入输出、控制端口、以及内部程序存储空间。
与我们通常意义上的微机原理类似,可以通过外接A/D,D/A转换电路及运放芯片实现对传感器传送信息的采集,且能够提供以点阵或LCD液晶及外接按键实现人机交互,能对内部众多I/O端口连接6步进电机对外围设备进行精确操控,具有强大的工控能力。
4.实验内容本设计采用单片机对温度信息进行采集、处理并以数字形式显示,以其测量精度高,测温范围广,操作简单、运行性强,价格低廉等优点,特别适用于生活,医疗,工业生产等方面的温度测量。
根据系统的设计要求,选择DS18B20作为本系统的温度传感器,选择单片机AT89S51为测温系统的核心来完成数据采集、处理、显示等功能。
硬件系统由DS18B20组成的测温模块、双电源供电的信号调理放大模块、A/D转换模块、AT89S51控制模块、液晶显示模块和供电模块组成。
实验原理图如图4。
图4 实验原理图该系统的总体设计思路如下:温度传感器DS18B20组成的测温电路把所测得的温度信息经过放大、模/数转换发送到AT89S51单片机上,经过51单片机处理,将把温度信息在显示电路上显示,本系统显示器为点阵字符LCD1602液晶模块。
检测范围—200.0摄氏度到+200.0摄氏度。
5.实验步骤5.1硬件设计与制作5.1.1硬件系统概述7本实验硬件系统由单片机最小系统,温度传感器,显示电路等组成,以AT89S51作为主控系统。
显示电路采用LCD1602液晶显示模块芯片组成,可进行多行显示。
温度传感器由DS18B20测温器件组成,该器件主要功能有:采用单线总技术;每只DS18B20具有独立的不可修改的64位序列号;低压供电,电压范围为3—5V,测温范围为-20℃-﹢125℃,误差为0.5℃。
复位电路是由10K电阻构成的上电自动复位。
5.1.2主控电路主控系统由AT89S51,晶振电路(如图5),复位电路(如图6)等组成。
其中AT89S51的21~28管脚连接1602液晶显示器的7~14管脚。
AT89S51的18,19管脚接晶振电路,管脚9接复位电路,管脚17接测温电路。
图5 晶振电路图6 复位电路5.1.3显示电路图7 液晶显示电路8本实验显示电路采用LCD1602液晶显示模块芯片,该芯片克实现16x2个字符,比以前的七段数码管LED显示器在显示字符上的数量要多得多,另外,由于1602芯片编程比较简单,界面直观,更加易于使用和观测。
5.1.4温度传感器本实验温度传感器采用的是DS18B20,DS18B20数字温度传感器接线方便,型号多种多样,有LTM8877,LTM8874等等。