立体几何专题复习解析
高考立体几何专题复习公开课获奖课件

第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
专题8.7 高考解答题热点题型-立体几何(解析版)

高考理科数学一轮复习:题型全归纳与高效训练突破专题8.7高考解答题热点题型---立体几何目录一、题型综述 (1)二题型全归纳 (1)题型一空间点、线、面的位置关系及空. (1)题型二平面图形的折叠问题 (7)题型三立体几何中的探索性问题 (10)三、高效训练突破 (15)一、题型综述立体几何是每年高考的重要内容,基本上都是一道客观题和一道解答题,客观题主要考查考生的空间想象能力及简单的计算能力.解答题主要采用证明与计算相结合的模式,即首先利用定义、定理、公理等证明空间线线、线面、面面的平行或垂直关系,再利用空间向量进行空间角的计算求解.重在考查考生的逻辑推理及计算能力,试题难度一般不大,属中档题,且主要有以下几种常见的热点题型.二题型全归纳题型一空间点、线、面的位置关系及空.1证明点共面或线共面的常用方法(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内..(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.2.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.4.求异面直线所成角的方法(1)几何法①作:利用定义转化为平面角,对于异面直线所成的角,可固定一条,平移一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.①证:证明作出的角为所求角.①求:把这个平面角置于一个三角形中,通过解三角形求空间角.(2)向量法建立空间直角坐标系,利用公式|cos θ|=|m ·n ||m ||n |求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.【例1】如图,AE ①平面ABCD ,CF ①AE ,AD ①BC ,AD ①AB ,AB =AD =1,AE =BC =2.(1)求证:BF ①平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E -BD -F 的余弦值为13,求线段CF 的长. 【解题思路】由条件知AB ,AD ,AE 两两垂直,可以A 为坐标原点建立空间直角坐标系,用空间向量解决.(1)寻找平面ADE 的法向量,证明BF →与此法向量垂直,即得线面平行.(2)CE →与平面BDE 的法向量所成角的余弦值的绝对值,即为直线CE 和平面BDE 所成角的正弦值;(3)设CF =h ,用h 表示二面角E -BD -F 的余弦值,通过解方程得到线段长.【规范解答】 (1)证明:以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,AE 所在的直线为z 轴,建立如图所示的空间直角坐标系.则A (0,0,0),B (1,0,0),设F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的一个法向量,又BF →=(0,2,h ),可得BF →·AB →=0,又直线BF ①平面ADE ,所以BF ①平面ADE .(2)依题意,D (0,1,0),E (0,0,2),C (1,2,0),则BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1). 因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49. 所以直线CE 与平面BDE 所成角的正弦值为49. (3)设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0, 不妨令y 1=1,可得m =⎝⎛⎭⎫1,1,-2h . 由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪4-2h 3 2+4h2=13, 解得h =87.经检验,符合题意. 所以线段CF 的长为87. 【例2】.如图,在三棱锥P ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0. 不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ①平面BDE ,所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 【例3】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1,又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1,又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1.因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1,所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E .(2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量,易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277,故直线B 1C 1与平面B 1CE 所成角的正弦值为277. 题型二 平面图形的折叠问题【解法】解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.【例1】如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把①DFC 折起,使点C 到达点P 的位置,且PF ①BF .(1)证明:平面PEF ①平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【解题思路】(1)①翻折前后的不变关系,四边形ABFE 是矩形.①证明BF ①平面PEF .①证明平面PEF ①平面ABFD .(2)解法一:①建系:借助第(1)问,过P 作平面ABFD 的垂线为z 轴,垂足为原点,EF 所在直线为y 轴,建系.①求直线DP 的方向向量和平面ABFD 的法向量.①由公式计算所求角的正弦值.解法二:①作:过P 作PH ①EF 交EF 于点H ,连接DH .①证:证明PH ①平面ABFD ,得①PDH 为直线DP 与平面ABFD 所成角.①算:在Rt①PDH 中,PD 的长度是正方形ABCD 的边长,①PHD =90°,易知要求sin①PDH ,关键是求PH ;由此想到判断①PEF 的形状,进一步想到证明PF ①平面PED .【规范解答】(1)证明:由已知可得,BF ①PF ,BF ①EF ,又PF ∩EF =F ,所以BF ①平面PEF .又BF ①平面ABFD ,所以平面PEF ①平面ABFD .(2)解法一:作PH ①EF ,垂足为H .由(1)得,PH ①平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,建立如图所示的空间直角坐标系Hxyz ,设正方形ABCD 的边长为2.由(1)可得,DE ①PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ①PF .所以PH =32,EH =32,则H (0,0,0),P ⎝⎛⎭⎫0,0,32, D ⎝⎛⎭⎫-1,-32,0,DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量. 设DP 与平面ABFD 所成角为θ,则sin θ=|HP →·DP →||HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. 解法二:因为PF ①BF ,BF ①ED ,所以PF ①ED ,又PF ①PD ,ED ∩PD =D ,所以PF ①平面PED ,所以PF ①PE ,设AB =4,则EF =4,PF =2,所以PE =23,过P 作PH ①EF 交EF 于点H ,因为平面PEF ①平面ABFD ,所以PH ①平面ABFD ,连接DH ,则①PDH 即为直线DP 与平面ABFD 所成的角,因为PE ·PF =EF ·PH ,所以PH =23×24=3, 因为PD =4,所以sin①PDH =PH PD =34, 所以DP 与平面ABFD 所成角的正弦值为34. 题型三 立体几何中的探索性问题【技巧要点】对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题【例1】(2020·湖北“四地七校”联考)在四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,平面P AC ①底面ABCD ,P A =PC =2 2.(1)求证:PB =PD ;(2)若点M ,N 分别是棱P A ,PC 的中点,平面DMN 与棱PB 的交点为点Q ,则在线段BC 上是否存在一点H ,使得DQ ①PH ?若存在,求BH 的长;若不存在,请说明理由.【解题思路】 (1)要证PB =PD ,想到在①PBD 中,证明BD 边上的中线垂直于BD ,联系题目条件想到用面面垂直的性质证明线面垂直.(2)借助第(1)问的垂直关系建立空间直角坐标系,求平面DMN 的法向量n ,分别依据P ,B ,Q 共线和B ,C ,H 共线,设PQ →=λPB →和BH →=tBC →,利用垂直关系列方程先求λ再求t ,确定点H 的位置.【规范解答】 (1)证明:记AC ∩BD =O ,连接PO ,①底面ABCD 为正方形,①OA =OC =OB =OD =2.①P A =PC ,①PO ①AC ,①平面P AC ①底面ABCD ,且平面P AC ∩底面ABCD =AC ,PO ①平面P AC ,①PO ①底面ABCD .①BD ①底面ABCD ,①PO ①BD .①PB =PD .(2)存在.以O 为坐标原点,射线OB ,OC ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系如图所示,由(1)可知OP =2.可得P (0,0,2),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),可得M (0,-1,1),N (0,1,1),DM →=(2,-1,1),MN →=(0,2,0).设平面DMN 的法向量n =(x ,y ,z ),①DM →·n =0,MN →·n =0,①⎩⎪⎨⎪⎧2x -y +z =0,2y =0. 令x =1,可得n =(1,0,-2).记PQ →=λPB →=(2λ,0,-2λ),可得Q (2λ,0,2-2λ),DQ →=(2λ+2,0,2-2λ),DQ →·n =0,可得2λ+2-4+4λ=0,解得λ=13. 可得DQ →=⎝⎛⎭⎫83,0,43. 记BH →=tBC →=(-2t,2t,0),可得H (2-2t,2t,0),PH →=(2-2t,2t ,-2),若DQ ①PH ,则DQ →·PH →=0,83(2-2t )+43×(-2)=0,解得t =12. 故BH = 2.故在线段BC 上存在一点H ,使得DQ ①PH ,此时BH= 2.【例2】如图,在四棱锥PABCD中,P A①平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD①平面P AC;(2)若①ABC=60°,求证:平面P AB①平面P AE;(3)棱PB上是否存在点F,使得CF①平面P AE?说明理由.【解】(1)证明:因为P A①平面ABCD,所以P A①BD.因为底面ABCD为菱形,所以BD①A C.又P A∩AC=A,所以BD①平面P A C.(2)证明:因为P A①平面ABCD,AE①平面ABCD,所以P A①AE.因为底面ABCD为菱形,①ABC=60°,且E为CD的中点,所以AE①CD,所以AB①AE.又AB∩P A=A,所以AE ①平面P AB .因为AE ①平面P AE ,所以平面P AB ①平面P AE .(3)棱PB 上存在点F ,使得CF ①平面P AE .取F 为PB 的中点,取G 为P A 的中点,连接CF ,FG ,EG .则FG ①AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ①AB ,且CE =12AB . 所以FG ①CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ①EG .因为CF ①平面P AE ,EG ①平面P AE ,所以CF ①平面P AE .【例3】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC , 所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B CG A 的大小为30°.三、高效训练突破1.(2020·深圳模拟)已知四棱锥PABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN①P C.(2)由(1)知BD ①AC 且PO ①BD ,因为P A =PC ,且O 为AC 的中点,所以PO ①AC ,所以PO ①平面ABCD ,所以P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A , 因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32), 所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0). 设平面AMHN 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0, 令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 2.(2020·河南联考)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,平面P AD ①平面ABCD ,①P AD 是边长为4的等边三角形,BC ①PB ,E 是AD 的中点.(1)求证:BE ①PD ;(2)若直线AB 与平面P AD 所成角的正弦值为154,求平面P AD 与平面PBC 所成的锐二面角的余弦值. 【解析】:(1)证明:因为①P AD 是等边三角形,E 是AD 的中点,所以PE ①AD .又平面P AD ①平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ①平面P AD ,所以PE ①平面ABCD ,所以PE ①BC ,PE ①BE .又BC ①PB ,PB ∩PE =P ,所以BC ①平面PBE ,所以BC ①BE .又BC ①AD ,所以AD ①BE .又AD ∩PE =E 且AD ,PE ①平面P AD ,所以BE ①平面P AD ,所以BE ①PD .(2)由(1)得BE ①平面P AD ,所以①BAE 就是直线AB 与平面P AD 所成的角.因为直线AB 与平面P AD 所成角的正弦值为154, 即sin①BAE =154 ,所以cos①BAE =14. 所以cos①BAE =AE AB =2AB =14,解得AB =8,则BE =AB 2-AE 2=215.由(1)得EA ,EB ,EP 两两垂直,所以以E 为坐标原点,EA ,EB ,EP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则点P (0,0,23),A (2,0,0),D (-2,0,0),B (0,215,0),C (-4,215,0),所以PB →=(0,215,-23),PC →=(-4,215,-23).设平面PBC 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧PB →·m =0,PC →·m =0,得⎩⎨⎧215y -23z =0,-4x +215y -23z =0, 解得⎩⎨⎧x =0,z =5y . 令y =1,可得平面PBC 的一个法向量为m =(0,1,5).易知平面P AD 的一个法向量为n =(0,1,0),设平面P AD 与平面PBC 所成的锐二面角的大小为θ,则cos θ=⎪⎪⎪⎪m ·n |m ||n |=⎪⎪⎪⎪⎪⎪(0,1,5)·(0,1,0)6×1=66. 所以平面P AD 与平面PBC 所成的锐二面角的余弦值为66. 3.(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33, 所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0,整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 4.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1,又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC , 又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC . 因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1. 又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO . 又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示, 由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP→=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A , 所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12.又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55.5.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC . 因为MN ①平面EFC ,EC ①平面EFC , 所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE . 因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC , 所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC . (2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4), 所以DB →=(2,2,0),DM →=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. 因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则 sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.6.(2020·河南郑州三测)如图①,①ABC 中,AB =BC =2,①ABC =90°,E ,F 分别为边AB ,AC 的中点,以EF 为折痕把①AEF 折起,使点A 到达点P 的位置(如图①),且PB =BE .(1)证明:EF ①平面PBE ;(2)设N 为线段PF 上的动点(包含端点),求直线BN 与平面PCF 所成角的正弦值的最大值. 【解析】:(1)证明:因为E ,F 分别为边AB ,AC 的中点,所以EF ①BC . 因为①ABC =90°,所以EF ①BE ,EF ①PE ,又BE ∩PE =E ,所以EF ①平面PBE . (2)取BE 的中点O ,连接PO ,因为PB =BE =PE ,所以PO ①BE .由(1)知EF ①平面PBE ,EF ①平面BCFE ,所以平面PBE ①平面BCFE . 又PO ①平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ①平面BCFE .过点O 作OM ①BC 交CF 于点M ,分别以OB ,OM ,OP 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B ⎝⎛⎭⎫12,0,0,P ⎝⎛⎭⎫0,0,32,C ⎝⎛⎭⎫12,2,0, F ⎝⎛⎭⎫-12,1,0,PC →=⎝⎛⎭⎫12,2,-32, PF →=⎝⎛⎭⎫-12,1,-32,由N 为线段PF 上一动点,得PN →=λPF →(0≤λ≤1),则可得N ⎝⎛⎭⎫-λ2,λ,32(1-λ),BN →=⎝⎛⎭⎫-λ+12,λ,32(1-λ).设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎨⎧12x +2y -32z =0,-12x +y -32z =0,取y =1,则x =-1,z =3,所以m =(-1,1,3)为平面PCF 的一个法向量.设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos 〈BN →,m 〉|=|BN →·m ||BN →|·|m |=25·2λ2-λ+1=25·2⎝⎛⎭⎫λ-142+78≤25·78=47035(当且仅当λ=14时取等号),所以直线BN 与平面PCF 所成角的正弦值的最大值为47035.7.(2020·山东淄博三模)如图①,已知正方形ABCD 的边长为4,E ,F 分别为AD ,BC 的中点,将正方形ABCD 沿EF 折成如图①所示的二面角,且二面角的大小为60°,点M 在线段AB 上(包含端点),连接AD .(1)若M 为AB 的中点,直线MF 与平面ADE 的交点为O ,试确定点O 的位置,并证明直线OD ①平面EMC ; (2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60°?若存在,求此时二面角M EC F 的余弦值;若不存在,说明理由. 【答案】见解析【解析】:(1)因为直线MF ①平面ABFE ,故点O 在平面ABFE 内,也在平面ADE 内, 所以点O 在平面ABFE 与平面ADE的交线(即直线AE )上(如图所示).因为AO ①BF ,M 为AB 的中点,所以①OAM ①①FBM ,所以OM =MF ,AO =BF ,所以AO =2. 故点O 在EA 的延长线上且与点A 间的距离为2. 连接DF ,交EC 于点N ,因为四边形CDEF 为矩形, 所以N 是EC 的中点.连接MN ,则MN 为①DOF 的中位线,所以MN ①OD ,又MN ①平面EMC ,OD ①/ 平面EMC ,所以直线OD ①平面EMC . (2)由已知可得EF ①AE ,EF ①DE ,又AE ∩DE =E ,所以EF ①平面ADE .所以平面ABFE ①平面ADE ,易知①ADE 为等边三角形,取AE 的中点H ,则易得DH ①平面ABFE ,以H 为坐标原点,建立如图所示的空间直角坐标系,则E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0),所以ED →=(1,0,3),EC →=(1,4,3). 设M (1,t ,0)(0≤t ≤4),则EM →=(2,t ,0),设平面EMC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·EM →=0,m ·EC →=0①⎩⎨⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3为平面EMC 的一个法向量.要使直线DE 与平面EMC 所成的角为60°,则82t 2+4+(8-t )23=32,所以23t 2-4t +19=32,整理得t 2-4t +3=0, 解得t=1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°,取ED 的中点Q ,连接QA ,则QA →为平面CEF 的法向量, 易得Q ⎝⎛⎭⎫-12,0,32,A (1,0,0),所以QA →=⎝⎛⎭⎫32,0,-32.设二面角M -EC -F 的大小为θ, 则|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+(8-t )23=|t -2|t2-4t +19. 因为当t =2时,cos θ=0,平面EMC ①平面CDEF ,所以当t =1时,cos θ=-14,θ为钝角;当t =3时,cos θ=14,θ为锐角.综上,二面角M -EC -F 的余弦值为±14.。
高考数学复习考点题型专题讲解20 立体几何中的轨迹问题

高考数学复习考点题型专题讲解 第20讲 立体几何中轨迹问题7类【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )A B C D 【答案】D 【分析】连接GH 、HN ,有GH ∥BA 1,HN ∥BD ,证得面A 1BD ∥面GHN ,由已知得点M 须在线段GH 上运动,即满足条件,由此可得选项. 【详解】解:连接GH 、HN 、GN ,∵在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、CD 的中点,N 是BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄面A 1BD ,BA 1⊂面A 1BD ,所以//GH 面A 1BD ,同理可证得//NH 面A 1BD ,又GH HN H ⋂=,∴面A 1BD ∥面GHN ,又∵点M 在四边形EFGH 上及其内部运动,MN ∥面A 1BD ,则点M 须在线段GH 上运动,即满足条件,GH ,则点M a . 故选:D.【变式演练】1.在三棱台111A B C ABC -中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是()A .三角形111ABC 边界的一部分 B .一个点 C .线段的一部分D .圆的一部分【答案】C 【分析】过D 作11//DE AC 交11B C 于E ,连接BE ,证明平面//BDE 平面11AAC C ,得M DE ∈,即得结论. 【详解】如图,过D 作11//DE AC 交11B C 于E ,连接BE ,1//BD AA ,BD ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以//BD 平面11AAC C ,同理//DE 平面11AAC C ,又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以平面//BDE 平面11AAC C ,所以M DE ∈,(M 不与D 重合,否则没有平面BDM ), 故选:C .2.已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为()A 1BCD 【答案】B 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P a b ,计算出平面BEF 的一个法向量m 的坐标,由已知条件得出10D P m ⋅=,可得出a 、b 所满足的等式,求出点P 的轨迹与线段AD 、BC 的交点坐标,即可求得结果. 【详解】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,2,0B 、()2,0,1E 、()1,0,2F 、()10,0,2D ,设点(),,0P a b ,()0,2,1BE =-uur,()1,0,1EF =-,设平面BEF 的法向量为(),,m x y z =, 由200m BE y z m EF x z ⎧⋅=-+=⎨⋅=-+=⎩,取2z =,可得()2,1,2m =, ()1,,2D P a b =-,由题意可知,1//D P 平面BEF ,则1240D P m a b ⋅=+-=,令0b =,可得2a =;令2b =,可得1a =.所以,点P 的轨迹交线段AD 于点()2,0,0A ,交线段BC 的中点()1,2,0M ,所以,点P 的轨迹长度为AM =故选:B.3.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为()A .1BC .2D .【答案】B 【分析】由分别取棱11A B 、11A D 的中点M 、N ,连接MN ,由线面平行得面面平行,得动点轨迹,从而可计算其长度. 【详解】如图所示,分别取棱11A B 、11A D 的中点M 、N ,连接MN ,连接11B D , ∵M 、N 、E 、F 为所在棱的中点,∴11//MN B D ,11//EF B D ,∴//MN EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴//MN 平面BDEF ,连接NF ,由11//NF A B ,11NF A B =,11//A B AB ,11A B AB =,可得//NF AB ,NF AB =,则四边形ANFB 为平行四边形,则//AN FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则//AN 平面BDEF . 又ANNM N =,∴平面//AMN 平面BDEF .又P 是上底面1111D C B A 内一点,且//AP 平面BDEF ,∴P 点在线段MN 上.又1112MN B D =,∴P【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11AQ BC ⊥,则Q 点的轨迹是() A .点1B B .线段1B CC .线段11B CD .平面11B BCC【答案】B 【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解. 【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂平面11A B Q ,所以1BC ⊥平面11A B Q , 又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B【变式演练】1.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为()A .线段1CBB .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段【答案】A 【分析】利用直线与平面垂直的判定可得1BD ⊥面1ACB ,又点P 在侧面11BCC B 及其边界上运动,并且总是保持AP 与1BD 垂直,得到点P 的轨迹为面1ACB 与面11BCC B 的交线. 【详解】如图,连接AC ,1AB ,1B C ,在正方体1111ABCD A B C D -中,有1BD ⊥平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,∴故点P 的轨迹为平面1ACB 与平面11BCC B 的交线段1CB .故选:A.2.在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法: ①点P 可以是棱1BB 的中点; ②线段MP 的最大值为34; ③点P 的轨迹是正方形;④点P 轨迹的长度为2 其中所有正确说法的序号是________.【答案】②④【分析】以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴建立空间直角坐标系,求出MP 的坐标,从而得到MP 的最大值,即可判断选项②,通过分析判断可得点P 不可能是棱1BB 的中点,从而判断选项①,又1EF GH ==,EH FG ==,可判断选项③和选项④. 【详解】解:在正方体1111ABCD A B C D -中,以D 为坐标原点,1DC 为x 轴,y 轴, ∵该正方体的棱长为1,M ,N 分别为1BD ,11B C 的中点, ∴()0,0,0D ,M (12,12,12),1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C ∴1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,∵MP CN ⊥,∴1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=当1x =时,14z =,当0x =时,34z =,取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连结EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭,∴四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥,又EF 和EH 为平面EFGH 中的两条相交直线, ∴CN ⊥平面EFGH ,又111,,224EM ⎛⎫=- ⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,∴M 为EG 的中点,则M ∈平面EFGH , 为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体表面上运动,∴点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,故选项①错误;又1EF GH ==,EH FG ==,∴EF EH ≠,则点P 的轨迹不是正方形且矩形EFGH 周长为222+= 故选项③错误,选项④正确;∵1,0,12CN ⎛⎫= ⎪⎝⎭,111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,又MP CN ⊥,则1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=,∴322x z =-,点P 在正方体表面运动, 则30212z ≤-≤,解1344z ≤≤,∴MP =故当14z =或34z =,0y =或1,MP 取得最大值为34,故②正确.故答案为:②④.3.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是()A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD -的体积为定值 【答案】A 【分析】设平面1D AE 与直线BC 交于G ,连接AG ,EG ,则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N ,连接1A M ,MN ,1A N ,证明平面1//A MN 平面1D AE ,即可分析选项ABC 的正误;再由//MN EG ,得点F 到平面1D AE 的距离为定值,可得三棱锥1F ABD -的体积为定值判断D . 【详解】解:设平面1D AE 与直线BC 交于G ,连接AG ,EG , 则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N , 连接1A M ,MN ,1A N ,如图,∵11//A M D E ,1A M Ë平面1D AE ,1D E ⊂平面1D AE , ∴1//A M 平面1D AE ,同理可得//MN 平面1D AE ,又1A M 、MN 是平面1A MN 内的两条相交直线,∴平面1//A MN 平面1D AE ,而1//A F 平面1D AE ,∴1A F ⊂平面1A MN , 得点F 的轨迹为一条线段,故C 正确;并由此可知,当F 与M 重合时,1A F 与1D E 平行,故A 错误;∵平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,∴1A F 与BE 是异面直线,故B 正确; ∵//MN EG ,则点F 到平面1D AE 的距离为定值,∴三棱锥1F ABD -的体积为定值,故D 正确. 故选:A .【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()A .直线B .椭圆C .抛物线D .双曲线【答案】D【分析】以D 为坐标原点建立空间直角坐标系D xyz -,求出点P 的轨迹方程即可判断.【详解】如图示,过P 作PE ⊥AB 与E ,过P 作PF ⊥AD 于F ,过F 作FG ∥AA 1交A 1D 1于G ,连结PG ,由题意可知PE=PG以D 为坐标原点建立空间直角坐标系D xyz -,设(),,0P x y ,由PE=PG 得:1x -=()2211x y --=即点P 的轨迹是双曲线.故选:D.【变式演练】1.如图,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A .B .C .D .【答案】A 【分析】如图,以D 为坐标原点,建立空间直角坐标系,设(),,0M x y ,正方形ABCD 的边长为a ,求出MC ,MP 的坐标,利用MP MC =可得x 与y 的关系,即可求解.【详解】如图,以D 为坐标原点,DA ,DC 所在的直线分别为x ,y 轴建立如图所示的空间直角坐标系,设正方形ABCD 的边长为a ,(),,0M x y ,则0x a ≤≤,0y a ≤≤,2a P ⎛ ⎝⎭,()0,,0C a ,则2MC x =2a MP ⎛= MP MC =,得2x y =,所以点M 在正方形ABCD 内的轨迹为一条线段()102y x x a =≤≤, 故选:A .2.如图,在棱长为4的正方体ABCD A B C D ''''-中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为()A .43π B .23π C .6πD .3π 【答案】D 【分析】连接PF 、NF ,分析得出1FP =,可知点P 的轨迹是以点F 为球心,半径长为1的球面,作出图形,结合球体的体积公式可求得结果. 【详解】连接PF 、NF ,因为//AD A D '',AD A D ''=,且E 、F 分别为AD 、A D ''的中点, 故//AE A F '且AE A F '=,所以,四边形AA FE '为平行四边形,故//EF AA '且4EF AA ='=,AA '⊥平面A B C D '''',则EF ⊥平面A B C D '''', 因为FN ⊂平面A B C D '''',所以,EF FN ⊥,P 为MN 的中点,故112FP MN ==, 所以,点P 的轨迹是以点F 为球心,半径长为1的球面,如下图所示:所以,线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体为球F 的14, 故所求几何体的体积为3141433V ππ=⨯⨯=.故选:D.3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ⊥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是()A .B .C .D .6【答案】B 【分析】由题意结合选项可特殊化处理,即取OP 与底面垂直,求得Q 的轨迹,结合球的表面积求解.【详解】解:不妨令OP ⊥OC ,则OP ⊥底面OABC , 如图,∵D 是OP 上的动点,∴OD ⊥底面OABC ,可得OD ⊥OE ,又Q 为DE 的中点,∴OQ 1122DE a ==,即Q 的轨迹是以O 为球心,以12a 为半径的18球面,其表面积为S 214384a ππ=⨯⨯=,得a =故选:B .【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D 【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q所在轨迹的形状. 【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线; 当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D【变式演练】1.如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是()A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C 【分析】由题可知点P 在以AB 为轴的圆锥的侧面上,再结合条件可知P 的轨迹符合圆锥曲线中椭圆定义,即得. 【详解】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P 满足30PAB ∠=︒,可理解为P 在以AB 为轴的圆锥的侧面上, 再由斜线段AB 与平面α所成的角为60︒,可知P 的轨迹符合圆锥曲线中椭圆定义. 故可知动点P 的轨迹是椭圆. 故选:C.2.如图所示,1111ABCD A B C D -为长方体,且AB =BC =2,1AA =4,点P 为平面1111A B C D 上一动点,若11PBC BC C ∠=∠,则P 点的轨迹为()A .抛物线B .椭圆C .双曲线D .圆【答案】B【分析】建立空间直角坐标系,利用空间向量的坐标运算和轨迹方程思想求得P 的轨迹方程,进而根据方程判定轨迹类型. 【详解】如图,建立直角坐标系,则()()10,0,4,0,2,0B C,1BC ==设(),,0P x y ,则向量(),,4BP x y =-,向量()10,2,4BC =-,111211cos ||CC BP BC PBC BC BP BC x ∠=====,∴()()2228416y x y +=++,即2243160x y y +-=,228644333x y ⎛⎫+-= ⎪⎝⎭,22831166439y x ⎛⎫- ⎪⎝⎭+=,这方程表示的轨迹是平面1111A B C D 上的椭圆,故选:B.3.在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的侧面11DCC D 的交线长等于___________.【答案】23π【分析】由题意画出图形,由角的关系得到边的关系,然后再在平面11DCC D 内建系,求出P 的轨迹方程,确定点P 的轨迹与长方体的面11DCC D 的交线,进而求得交线长. 【详解】如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ; 又APD MPC ∠=∠,在Rt PDA 与Rt PCM 中,∵6AD =,则3MC =,∴tan tan AD MCAPD MPC PD PC∠==∠=,则63PD PC=,即2PD PC =. 在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系,则()3,0D -,()3,0C ,设(),P x y ,由2PD PC =整理得:221090x x y -++=,即()22516x y -+=.∴点P 的轨迹是以F (5,0)为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,如图,则21sin 42EK EFK EF ∠===;∴6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=.故答案为:【题型五】投影求轨迹【典例分析】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45 C .13D .25【答案】A 【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解. 【详解】在21Rt AA A 中,设21A F x =,2DA x ∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=, ∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A【变式演练】1.如图,已知水平地面上有一半径为3的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图,椭圆中心为O ,球与地面的接触点为E ,4OE =.若光线与地面所成角为θ,椭圆的离心率e =__________.【答案】45【分析】根据平行投影计算出椭圆C 的短半轴长b ,再求出光线与水平面所成锐角的正弦,进而求得椭圆C 的长轴长2a 而得解. 【详解】连接OO ',则O OE θ'∠=,因为34,O E OE '==,如图:所以5OO '=,所以3sin 5O E OO θ'==' 在照射过程中,椭圆的短半轴长b 是球的半径R ,即3b =,过球心与椭圆长轴所在直线确定的平面截球面所得大圆及对应光线,如图:椭圆的长轴长2a 是AC ,过A 向BC 做垂线,垂足是B ,则,AB O O O E AC ''⊥⊥,由题意得:326sin sin 5AB R ACB θ==∠==,,又sin ABACB AC∠=, 则35AB AC =,10AC =,即2105a a ==,,所以椭圆的离心率为45c e a ====.故答案为:45【题型六】翻折与动点求轨迹(难点)【典例分析】如图,将四边形ABCD 中,ADC 沿着AC 翻折到1AD C ,则翻折过程中线段DB 中点M 的轨迹是()A .椭圆的一段B .抛物线的一段C .双曲线的一段D .一段圆弧【答案】D 【分析】过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,再分别分析翻折前、后的变化量与不变量,在翻折后的图形中取BE 中点O ,进而可得答案. 【详解】解:在四边形ABCD 中,过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,如图1,所以当四边形ABCD 确定时,DEF 和BEF 三边长度均为定值,当ADC 沿着AC 翻折到1AD C ,形成如图2的几何体,并取BE 中点O ,连接OM , 由于在翻折过程中,1DE D E =,所以由中位线定理可得112OM D E =为定值, 所以线段DB 中点M 的轨迹是以BE 中点O 为圆心的圆弧上的部分.故选:D【变式演练】1.已知△ABC 的边长都为2,在边AB 上任取一点D ,沿CD 将△BCD 折起,使平面BCD ⊥平面AC D .在平面BCD 内过点B 作BP ⊥平面ACD ,垂足为P ,那么随着点D 的变化,点P 的轨迹长度为() A .6π B .3π C .23π D .π【答案】C 【分析】根据题意,先确定点P 轨迹的形状,进而求出轨迹的长度即可. 【详解】由题意,在平面BCD 内作BQ ⊥CD ,交CD 于Q ,因为平面BCD ⊥平面ACD ,平面BCD 与平面ACD 交于CD ,所以BQ ⊥平面ACD ,又BP ⊥平面ACD ,所以P ,Q 两点重合,于是随着点D 的变化,BP ⊥CD 始终成立,可得在平面ABC 中,BP ⊥CP 始终成立,即得点P 的轨迹是以BC 为直径的圆的一部分,由题意知随着点D 的变化,∠BCD 的范围为0,3π⎡⎤⎢⎥⎣⎦,可得点P 的轨迹是以BC 为直径(半径为1)的圆的13,即得点P 的轨迹长度为2122133ππ⨯⨯=.故选:C.2.如图,等腰梯形ABCD 中,//AB CD ,2AB =,1AD BC ==,AB CD >,沿着AC 把ACD △折起至1ACD △,使1D 在平面ABC 上的射影恰好落在AB 上.当边长CD 变化时,点1D 的轨迹长度为()A .2πB .3π C .4π D .6π【答案】B 【分析】根据1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上,因此考虑CD 的长度缩短到0时和CD 变长到AB 的长度两种情况,从而求出夹角大小,进而求出弧长. 【详解】因为1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上.考虑极端情况:当CD 的长度缩短到0时,1,,C D D 都汇聚到线段AB 的中点(D 2);当CD 变长到AB 的长度时(1D 的射影为D 3),如图,设3AD t =,则32BD t =-,在13D D ARt中,22131D D t =-,同理:()22312CD t =+-,()22221313412D D CD CD t ⎡⎤=-=-+-⎣⎦∴()22141212t t t ⎡⎤-+-=-⇒=⎣⎦,即1D 在线段AB 上的投影与点A 的距离为12,从而1AD 与AB 夹角为3π,故点1D 的轨迹为1=33ππ⨯.故选:B.3.已知矩形ABCD 中,1AB =,AE =如图,将ABE △沿着BE 进行翻折,使得点A 与点S 重合,若点S 在平面BCDE 上的射影在四边形BCDE 内部(包含边界),则动点S 的轨迹长度是()A B C D【分析】过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.由翻折过程可知,SM AM =S 的轨迹是以点M角,利用弧长公式求出弧长. 【详解】如图(1),过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.在Rt ABE △中,1AB =,AEBE =AM ==翻折的过程中,动点S满足SM S 的轨迹是以点M.易得BM =,EM =,AME GMB ∽△△,所以12MG MB MA ME ==,则MG SM =<,如图(2),在圆M 中,0S M AG ⊥,1S G AG ⊥,所以点S 的轨迹是01S S ,且111co s 2MG S MG MS ∠==,则1π3SM G ∠=,10π6S MS ∠=,从而点S的轨迹长度为π6=【课后练习】1.(多选题)(海南省海口市北京师范大学海口附属学校12月月考)如图,已知正方体1111ABCD A B C D -的棱长为112,,M DD 的中点,N 为正方形ABCD 所在平面内一动点,则下列结论正确的是( )A .若N 到直线1BB 与直线DC 的距离相等,则N 的轨迹为抛物线 B .若2MN =,则MN 的中点的轨迹所围成图形的面积为π C .若1D N 与AB 所成的角为60,则N 的轨迹为双曲线 D .若MN 与平面ABCD 所成的角为60,则N 的轨迹为椭圆 【答案】ABC 【分析】A :由1BB ⊥平面ABCD ,可得NB 即为N 到直线1BB 的距离,由抛物线的定义即可判断;B :由题意可得MN 中点的轨迹为以MD ABCD 的圆,计算可判断;C :建立空间直角坐标系,设(N x ,y ,0),由1D N 与AB 所成的角为60°,可得点N 的轨迹方程,从而可判断;D :由MN 与平面ABCD 所成的角为MND ∠,计算可得DN 为定值,可判断点N 的轨迹为以D 为圆心,DN 为半径的圆,从而可判断. 【详解】对于A ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∴点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故A 正确; 对于B ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∴点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故B 正确; 对于C ,如图,建立空间直角坐标系,(0D ,0,0),1(0D ,0,2),(2A ,0,0),(2B ,2,0),设(N x ,y ,0),则1(D N x =,y ,2)-,(0AB =,2,0),111cos602D N AB D N ABx ⋅︒===⨯, 化简得2234y x -=,即2214134y x -=,∴N 的轨迹为双曲线,故C 正确;对于D ,MN 与平面ABCD 所成的角为MND ∠,∴60MND ∠=︒, 则DN =∴点N 的轨迹为以D D 错误. 故选:ABC ﹒2.(广东省六校高三上学期第三次联考数学试题)(多选题)如图的正方体1111ABCD A B C D -中,棱长为2,点E 是棱1DD 的中点,点F 在正方体表面上运动.以下命题正确的有()A .侧面11CDD C 上不存在点F ,使得11B F CD ⊥B .点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13C .若点F 满足1//B F 平面1A BE ,则动点F 的轨迹长度为D .若点F 到点A F 的轨迹长度为 【答案】BD 【分析】先找到点F 满足1//B F 平面1A BE 的轨迹,可判断选项AC ,将平面1A BE 补全,利用比例判断选项B ,找到满足点F 到点A D 【详解】取11C D 中点M ,1C C 中点N ,连接1B M ,1B N ,MN ,易证11//B N A E ,又1B N ⊄平面1A BE ,1A E ⊂平面1A BE ,所以1//B N 平面1A BE , 又1//MN A B ,同理得到//MN 平面1A BE , 所以平面1//B MN 平面1A BE ,所以若点F 满足1//B F 平面1A BE ,则点F 在1B MN △的三边上运动,11MN B M B N ==F 的轨迹长度为C 错误;当点F 在侧面11CDD C 上运动时,点F 的运动轨迹为线段MN ,当F 运动到MN 中点时,因为△1B MN 是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 错误;取CD 中点G ,连接BG ,EG ,易证1//A B EG ,则1,,,A B E G 共面,令1C D EG H ⋂=,则易得113DH C H =, 所以点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13,故B 正确;F 到点A 则动点F 的轨迹在正方形11B BCC 和正方形11CC D D 及正方形1111D C B A 上,若在正方形11B BCC 上,则满足2222BF BA BF +=⇒=,所以在正方形11B BCC 上,动点F 的轨迹为以B ,同理点F 在正方形1111D C B A 及正方形11CC D D 面上运动时,轨迹分别为以1,A D的四分之一圆弧,所以动点F 3⨯=,所以D 正确; 故选:BD3.(多选题)(全国著名重点中学领航高考冲刺试卷(六))如图,在正方体1111ABCD A B C D -中,E为1AA 的中点,点F 在线段1AD 上运动,G 为底面ABCD 内一动点,则下列说法正确的是()A .11C F CB ⊥B .若1//FG CD ,则点G 在线段AC 上C .当点F 从A 向1D 运动时,三棱锥1D BFC -的体积由小变大D .若1GD ,GE 与底面ABCD 所成角相等,则动点G 的轨迹为圆的一部分 【答案】ABD 【分析】结合线面垂直的知识来判断A 选项的正确性.结合平面的知识来判断B 选项的正确性.结合锥体体积的求法来确定C 选项的正确性.结合阿波罗尼斯圆的知识来判断D 选项的正确性. 【详解】连接1A D ,∵1C F 在平面11ADD A 内的射影为1D F ,11CB A D ∥,且11A D D F ⊥,则1A D ⊥平面11C D F ,11A D C F ⊥,∴11C F CB ⊥,故A 正确;∵1FG CD ∥,∴FG 与1CD 确定唯一的平面α,而平面1ACD 与α有F ,1D ,C 三个不在一条直线上的公共点,∴平面1ACD 与α重合,又G 为底面ABCD 内一动点,则点G 必在平面1ACD 与平面ABCD 的交线AC 上,故B 正确;∵11AD BC ∥,1AD ⊄平面1DBC ,1BC ⊂平面1DBC ,∴1AD ∥平面1DBC ,故当点F 在1AD 上运动时,点F 到平面1DBC 的距离不变,于是三棱锥1F BDC -的体积不变,即三棱锥1D BFC -的体积不变,故C 错误;连接GD ,GA ,当1GD ,GE 与底面ABCD 所成角相等时,易得2GD GA =,∵AD 为定值,由阿波罗尼斯圆易知点G 的轨迹为圆的一部分,故D 正确. 阿波罗尼斯圆:已知平面上两点A ,B ,则所有满足PAk PB=(0k >且1k ≠)的点P 的轨迹是一个以定比m :n 内分和外分定线段AB 的两个分点的连线为直径的圆,此圆称为阿波罗尼斯圆. 故选:ABD4.(吉林省梅河口市第五中学第一次月考)在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1AA ,1CC 的中点,O 为底面ABCD 的中心,点P 在正方体的表面上运动,且满足NP MO ⊥,则下列说法正确的是()A .点P 可以是棱1BB 的中点B .线段NPC .点P 的轨迹是平行四边形D .点P 轨迹的长度为1【答案】B 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据NP MO ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为1AA ,1CC 的中点,则()0,0,0D ,11,0,2M ⎛⎫ ⎪⎝⎭,10,1,2N ⎛⎫ ⎪⎝⎭,11,,022O ⎛⎫ ⎪⎝⎭,所以111,,222OM ⎛⎫=- ⎪⎝⎭,设(),,P x y z ,则1,1,2NP x y z ⎛⎫=-- ⎪⎝⎭,因为NP MO ⊥,所以0NP OM ⋅=所以()1111102222x y z ⎛⎫--+-= ⎪⎝⎭,即2221x y z -+=-,令0z =,当12x =时,1y =;当0x =时,12y =; 取1,1,02E ⎛⎫ ⎪⎝⎭,10,,02F ⎛⎫⎪⎝⎭,连接EF ,FN ,NE ,则11,,022EF ⎛⎫=-- ⎪⎝⎭,11,0,22EN ⎛⎫=- ⎪⎝⎭,则111110022222EF OM ⎛⎫⎛⎫⋅=-⨯+-⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭,111110022222EN OM ⎛⎫⋅=-⨯+⨯-+⨯= ⎪⎝⎭,所以EF OM ⊥,EN OM ⊥,又EF EN E ⋂=,且EF ⊂平面EFN ,EN ⊂平面EFN , 所以OM ⊥平面EFN ,所以,为使NP OM ⊥,必有点P ∈平面EFN ,又点P 在正方体的表面上运动, 所以点P 的轨迹为正三角形EFN ,故C 错误;因此点P 不可能是棱1BB 的中点,故A 错误;线段NP 的最大值为NF =B 正确;点P =D 错误; 故选:B5.(广东省深圳市平冈高级中学高三上学期9月第一次月考)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F ∥平面A 1BE ,则F 在侧面CDD 1C 1上的轨迹的长度是()A .aB .2aC D【答案】D 【分析】过1B 做与平面1A BE 平行的平面,该平面与侧面11CDD C 的交线,即为满足条件的轨迹,求解即可. 【详解】设G ,H ,I 分别为CD ,CC 1,C 1D 1边上的中点, 连接B 1I ,B 1H ,IH ,CD 1,EG ,BG ,则1A B ∥1CD ∥GE , 所以A 1,B ,E ,G 四点共面,由1B H ∥11,A E A E ⊄平面B 1HI ,1B H ⊂平面B 1HI , 所以A 1E ∥平面B 1HI ,同理A 1B ∥平面B 1HI , 111A BA E A =,所以平面A 1BGE ∥平面B 1HI ,又因为B 1F ∥平面A 1BE ,所以F 落在线段HI 上,因为正方体ABCD -A 1B 1C 1D 1的棱长为a ,所以112HI CD ==,即F 在侧面CDD 1C 1.故选:D. 6.(湖南省永州市高三上学期第一次适应性考试)已知在三棱锥S ABC -中,D 为线段AB 的中点,点E 在SBC △(含边界位置)内,则满足//DE 平面SAC 的点E 的轨迹为() A .线段SB ,BC 的中点连接而成的线段B .线段SB 的中点与线段BC 靠近点B 的三等分点连接而成的线段 C .线段BC 的中点与线段SB 靠近点B 的三等分点连接而成的线段D .线段BC 靠近点B 的三等分点与线段SB 靠近点B 的三等分点连接而成的线段 【答案】A【分析】利用面面平行得到线面平行,即可. 【详解】解:如图所示,P 、Q 分别为线段SB ,BC 的中点, 所以//PQ SC ,//,DQ AC PQ ⊄平面SAC ,AC ⊂平面SAC ,所以//PQ 平面SAC ,同理//DQ 平面SAC ,PQ DQ Q =,所以平面//PDQ 平面SAC ,若DE ⊆平面PDQ ,则会有//DE 平面SAC , 故点E 的轨迹为线段SB ,BC 的中点连接而成的线段, 故选A.7.(辽宁省实验中学上学期联考)已知正六棱柱111111ABCDEF A B C D E F -点P 在棱1AA上运动,点Q 在底面ABCDEF 内运动,PQ =R 为PQ 的中点,则动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分的体积为()A B C D 【答案】B【分析】根据题意,可判断出动点R 的轨迹为球,结合球的体积公式,即可求解. 【详解】由直角三角形的性质得AR ,所以点R 在以A 因为23BAF π∠=,所以动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分16球,其体积为31463π⨯=⎝⎭.故选:B.8.四棱锥P OABC -中,底面OABC 是正方形,OP OA ⊥,OA OP a ==.D 是棱OP 上的一动点,E是正方形OABC 内一动点,DE 的中点为Q ,当DE a =时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是()A .B .C .D .6【答案】B【分析】 首先假设OP OC ⊥,将四棱锥P OABC -放在正方体中,然后根据直角三角形斜边中线等于斜边的一半求得12OQ a =,得到点Q 的轨迹,最后根据题意列出方程求出a 的值 . 【详解】由题意不妨设OP OC ⊥,又OP OA ⊥,底面OABC 是正方形,所以可将四棱锥P OABC -放在一个正方体内,所以DO ⊥面OABC ,又OE ⊂面OABC ,则DO OE ⊥,又DE 的中点为Q , 所以1122OQ DE a ==,即Q 的轨迹是以O 为球心,12OQ a =为半径的球,且点Q 恒在正方体内部, 又因为8个一样的正方体放在一起,点Q 的轨迹就可以围成一个完整的球,所以Q 的轨迹是以O 为球心,12OQ a =为半径的球的18球面,所以2114382a ππ⎛⎫⨯= ⎪⎝⎭,解得a = 故选:B9.棱长为a 的正方体1111ABCD A B C D -中,点P 在平面..1111D C B A 内运动,点1B 到直线DP 的距离为定值,若动点P 的轨迹为椭圆,则此定值可能..为()A B C D 【答案】A【分析】设1B DP α∠=,分析出点P 在以1DB 为轴的圆锥的侧面上,计算出d <,并分析出45a ¹o ,可得出d ≠,由此可得出合适的选项. 【详解】如下图所示:因为点1B 到直线DP 的距离为定值,所以,点P 在以1DB 为轴的圆锥的侧面上,因为点P 的轨迹为椭圆,即圆锥被平面1111D C B A 所截的截面为椭圆,设圆锥轴截面的半顶角为α,则点1B 到直线DP 的距离为1sin sin d B D αα==<, 当截面与圆锥的母线平行时,即45α=时,截面为抛物线,不合乎题意,所以,6sin 452d ≠=. 综合选择,可知A 选项合乎题意.故选:A.10.(上海市建平中学期中)已知菱形ABCD 边长为2,60ABC ∠=︒,沿对角线AC 折叠成三棱锥B ACD '-,使得二面角B AC D '--为60°,设E 为B C '的中点,F 为三棱锥B ACD '-表面上动点,且总满足AC EF ⊥,则点F 轨迹的长度为()A .B .CD 【答案】D【分析】。
届数学统考第二轮专题复习第12讲立体几何学案理含解析

第12讲立体几何高考年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2020证明线面垂直,求二面角的余弦值·T18证明线面平行、面面垂直,求线面角的正弦值·T20点面的位置关系,求二面角的正弦值·T192019证明线面平行,求二面角的正弦值·T18证明线面垂直,求二面角的正弦值·T17翻折问题,证明四点共面、面面垂直,求二面角的大小·T192018翻折问题,证明面面垂直,求线面角的正弦值·T18证明线面垂直,给出二面角求线面角的正弦值·T20证明面面垂直,求二面角的正弦值·T191。
[2020·全国卷Ⅱ]如图M4—12-1,已知三棱柱ABC—A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图M4—12-12.[2020·全国卷Ⅰ]如图M4—12-2,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三DO.角形,P为DO上一点,PO=√66(1)证明:PA⊥平面PBC;(2)求二面角B-PC-E的余弦值。
图M4—12-23.[2019·全国卷Ⅲ]如图M4—12—3,图①是由矩形ADEB,Rt △ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②。
(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B—CG-A的大小.①②图M4-12—3平行、垂直关系的证明1如图M4—12-4,在四棱锥P—ABCD中,四边形ABCD为平行四边形,E为侧棱PD的中点,O为AC与BD的交点。
立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
专题38 立体几何中的距离、截面、折叠问题(解析版)

结合图1可知, 为 中点,故 ,从而
所以 ,所以二面角 的平面角的余弦值为 .
向量法:以 点为原点,建立空间直角坐标系 如图所示,
则 , , ,所以 ,
设 为平面 的法向量,则 ,即 ,
解得 ,令 ,得 ,由(Ⅰ)知, 为平面 的一个法向量,
所以 ,即二面角 的平面角的余弦值为 .
2、平面外一点P到平面α的距离:如图,已知平面α的法向量为n,A是平面α内的定点,P是平面α外一点,过点P作平面α的垂线l,交平面α于点Q,则n是直线l的方向向量,且点P到平面α的距离PQ= = =
基本题型:
1.(多选)已知正方体ABCD-A1B1C1D1的棱长为1,点E,O分别是A1B1,A1C1的中点,点P在正方体内部且满足 = + + ,则下列说法正确的是()
【解析二】由题意可知,该平面与在正方体的截面为对边平行的六边形,如图所示,则截面面积为
所以当 时,
7.(2017新课标Ⅰ)如图,圆形纸片的圆心为 ,半径为5 cm,该纸片上的等边三角形 的中心为 . 、 、 为圆 上的点, , , 分别是以 , , 为底边的等腰三角形。沿虚线剪开后,分别以 , , 为折痕折起 , , ,使得 、 、 重合,得到三棱锥。当 的边长变化时,所得三棱锥体积(单位: )的最大值为_______。
所以 , , , .
得 , .
设平面 的法向量 ,平面 的法向量 ,
平面 与平面 夹角为 ,则 ,得 ,取 ,
,得 ,取 ,从而 ,
即平面 与平面 夹角的余弦值为 .
9.(2015浙江)如图,已知 , 是 的中点,沿直线 将 翻折成 ,所成二面角 的平面角为 ,则
10.(2012浙江)已知矩形 , , .将 沿矩形的对角线 所在的直线进行翻折,在翻折过程中,
福建省永春县第一中学高中数学立体几何多选题专题复习含解析

福建省永春县第一中学高中数学立体几何多选题专题复习含解析一、立体几何多选题1.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.2.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.3.在长方体1111ABCD A B C D -中,AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a,0a ⎡∈⎣,(2,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,,22)R λλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,2)D R λλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,22)(2)412440AR AC λλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时12282()()05555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则44(,)333R,142(,)333D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.4.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .AP ∥平面11AC D【答案】BD 【分析】 对于A ,1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C 所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1x =,则1,1z y =-=,所以(1,1,1)n =-, 所以110AP n x x ⋅=-+-=,所以AP n ⊥, 所以AP ∥平面11AC D ,D 正确, 故选:BD 【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.5.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =.则下列结论正确的是( )A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC 【分析】对选项分别作图,研究计算可得. 【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,1112212224BEF S EF BB ∆∴=⋅=⨯=连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即22AO =112213312A BEF BEF V S AO -∆∴=⨯==A BEF V -∴是定值.选项B:连接11A C 与11B D 交于点M ,连接11,AD AB , 由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥ 在直角三角形EFT 中,221cos 452FT EF =⨯=⨯=12HG FT ∴== 选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角, 在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=2AR =由余弦定理得1cos AD R ∠= 故选:AC 【点睛】本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得A B '=.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()313BCDE f S λλλ=⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=()f λ取得最大值()31231339f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=.故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=,E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D DD .四边形1BFDE 面积的最小值为6 【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62.【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16232⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.10.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为2a C .正四棱锥S -BCDE 的内切球半径为212a ⎛⎫- ⎪ ⎪⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有1122O B O S a ==,可求得球半径为22a ;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+-得22222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r,易求得侧面面积为221sin 23S a π=⋅=,由等体积法得222111432334a a a r a r ⋅=⋅+⋅⋅⋅解得4a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222221cos 2322BF DF BD BFD BF DF a ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎛⎫⎪⎝⎭22222221cos 232a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故////AS ED BC 故正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱,所以D 正确 故选:ABD 【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 5 13
cm,斜高为
cm.
5 13
学后反思 (1)把空间问题转化为平面问题去解是解决立体几何问 题的常用方法. (2)找出相关的直角梯形,构造直角三角形是解题的关键,正棱 台中许多元素都可以在直角梯形中求出.
举一反三
2. (2009·上海)若等腰直角三角形的直角边长为2,则以一直角边所 在的直线为轴旋转一周所成的几何体的体积是_____.
立体几何
第一节 空间几何体的结构及其三视图和直观图
基础梳理
1. 多面体
(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形 的公共边都互相平行,由这些面所围成的多面体叫做棱柱.
(2)有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这 些面所围成的多面体叫做棱锥.
(3)用一个平行于棱锥底面的平面截棱锥,底面和截面之间的这部分 多面体叫做棱台.
分析 要判断几何体的类型,从各类几何体的结构特征入手,以柱、 锥、台的定义为依据,把复杂的几何体分割成几个简单的几何体.
解 (1)如图1所示,该几何体满足有两个面平行,其余六个面都是矩形, 可使每相邻两个面的公共边都互相平行,故该几何体是正六棱柱. (2)如图2所示,等腰梯形两底边中点的连线将梯形平分为两个直角梯 形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台. (3)如图3所示,由梯形ABCD的顶点A引AO⊥CD于O点,将直角梯形分 为一个直角三角形AOD和矩形AOCB,绕CD旋转一周形成一个组合体, 该组合体由一个圆锥和一个圆柱组成.
(2)三视图的排列顺序:先画正视图,俯视图放在正视图的下方,侧视图 放在正视图的右方. (3)三视图的三大原则:长对正、高平齐、宽相等.
(4)水平放置的平面图形的直观图的斜二测画法: ①在已知图形中,取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把 它们画成对应的x′轴和y′轴,两轴相交于O′,且使∠x′O′y′=45°(或135°),用 它们确定的平面表示水平面.
、O1O, 和
和B1CB1C的中点分别是 O都BB是1O直1 角O梯EE形1O.1
∵ =4 cm,AB=16 cm,
∴ A1=B12 cm,OE=8 cm, =2 cm,OB=8 cm,
∴ O1E1
O1B1 2
2
=1B91BcmO, 1O2 OB O1B1 2
∴E棱1E 台 的O1侧O2棱 长OE为 O119E1
△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧
视图为
()
解析 由正三棱柱的性质得,侧面AED⊥底面EFD,则侧视图必为直 角梯形,且线段BE在梯形内部.
答案 A
题型四几何体的直观图
【例4】(12分)用斜二测法画出水平放置的等腰梯形的直观图.
分析 画水平放置的直观图应遵循以下原则: (1)坐标系中∠x′O′y′=45°;
题型二 柱、锥、台中的计算问题
【例2】正四棱台的高是17 cm,两底面边长分别是4 cm和16 cm,求棱台 的侧棱长和斜高.
分析 求棱台的侧棱长和斜高的关键是找到相关的直角梯形,然后构造 直角三角形,解决问题.
解 如图所示,设棱台的两底面的中心分别是 和EE1,连接 、 O、1O E、1EOBO、1B1 、OE,O则1E四1 边形
图1
图2
图3
学后反思 对于不规则的平面图形绕轴旋转问题,要对原平面图形作适 当的分割,再根据圆柱、圆锥、圆台的结构特征进行判断.
举一反三
1. 观察如图几何体,分析它们是由哪些基本几何体组成的,并说出主要 结构特征.
解析 (1)是一个四棱柱和一个四棱锥组成的,它有9个面,9个顶 点,16条棱.(2)是由一个四棱台、一个四棱柱和一个球组成的,其 主要结构特征就是相应四棱台、四棱柱和球的结构特征.
(2)横线相等,即A′B′=AB,C′D′=CD;
(3)竖线是原来的 1,即O′E′= OE.1
2
2
画法 (1)如图1,取AB所在直线为x轴,AB中点O为原点,建立直角坐标 系,…………………………………………………………..3′ 画对应的坐标系x′O′y′,使∠x′O′y′=45°……….5′
②已知图形中平行于x轴或y轴的线段,在直观图中,分别画成平行于x′轴 或y′轴的线段. ③已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,在直观图中长度变为原来的一半.
典例分析
题型一 空间几何体的结构特征
【例1】根据下列对几何体结构特征的描述,说出几何体的名称. (1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都 是矩形; (2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封 闭曲面所围成的图形; (3)一个直角梯形绕较长的底边所在的直线旋转一周形成的曲面所围成的 几何体.
2. 旋转 (1)以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围 成的旋转体叫做圆柱.
(2)以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转 形成的面所围成的旋转体体叫做圆锥. (3)以半圆的直径所在的直线为旋转轴,将半圆旋转一周形成的旋转 体叫做球体,简称球.
3. 三视图和直观图 (1)三视图是从一个几何体的正前方、正左方、正上方三个不同的方 向看这个几何体,描绘出的图形,分别称为正视图、侧视图、俯视图.
解析 如图,等腰直角三角形旋转而成的旋转体为圆锥.
1
V=3
S·h=1
3
π R·2h=
π1 ×
3
×2=2
. 8
3
答案 8
3
题型三 三视图与直观图 【例3】螺栓是由棱柱和圆柱构成的组合体,如下图,画出它的三视图.
分析 螺栓是棱柱、圆柱组合而成的,按照画三视图的三大原则 “长对正,高平齐,宽相等”画出. 解 该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六 棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧 面,俯视图反映该物体投影后是一个正六边形和一个圆(思 在绘制三视图时,若相邻两物体的表面相交,表面的交线是 它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出.例如上 图中,表示上面圆柱与下面棱柱的分界线是正视图中的线段AB、侧视 图中的线段CD以及俯视图中的圆.
举一反三
3. (2008·广东)将正三棱柱截去三个角(如图1所示,A、B、C分别是