备战2017高考黄金100题解读与扩展系列专题一空间几何体的三视图Word版含解析

合集下载

空间几何体的三视图、表面积和体积 高考数学真题与解析

空间几何体的三视图、表面积和体积  高考数学真题与解析

专题八立体几何8.1空间几何体的三视图、表面积和体积考点一空间几何体的三视图与直观图1.(2016天津文,3,5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()答案B由几何体的正视图、俯视图以及题意可画出几何体的直观图,如图所示.该几何体的侧视图为选项B中图形.故选B.评析本题主要考查空间几何体的三视图与直观图,考查学生的空间想象能力和识图、画图能力.2.(2014课标Ⅰ,8,5分,0.795)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案B 由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.3.(2014北京理,7,5分)在空间直角坐标系O-xyz 中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S 1,S 2,S 3分别是三棱锥D-ABC 在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A.S 1=S 2=S 3B.S 2=S 1且S 2≠S 3C.S 3=S 1且S 3≠S 2D.S 3=S 2且S 3≠S 1答案D 三棱锥D-ABC 如图所示.S 1=S △ABC =12×2×2=2,S 2=12×2×2=2,S 3=12×2×2=2,∴S 2=S 3且S 1≠S 3,故选D.4.(2014课标Ⅰ理,12,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.62B.6C.42D.4答案B 由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC 为等腰直角三角形,AB=BC=4,取BC 的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD 中,BD=DC=25,BC=DM=4,所以在Rt△AMD 中,AD=B 2+D 2=42+22+42=6,又在Rt△ABC 中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.评析本题考查空间几何体的三视图与直观图之间的互相转化,考查面面垂直性质定理的应用.同时考查考生的空间想象能力和运算求解能力.正确画出三棱锥的直观图是解决本题的关键.5.(2013课标Ⅱ,理7,文9,5分)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()答案A设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O、A、B、C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.方法归纳由几何体直观图画三视图的要求:①注意三个视图对应的观察方向;②注意视图中虚线与实线的区别;③画出的三视图要符合“长对正,高平齐,宽相等”的基本特征.6.(2013湖南理,7,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-12D.2+12答案C若该正方体的放置方式如图所示,当正视的方向与正方体的任一侧面垂直时,正视图的面积最小,其值为1,当正视的方向与正方体的对角面BDD1B1或ACC1A1垂直时,正视图的面积最大,其值为2,由于正视的方向不同,因此正视图的面积S∈[1,2].故选C.评析本题考查空间几何体的三视图与直观图,考查学生空间想象能力及有关知识的应用能力,解答本题应设法求出正视图的面积的取值范围,而不应该逐项计算.7.(2011课标理,6文,8,5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()答案D 由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面垂直于底面的三棱锥组成的组合体,故其侧视图应为D 选项.错因分析将组合体看成半圆柱和三棱锥的组合或不注意C 和D 中中线实虚的含义,易误选A 或C.评析本题主要考查空间几何体的三视图,考查学生的识图能力和空间想象能力.考点二空间几何体的表面积与体积1.(2018课标Ⅰ文,5,5分)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π答案B 本题主要考查圆柱的表面积及圆柱的轴截面.设圆柱的底面半径为r,高为h,由题意可知2r=h=22,∴圆柱的表面积S=2πr 2+2πr·h=4π+8π=12π.故选B.解题关键正确理解圆柱的轴截面及熟记圆柱的表面积公式是解决本题的关键.2.(2016课标Ⅱ文,4,5分)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323πC.8πD.4π答案A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=3a,即R=3,所以球的表面积S=4πR 2=12π.故选A.方法点拨对于正方体与长方体,其体对角线为其外接球的直径,即外接球的半径等于体对角线的一半.3.(2016课标Ⅲ,理10,文11,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+365B.54+185C.90D.81答案B由三视图可知,该几何体是底面为正方形(边长为3),高为6,侧棱长为35的斜四棱柱.其表面积S=2×32+2×3×35+2×3×6=54+185.故选B.易错警示学生易因空间想象能力较差而误认为侧棱长为6,或漏算了两底面的面积而致错.4.(2015课标Ⅰ理,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8答案B由已知条件可知,该几何体由圆柱的一半和半球组成,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由5πr2+4r2=16+20π得r=2.故选B.5.(2015北京理,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+5B.4+5C.2+25D.5答案C 由三视图可得该三棱锥的直观图如图所示,其中PA=1,BC=2,取BC 的中点M,连接AM,MP,则AM=2,AM⊥BC,故AC=AB=B 2+A 2=1+4=5,由正视图和侧视图可知PA⊥平面ABC,因此可得PC=PB=B 2+A 2=1+5=6,PM=B 2+A 2=1+4=5,所以三棱锥的表面积为S △ABC +S △PAB +S △PAC +S △PBC =12×2×2+12×5×1+12×5×1+12×2×5=2+25,故选C.6.(2015陕西,理5,文5,5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案D 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S=2×12×π×12+π×1×2+2×2=3π+4.评析本题考查三视图的概念和性质以及圆柱的表面积,考查运算及推理能力和空间想象能力.由三视图确定几何体的直观图是解题的关键.7.(2015课标Ⅱ,理9,文10,5分,0.685)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π答案C ∵S △OAB 是定值,且V O-ABC =V C-OAB ,∴当OC⊥平面OAB 时,V C-OAB 最大,即V O-ABC 最大.设球O 的半径为R,则(V O-ABC )max =13×12R 2×R=16R 3=36,∴R=6,∴球O 的表面积S=4πR 2=4π×62=144π.思路分析由△OAB 的面积为定值分析出当OC⊥平面OAB 时,三棱锥O-ABC 的体积最大,从而根据已知条件列出关于R 的方程,进而求出R 值,利用球的表面积公式即可求出球O 的表面积.导师点睛点C 是动点,在三棱锥O-ABC 中,如果以面ABC 为底面,则底面面积与高都是变量,而S △OAB 为定值,因此转化成以面OAB 为底面,这样高越大,体积越大.8.(2014浙江理,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2答案D由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为S=3×5+2×12×4×3+4×3+3×3+2×4×3+2×4×6+3×6=138(cm2).9.(2014福建文,5,5分)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.1答案A由题意得圆柱的底面半径r=1,母线l=1.∴圆柱的侧面积S=2πrl=2π.故选A.10.(2018浙江,3,4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8答案C本小题考查空间几何体的三视图和直观图以及几何体的体积公式.由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1cm,2cm,高为2 cm,直四棱柱的高为2cm.故直四棱柱的体积V=1+22×2×2=6cm3.思路分析(1)利用三视图可判断几何体是直四棱柱;(2)利用“长对正,高平齐,宽相等”的原则,可得直四棱柱的各条棱长.11.(2016山东理,5,5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.13+23πB.13+C.13+答案C由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径等于正四棱锥底面正方形的对角线的长,所以球的直径2R=2,即所以半球的体积为23πR3又正四棱锥的体积为13×12×1=13,所以该几何体的体积为13+故选C.易错警示不能从俯视图中正确地得到球的半径,而错误地从正视图中得到球的半径R=12.评析本题考查了空间几何体的三视图和体积公式.正确得到几何体的直观图并准确地计算是解题关键.12.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1答案A由三视图可画出三棱锥的直观图如图所示,其底面是等腰直角三角形ACB,直角边长为1,三棱锥的高为1,故体积V=13×12×1×1×1=16.故选A.13.(2015课标Ⅰ,理6,文6,5分,0.451)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案B设圆锥底面的半径为R尺,由14×2πR=8得R=16π,从而米堆的体积V=14×13πR2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62π≈22(斛).故选B.14.(2015课标Ⅱ,理6,文6,5分,0.426)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15答案D如图,由已知条件可知,在正方体ABCD-A1B1C1D1中,截去三棱锥A-A1B1D1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a,则截去部分的体积为16a3,剩余部分的体积为a3-16a3=56a3.它们的体积之比为15.故选D.15.(2015重庆理,5,5分)某几何体的三视图如图所示,则该几何体的体积为()A.13+2πB.13π6C.7π3D.5π2答案B由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.所以该几何体的体积为12×13×π×12×1+π×12×2=13π6,故选B.16.(2015浙江理,2,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.323cm3D.403cm3答案C由三视图知,该几何体是由棱长为2cm的正方体和底面边长为2cm,高为2cm的正四棱锥组合而成的几何体.所以该几何体的体积V=23+13×22×2=323cm3,故选C.17.(2015山东理,7,5分)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案C如图,此几何体是底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥,故所求体积V=2π-π3=5π3.评析本题主要考查几何体的体积及空间想象能力.18.(2015湖南文,10,5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积)原工件的体积A.89πB.827πC.24(2-1)3πD.8(2-1)3π答案A由三视图可知,原工件是一个底面半径为1,母线长为3的圆锥,则圆锥的高为22,新工件是该圆锥的内接正方体,如图,此截面中的矩形为正方体的对角面,设正方体的棱长为x,则22x1=22-x22,解得x=223.所以正方体的体积V1223=16227,又圆锥的体积V2=13π×12×22=223π,所以原工件材料的利用率为12=89π,故选A.19.(2014陕西理,5,5分)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.32π3B.4πC.2πD.4π3答案D 如图为正四棱柱AC 1.根据题意得AC=2,∴对角面ACC 1A 1为正方形,∴外接球直径2R=A 1C=2,∴R=1,∴V 球=4π3,故选D.20.(2014课标Ⅱ,理6,文6,5分,0.506)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59C.1027D.13答案C 该零件是两个圆柱体构成的组合体,其体积为π×22×4+π×32×2=34πcm 3,圆柱体毛坯的体积为π×32×6=54πcm 3,所以切削掉部分的体积为54π-34π=20πcm 3,所以切削掉部分的体积与原来毛坯体积的比值为20π54π=1027,故选C.21.(2014课标Ⅱ文,7,5分,0.495)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为()A.3B.32C.1答案C 在正三棱柱ABC-A 1B 1C 1中,∵AD⊥BC,AD⊥BB 1,BB 1∩BC=B,∴AD⊥平面B 1DC 1,∴t1D1=13△1D1·AD=13×12×2×3×3=1,故选C.22.(2013课标Ⅰ,理8,文11,5分,0.718)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π答案A由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V=4×2×2+12π×22×4=16+8π.故选A.思路分析由三视图分析该几何体的构成,从而利用三视图中的数据计算几何体的体积.23.(2013浙江文,5,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3答案B由三视图可知,该几何体是一个长方体截去了一个三棱锥,结合所给数据,可得其体积为6×6×3-13×12×4×4×3=100(cm3),故选B.24.(2012大纲全国,理7,文7,5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18答案B由三视图可得,该几何体为如图所示的三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=13×12×6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.25.(2011陕西文,5,5分)某几何体的三视图如图所示,则它的体积为()A.8-2π3B.8-π3C.8-2πD.2π3答案A由给出的三视图可得原几何体为正方体中挖去一圆锥,且此圆锥以正方体的上底面内切圆为底,以正方体的棱长为高.故所求几何体的体积为8-13×π×12×2=8-2π3.评析三视图是考查空间想象能力很好的一个题材,正确解答此类题目的关键是平时空间想象能力的培养,对文科学生来说,本题属中等难度题.26.(2016课标Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π,则它的表面积是()A.17πB.18πC.20πD.28π答案A由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR3=28π3,故R=2,从而它的表面积S=78×4πR2+34×πR2=17π.故选A.27.(2016课标Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π答案C由三视图可得圆锥的母线长为22+(23)2=4,∴S圆锥侧=π×2×4=8π.又S圆柱侧=2π×2×4=16π,S圆柱底=4π,∴该几何体的表面积为8π+16π+4π=28π.故选C.思路分析先求圆锥的母线长,从而可求得圆锥的侧面积,再求圆柱的侧面积与底面积,最后求该几何体的表面积.28.(2017课标Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π解析本题考查长方体和球的性质,考查了球的表面积公式.由题意知长方体的体对角线为球O的直径,设球O的半径为R,则(2R)2=32+22+12=14,得R2=72,所以球O的表面积为4πR2=14π.疑难突破明确长方体的体对角线为球O的直径是求解的关键.易错警示易因用错球的表面积公式而致错.29.(2013课标Ⅱ,15,5分,0.158)已知正四棱锥O-ABCD底面边长为3,则以O为球心,OA为半径的球的表面积为.答案24π解析设底面中心为E,连接OE,AE,则|AE|=12|AC|=∵体积V=13×|AB|2∴|OA|2=|AE|2+|OE|2=6.从而以OA为半径的球的表面积S=4π·|OA|2=24π.思路分析先根据已知条件直接利用锥体的体积公式求得正四棱锥O-ABCD的高,再利用勾股定理求出|OA|,最后根据球的表面积公式计算即可.30.(2013课标Ⅰ,15,5分,0.123)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.答案9π2解析平面α截球O所得截面为圆面,圆心为H,设球O的半径为R,则由AH∶HB=1∶2得OH=13R,由圆H的面积为π,得圆H的半径为1,+12=R2,得出R2=98,所以球O的表面积S=4πR2=4π·98=92π.31.(2013福建理,12,4分)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是.答案12π解析由三视图知:棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积为232=12π.32.(2017江苏,6,5分)如图,在圆柱O 1O 2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则12的值是.答案32解析本题考查空间几何体的体积.设圆柱内切球的半径为R,则由题设可得圆柱O 1O 2的底面圆的半径为R,高为2R,∴12=π2·2R 43π3=32.33.(2018天津理,11,5分)已知正方体ABCD-A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH 的体积为.答案112解析本题主要考查正方体的性质和正四棱锥的体积.由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M-EFGH 的体积V=13×12×12=112.34.(2016天津理,11,5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.答案2解析四棱锥的底面是平行四边形,由三视图可知其面积为2×1=2m2,四棱锥的高为3m,所以四棱锥的体积V=13×2×3=2m3.易错警示该题有两点容易出错:一是锥体的体积公式中的系数13易漏写;二是底面平行四边形的面积易错误地写成3×1=3m2.评析本题考查了三视图和直观图,考查了锥体的体积.35.(2016四川,13,5分)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.答案解析由题意及正视图可知三棱锥的底面等腰三角形的底长为23,三棱锥的高为1,则三棱锥的底面积为12×22-(3)2×23=3,∴该三棱锥的体积为13×3×1=评析正确理解正视图中的数据在直观图中表示的含义很关键.36.(2014山东理,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则12=.答案14解析如图,设S△ABD=S1,S△PAB=S2,E到平面ABD的距离为h1,C到平面PAB的距离为h2,则S 2=2S1,h2=2h1,V1=1S1h1,V2=1S2h2,∴1=1ℎ1=1.评析本题考查三棱锥的体积的求法以及等体积转化法在求空间几何体体积中的应用.本题的易错点是不能利用转化与化归思想把三棱锥的体积进行适当的转化,找不到两个三棱锥的底面积及相应高的关系,从而造成题目无法求解或求解错误.37.(2012安徽,12,5分)某几何体的三视图如图所示,则该几何体的体积等于.答案56解析由题意知,该三视图对应的几何体如图,其体积12(2+5)×4×4=56.评析本题主要考查三视图的知识,考查学生的空间想象能力.由三视图得到直观图是解题关键.38.(2011课标理,15,5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O-ABCD的体积为.答案83解析如图,连接AC,BD,交于O1,则O1为矩形ABCD所在小圆的圆心,连接OO1,则OO1⊥面ABCD,易求得O1C=23,又OC=4,∴OO1=B2-12=2,∴棱锥体积V=13×6×23×2=83.失分警示立体感不强,空间想象能力差,无法正确解出棱锥的高而得出错误结论.评析本题主要考查球中截面圆的性质及空间几何体的体积的计算,通过球这个载体考查学生的空间想象能力及推理运算能力.39.(2011课标文,16,5分)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.答案13解析如图,设球的半径为R,圆锥底面半径为r,由题意得πr2=316×4πR2.=12R.体积较小的圆锥的高AO1=R-12R=12R,体积较大的圆锥的高BO1=R+12R=32R.1故这两个圆锥中,体积较小者的高与体积较大者的高的比值为13.评析本题考查球、球内接圆锥的相关问题,考查R,r的关系,由题意得到是解答本题的关键. 40.(2020课标Ⅰ文,19,12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P 为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P-ABC的体积.解析(1)由题设可知,PA=PB=PC.由于△ABC是正三角形,故可得△PAC≌△PAB,△PAC≌△PBC.又∠APC=90°,故∠APB=90°,∠BPC=90°.从而PB⊥PA,PB⊥PC,故PB⊥平面PAC,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l.由题设可得rl=3,l2-r2=2.解得r=1,l=3.从而AB=3.由(1)可得PA2+PB2=AB2,故所以三棱锥P-ABC的体积为13×12×PA×PB×PC=13×12×第21页共21页。

高考理科数学第1讲 空间几何体的三视图、表面积与体积及空间位置关系的判定(小题速做)

高考理科数学第1讲 空间几何体的三视图、表面积与体积及空间位置关系的判定(小题速做)
大二轮复习 数学(理)
专题四 立体几何
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(理)
第 1 讲 空间几何体的三视图、表面积与 体积及空间位置关系的判定(小题速做)
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(理)
[高考领航]——————————我知道了高考航向是什么!
(3) 面 面 平 行 的 判 定 定 理 : a ⊂ β , b ⊂ β , a_____∩______b = P , a_____∥______α,b_____∥______α⇒α∥β.
(4)面面平行的性质定理:α_____∥______β,α______∩_____γ=a, β____∩_______γ=b⇒a∥b.
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(理)
由球的截面的性质可得直三棱柱外接球的球心 O 就是线段 EE1 的 中点.
连接 OA,AE,A1E1.在△ABC 中,AC⊥AB,所以 BC= AB2+AC2 = 32+42=5,所以 EA=12BC=52.又 OE=12AA1=12×12=6,由球的截 面的性质可得 OE⊥平面 ABC,
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(理)
2.几何体与球组合体的结论 (1)设长方体的有公共顶点的三条棱长为 a、b、c,则体对角线长为 ______a_2_+__b_2_+__c_2 __. (2)棱长为 a 的正方体的体对角线长等于外接球的直径,即 3a=2R. (3)若球面上四点 P、A、B、C 构成的线段 PA、PB、PC 两两垂直, 且 PA=a,PB=b,PC=c,则 4R2=__a_2+__b_2_+__c_2_,把有关元素“补形” 成为一个球内接长方体(或其他图).

备战2017高考黄金100题解读与扩展系列专题五空间平行的证明Word版含解析

备战2017高考黄金100题解读与扩展系列专题五空间平行的证明Word版含解析

专题五空间平行的证明I .题源探究·黄金母题【例1】如图,在空间四边形ABCD 中,,,E F G 分别是,,AB BC CD 的中点,求证: (1)BD P 平面EFG ; (2)AC P 平面EFG ;.【解析】(1)∵E F 、分别为BC CD 、的中点, ∴EF 为BCD ∆的中位线,∴EFBD ,∵EF ⊂平面EFG ,BD ⊄平面EFG , ∴BD P 平面EFG .(2)∵G F 、分别为AD CD 、的中点 ∴GF 为ACD ∆的中位线,∴GFAC .∵GF ⊂平面EFG ,AC ⊄平面EFG , ∴AC P 平面EFG .II .考场精彩·真题回放【例2】【2016年全国Ⅲ卷】如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(1)证明MN 平面PAB ;(2)求四面体N BCM -的体积. 【解析】(1)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,, 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN AM ,四边形AMNT 为平行四边形,于是MN AT .因为⊂AT 平面PAB ,⊄MN 平面PAB , 所以//MN 平面PAB .(2)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. 取BC 的中点E ,连结AE . 由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S ,所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N .【例3】【2016年江苏高考】如图,在直三棱柱111ABC A B C -中,D E ,分别为AB BC ,的中点,点F 在侧棱1B B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE平面11AC F ;(2)平面1B DE ⊥平面11AC F .【解析】1)在直三棱柱111ABC A B C -中,11ACAC .在三角形ABC 中,因为,D E 分别为,AB BC 的中点, 所以//DE AC ,于是11DEAC .又因为DE ⊄平面1111,AC F AC ⊂平面11AC F , 所以直线DE平面11AC F .(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C . 因为11AC ⊂平面111A B C ,所以111AA ⊥A C . 又因为1111111AC A B AA ABB A ⊥⊂,平面,1111A B ABB A ⊂平面,1111A B AA A =,所以11AC ⊥平面11ABB A ,因为1B D ⊂平面11ABB A ,所以111AC B D ⊥. 又因为111111B D A F AC AC F ⊥⊂,平面,111A F AC F ⊂平面,1111AC A F A =,所以111C F B D A ⊥平面.因为直线11B D B DE ⊂平面, 所以1B DE 平面11AC F ⊥平面. 精彩解读【试题来源】人教版A 版必修二第79页复习参考题B 组第2题.【母题评析】本题是以正方体为载体考查空间直线与平面的垂直关系,这种题型能充分考查学生的逻辑思维能力与空间想象能力,以及综合分析与解决问题的能力.这在高考中常常出现在解答题的第1小题位置.【思路方法】两平面平行(或垂直)问题常转化为直线与直线平行(或垂直),而直线与平面平行(或垂直)又可转化为直线与直线平行(或垂直),所以在解题时应注意“转化思想”的运用。

高考数学复习:空间几何体的三视图、表面积及体积

高考数学复习:空间几何体的三视图、表面积及体积

V=13×3×6×3=18.
返回导航
专题五 立体几何
空间几何体的三视图与直观图的对应关系
典题例析 例 1 (1)下列三视图所对应的直观图是
二 轮 复 习
(C )
数 学
[解析] 由题意可知,几何体的直观图下部是长方体,上部是圆柱,并且高 相等,所以C选项符合题意.
返回导航
专题五 立体几何
(2)如图是一个空间几何体的正视图和俯视图,则它的侧视图为


(r,r′为底面半径,h 为高)
球 V 球=__43_π_R_3_____(R 为球的半径) S 球=___4_π_R_2___(R 为球的半径)
返回导航
专题五 立体几何
2.空间几何体的三视图和直观图
(1)空间几何体的三视图
三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上
方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对
=π4.
返回导航
专题五 立体几何
7.(2019·北京卷,11)某几何体是由一个正方体去 掉一个四棱柱所得,其三视图如图所示.如果网格纸上 小正方形的边长为1,那么该几何体的体积为__4_0___.
数 学
二 轮 复 习
[解析 ] 由题意知去掉的四棱柱的底面为直角梯形,底面积S=(2+4) ×2÷2=6,高为正方体的棱长4,所以去掉的四棱柱的体积为6×4=24.又正方 体的体积为43=64,所以该几何体的体积为64-24=40.
(1)加强对空间几何体结构特征的理解,掌握各种几何体的体积、表面积公式.
(2)掌握空间几何三视图的画法规则,掌握几何直观图中各个元素之间的关系以
及三视图中长宽之间的关系.

2017年高考数学(考点解读+命题热点突破)专题12空间几何体的三视图﹑表面积及体积理

2017年高考数学(考点解读+命题热点突破)专题12空间几何体的三视图﹑表面积及体积理

专题12 空间几何体的三视图﹑表面积及体积【命题热点突破一】三视图与直观图1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先从俯视图确定底面再利用正视图与侧视图确定几何体.例1、【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C【方法技巧】空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.【变式探究】(1)一个几何体的三视图如图所示,则该几何体的直观图可以是( )(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )答案 (1)D (2)D解析(1)由俯视图,易知答案为D.(2)如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.【命题热点突破二】几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 【方法技巧】(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.【变式探究】在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥PA 1MN 的体积是________. 答案 124解析 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱, ∵11P A MN A PMNV V --=,又∵AA 1∥平面PMN , ∴1A PMNV -=V A-PMN ,∴V A-PMN =13×12×1×12×12=124,故1P A MNV -=124. 【命题热点突破三】 多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 例3、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 【方法技巧】三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形: (1)P 可作为长方体上底面的一个顶点,A 、B 、C 可作为下底面的三个顶点; (2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线. 【变式探究】在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,62,则三棱锥A -BCD 的外接球体积为________. 答案 6π解析 如图,以AB ,AC ,AD 为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,∴三棱锥的外接球的直径是长方体的对角线长.据题意⎩⎨⎧AB ·AC =2,AC ·AD =3,AB ·AD =6,解得⎩⎨⎧AB =2,AC =1,AD =3,∴长方体的对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为62. ∴三棱锥外接球的体积为V =43π·(62)3=6π.【高考真题解读】1、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16 B.13 C.12D.1 【答案】A【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18+(B )54+(C )90 (D )81 【答案】B【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )133+π (C )136+π (D )16+π 【答案】C6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C 【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,所以,该三棱锥的体积为1122132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 1.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .大于5B .等于5C .至多等于4D .至多等于3解析 当n =3时显然成立,故排除A ,B ;由正四面体的四个顶点,两两距离相等,得n =4时成立,故选C. 答案 C2.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C.323 cm 3 D.403cm 33.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析 由题意知,2r ·2r +12·2πr ·2r +12πr 2+12πr 2+12·4πr 2=4r 2+5πr 2=16+20π,解得r =2.答案 B4.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π m 3. 答案 83π 5.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+46.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2解析 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.答案 B7.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π答案 C8.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π 解析 如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=53π.答案 C9.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为()A.13+πB.23+πC.13+2πD.23+2π 解析 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝ ⎛⎭⎪⎫12×1×2×1=π+13,选A. 答案 A10.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15解析 如图,由题意知,该几何体是正方体ABCD -A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A -A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为111111A A B D B C D ABCD V V --=1111111111A A B D A B C D ABCD A A B D V V V ----=13×12×12×113-13×12×12×1=15,选D.答案 D11.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)()A.89πB.169πC.4(2-1)3πD.12(2-1)3π∴V长方体V1=16272π3=89π.故选A.答案 A。

2017年高考数学深化复习+命题热点提分专题12空间几何体的三视图﹑表面积及体积理

2017年高考数学深化复习+命题热点提分专题12空间几何体的三视图﹑表面积及体积理

专题12 空间几何体的三视图﹑表面积及体积1.一个侧面积为4π的圆柱,其正视图、俯视图是如图所示的两个边长相等的正方形,则与这个圆柱具有相同的正视图、俯视图的三棱柱的相应的侧视图可以为( )解析:三棱柱一定有两个侧面垂直,故只能是选项C中的图形.答案:C2.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )解析由于C选项不符合三视图中“宽相等”的要求,故选C.答案 C3.一个正方体截去两个角后所得几何体的正(主)视图、侧(左)视图如图所示,则其俯视图为( )解析由题意得正方体截去的两个角如图所示,故其俯视图应选C.答案 C4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )解析左视图是从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是左下角与右上角的连线,故选C.答案 C5.如图,用斜二测画法得到四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是________.答案8 26.如图是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是( )A .24B .12C .8D .47.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )A.12B.32C .1 D. 3 解析 有三视图可以得到原几何体是以1为半径,母线长为2的半个圆锥,故侧视图的面积是32,故选B. 答案 B8.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+16B.4π3+16 C.2π6+16D.2π3+12解析 据三视图可知,该几何体是一个半球(下部)与一个四面体(上部)的组合体,其直观图如图所示,其中BA ,BC ,BP 两两垂直,且BA =BC =BP =1,∴ (半)球的直径长为AC =2, ∴该几何体的体积为V =V 半球+V P ­ABC=12×43π⎝ ⎛⎭⎪⎫AC 23+13×12×BA · BC ·PB =2π6+16. 答案 C9.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的表面积为( )A .92+24πB .82+24πC .92+14πD .82+14π解析 该几何体是个半圆柱与长方体的组合体,直观图如图,表面积为S =5×4+2×4×4+2×4×5+2π×5+π×22=92+14π. 答案 C10.四棱锥P ­ABCD 的三视图如图所示,四棱锥P ­ABCD 的五个顶点都在一个球面上,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .12πB .24πC .36πD .48π解析 将三视图还原为直观图如图,可得四棱锥P ­ABCD 的五个顶点位于同一个正方体的顶点处,且与该正方体内接于同一个球,且该正方体的棱长为a .设外接球的球心为O ,则O 也是正方体的中心,设EF 的中点为G ,连接OG ,OA ,AG .根据题意,直线EF 被球面所截得的线段长为22,即正方体的面对角线长也是22,可得AG =2=22a ,所以正方体的棱长a =2,在Rt △OGA 中,OG =12a =1,AO =3,即四棱锥P ­ABCD 的外接球半径R =3,从而得外接球表面积为4πR 2=12π,故选A.答案 A11.用6根木棒围成一个棱锥,已知其中有两根的长度为 3 cm 和 2 cm ,其余四根的长度均为1 cm ,则这样的三棱锥的体积为________cm 3.解析 由题意知该几何体如图所示,SA =SB =SC =BC =1,AB =2,AC =3,则∠ABC =90°,取AC 的中点O ,连接SO 、OB ,则SO ⊥AC ,所以SO =SA 2-AO 2=12,OB =12AC =32,又SB =1,所以SO 2+OB 2=SB 2,所以∠SOB =90°,又SO ⊥AC ,所以SO ⊥底面ABC ,故所求三棱锥的体积V =13×22×12=212.答案21212.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.解析 由题意知原图形OABC 是平行四边形,且OA =BC =6,设平行四边形OABC 的高为OE ,则OE ×12×22=O ′C ′,∵O ′C ′=2,∴OE =42,∴S ▱OABC =6×42=24 2.答案 24 213.如图所示,E ,F 分别是正方体的面ADD 1A 1,面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影可能是________.(要求:把可能的图的序号都填上)解析 由正投影的定义,四边形BFD 1E 在面AA 1D 1D 与面BB 1C 1C 上的正投影是图③;其在面ABB 1A 1与面DCC 1D 1上的正投影是图②;其在面ABCD 与面A 1B 1C 1D 1上的正投影也是②,故①④错误. 答案 ②③14.用一个平行于圆锥底面的平面截这个圆锥,截得圆台的上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台的母线长.解 由圆台的上、下底面的面积之比为1∶16,设圆台上、下底面圆的半径分别为r 、4r ,圆台的母线长为l ,根据相似三角形的性质得33+l =r4r,解得l =9 cm. 所以圆台的母线长为9 cm.15.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体; (2)画出其侧视图,并求该平面图形的面积; (3)求出该几何体的体积.解 (1)正六棱锥.(2)其侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a , ∴该平面图形的面积S =123a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.16.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S .解 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、右侧面均为底边长为6,高为h 2的等腰三角形,如图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为h 1=42+32=5.左、右侧面的底边上的高为h 2=42+42=4 2. 故几何体的侧面面积为:S =2×(12×8×5+12×6×42)=40+24 2.17.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.(2)设正三棱锥P ­ABC 的内切球球心为O ,连接OP ,OA , OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .∴V P ­ABC =V O ­PAB +V O ­PBC +V O ­PAC +V O ­ABC=13S 侧·r +13S △ABC ·r =13S 表·r =(32+23)r .又V P ­ABC =13×12×32×(26)2×1=23,∴(32+23)r =23,得r =2332+23=23(32-23)18-12=6-2.∴S 内切球=4π(6-2)2=(40-166)π.V 内切球=43π(6-2)3=83(96-22)π.。

2017届高考数学(文科)-空间几何体的三视图、表面积与体积-专题练习-答案

2017届高考数学(文科)专题练习空间几何体的三视图、表面积与体积答案一、选择题1~5.CDABB 6~10.CBBCC二、填空题11;12.40π;13..14.132017届高考数学(文科)专题练习空间几何体的三视图、表面积与体积解析一、选择题1.解析:该几何体的侧视图即为其在面BCC1B1上的射影,又A点射影为点B,E点射影为线段CC1的中点,故选C.2.解析:由正视图和侧视图可知,这是一个横放的正三棱柱,一个侧面水平放置,则俯视图应为D.3.解析:四面体的直观图如图A-BCD,所以V=×(×1×2)×2=。

4.解析:由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形,在△ABC中AC=4,AC 边上的高为2,故BC=4,在Rt△SBC中,由SC=4,可得SB=4,故选B.5.解析:由三视图知此多面体是一个斜四棱柱,其表面积S=2×(3×3+3×6+3×3)=54+18。

故选B.6.解析:由三视图可知,该几何体是一个底面是梯形的直四棱柱,所以V=×(2+3)×1×1=。

故选C.7.解析:由三视图可知,该几何体是由圆锥(上方)与圆柱(下方)构成的组合体,其中圆锥与圆柱的底面半径r=1,圆锥的母线长l=2,圆柱的高H=2.则圆锥的侧面积S1=πrl=π×1×2=2π;圆柱的侧面积S2=2πrH=2π×1×2=4π;圆柱的底面积S3=πr2=π×12=π。

故该组合体的表面积S=S1+S2+S3=2π+4π+π=7π。

8.解析:设圆锥底面半径为r,因为米堆底部弧长为8尺,所以r=8,r=≈(尺),所以米堆的体积为V=××π×()2×5≈(立方尺),又1斛米的体积约为1.62立方尺,所以该米堆有÷1.62≈22(斛),选B.9.解析:由三视图可知该零件是一个底面半径为2.高为4的圆柱和一个底面半径为3.高为2的圆柱的组合体,所以该组合体的体积V1=π×22×4+π×32×2=34π,原来的圆柱体毛坯的体积为V=π×32×6=54π,则切削掉部分的体积为V2=54π-34π=20π,所以切削掉部分的体积与原来毛坯体积的比值为=。

高考数学专题四_1_第1讲_空间几何体的三视图、表面积与体积_学案_word版含解析

专题四立体几何与空间向量第1讲空间几何体的三视图、表面积与体积年份卷别考查内容及考题位置命题分析2018卷Ⅰ空间几何体的三视图及侧面展开问题·T71.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面的位置关系(特别是平行与垂直).2.考查一个小题时,此小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一个小题难度稍高,一般会出现在第10~16题的位置上,此小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的截面问题·T12卷Ⅱ圆锥的侧面积·T16卷Ⅲ三视图的识别·T3三棱锥的体积及外接球问题·T102017卷Ⅰ空间几何体的三视图与直观图、面积的计算·T7卷Ⅱ空间几何体的三视图及组合体体积的计算·T4卷Ⅲ球的内接圆柱、圆柱的体积的计算·T82016卷Ⅰ有关球的三视图及表面积的计算·T6卷Ⅱ空间几何体的三视图及组合体表面积的计算·T6卷Ⅲ空间几何体的三视图及组合体表面积的计算·T9直三棱柱的体积最值问题·T10空间几何体的三视图(基础型)一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[注意]在读图或者画空间几何体的三视图时,应注意三视图中的实线和虚线.[考法全练]1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN ,则MS =2,SN =4,则从M 到N 的路径中,最短路径的长度为MS 2+SN 2=22+42=2 5.故选B.3.把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成的三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为( )A.12B.22C.24D.14解析:选D.由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C -ABD 的侧视图的面积为14,故选D.4.(2018·长春质量监测(二))如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为( )A .2 B. 5 C .2 2D .3解析:选D.如图,三棱锥A -BCD 即为所求几何体,根据题设条件,知辅助的正方体棱长为2,CD =1,BD =22,BC =5,AC =2,AB =3,AD =5,则最长棱为AB ,长度为3.5.(2018·石家庄质量检测(一))如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是( )A .2 3B .2 2C .2D. 3解析:选C.在正方体中还原该几何体,如图中三棱锥D -ABC 所示,其中正方体的棱长为2,则S △ABC =2,S △DBC =22,S △ADB =22,S △ADC =23,故该三棱锥的四个面中,最小面的面积是2,选C.空间几何体的表面积和体积(综合型)柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高). (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高). (2)V 锥体=13Sh (S 为底面面积,h 为高).(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上下底面面积,h 为高)(不要求记忆).[典型例题]命题角度一 空间几何体的表面积(1)(2018·潍坊模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A .4+23B .4+4 2C .6+2 3D .6+4 2(2)(2018·合肥第一次质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6【解析】 (1)由三视图还原几何体的直观图如图所示,易知BC ⊥平面P AC ,又PC ⊂平面P AC ,所以BC ⊥PC ,又AP =AC =BC =2,所以PC =22+22=22,又AB =22,所以S △PBC =S △P AB =12×2×22=22,S △ABC =S △P AC =12×2×2=2,所以该几何体的表面积为4+4 2.(2)由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6.【答案】 (1)B (2)C求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积.命题角度二 空间几何体的体积(1)(2018·武汉调研)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.22C.33D.23(2)(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.【解析】 (1)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1­BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,四棱锥D -ABC 1D 1的底面积为S 四边形ABC 1D 1=2×2=22,高h =22,其体积V =13S 四边形ABC 1D 1h =13×22×22=23.故选D.(2)由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.【答案】 (1)D (2)8π求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.[对点训练]1.(2018·洛阳第一次统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3解析:选A.由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.2.(2018·唐山模拟)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为( )A .3 B.113 C .7D.233解析:选B.由题中的三视图可得,该几何体是由一个长方体切去一个三棱锥所得的几何体,长方体的长,宽,高分别为2,1,2,体积为4,切去的三棱锥的体积为13,故该几何体的体积V =4-13=113.故选B.多面体与球(综合型)[典型例题]命题角度一 外接球(2018·南宁模拟)三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC的外接球的体积为( )A.272π B.2732πC .273πD .27π【解析】 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B.【答案】 B解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.命题角度二 内切球已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B.4π3C.2π3D.π2【解析】 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C.【答案】 C求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.命题角度三 与球有关的最值问题(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3【解析】 如图,E 是AC 中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE =23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D -ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B.【答案】 B多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[对点训练]1.(2018·福州模拟)已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83π B.323π C .16πD .32π解析:选B.设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R =2,所以所求球的体积V =43πR 3=43π×23=323π,故选B.2.(2018·洛阳第一次联考)已知球O 与棱长为4的正四面体的各棱均相切,则球O 的体积为( ) A.823πB.833πC.863π D.1623π解析:选A.将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.3.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于( )A.42π3B.162π3C.322π3D.642π3解析:选D.由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D.一、选择题1.(2018·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )解析:选A.正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A.2.(2018·高考北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =P A =2,AB ⊥AD ,P A ⊥平面ABCD ,故△P AD ,△P AB 为直角三角形, 因为P A ⊥平面ABCD ,BC ⊂平面ABCD , 所以P A ⊥BC ,又BC ⊥AB ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又PB ⊂平面P AB ,所以BC ⊥PB ,所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22, 故△PCD 不是直角三角形,故选C.3.(2018·沈阳教学质量监测(一))如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3解析:选A.由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.4.(2018·西安八校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.4π3B.5π3 C .2+2π3D .4+2π3解析:选B.由三视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V =23π×13+12π×12×2=5π3,故选B.5.(2018·长春质量检测(一))已知矩形ABCD 的顶点都在球心为O ,半径为R 的球面上,AB =6,BC =23,且四棱锥O -ABCD 的体积为83,则R 等于( )A .4B .2 3 C.479D.13解析:选A.如图,设矩形ABCD 的中心为E ,连接OE ,EC ,由球的性质可得OE ⊥平面ABCD ,所以V O ­ABCD =13·OE ·S 矩形ABCD =13×OE ×6×23=83,所以OE =2,在矩形ABCD 中可得EC =23,则R =OE 2+EC 2=4+12=4,故选A.6.(2018·南昌调研)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.23B.43 C .2D.83解析:选A.由三视图可知,该几何体为三棱锥,将其放在棱长为2的正方体中,如图中三棱锥A -BCD 所示,故该几何体的体积V =13×12×1×2×2=23.7.(2018·辽宁五校协作体联考)如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是三棱锥的三视图,则此三棱锥的体积是( )A .8B .16C .24D .48解析:选A.由三视图还原三棱锥的直观图,如图中三棱锥P ­ABC 所示,且长方体的长、宽、高分别为6,2,4,△ABC 是直角三角形,AB ⊥BC ,AB =2,BC =6,三棱锥P -ABC 的高为4,故其体积为13×12×6×2×4=8,故选A.8.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( ) A.π27 B.8π27 C.π3D.2π9解析:选B.如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r 2-r 3)(0<r <1),设V (r )=2π(r 2-r 3)(0<r <1),则V ′(r )=2π(2r -3r 2),由2π(2r -3r 2)=0得r =23,所以圆柱的最大体积V max =2π⎣⎡⎦⎤⎝⎛⎭⎫232-⎝⎛⎭⎫233=8π27.9.(2018·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为 ( )A .14B .10+4 2 C.212+4 2 D.21+32+4 2解析:选D.由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S =2×⎝⎛⎭⎫22-12×1×1+12×(22-12)+12×22+2×22+12×32×(2)2=21+32+42,故选D.10.(2018·太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为( )A .3 3B .2 6 C.21D .2 5解析:选B.由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面P AD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.11.(2018·南昌调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( )A. 2 B .2 2 C. 3D .2 3解析:选B.取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径P A=4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为2OO 1=2 2.12.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32解析:选A.记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′­AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝⎛⎭⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A.二、填空题13.(2018·洛阳第一次联考)一个几何体的三视图如图所示,则该几何体的体积为________.解析:由题图可知该几何体是一个四棱锥,如图所示,其中PD ⊥平面ABCD ,底面ABCD 是一个对角线长为2的正方形,底面积S =12×2×2=2,高h =1,则该几何体的体积V =13Sh =23.答案:2314.(2018·福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为________.解析:在长、宽、高分别为3,33,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C -BAP ,其中底面BAP 是∠BAP =90°的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=27 3. 答案:27 315.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin ∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π16.(2018·潍坊模拟)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为________.解析:设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h =⎝⎛⎭⎫6-h 22h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.答案:2。

2017年高考数学(文)热点题型和提分秘籍:专题29+空间几何体的三视图、直观图、表面积与体积(解析版)

2. 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图, 则该多面体的表面积为( )(A )18+(B )54+ (C )90 (D )81 【答案】B3.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )12+π33(B )1π3(C )13(D ) 【答案】C4.已知某三菱锥的三视图如图所示,则该三棱锥的体积 .侧视图俯视图【解析】由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=,高为1,所以该三棱锥的体积为11133V Sh ===5.【2016高考北京文数】某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2【解析】四棱柱高为1,底面为等腰梯形,面积为13(12)122⨯+⨯=,因此体积为3.21.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm【答案】C2.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B)136π (C) 73π (D) 52π【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D【解析】由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D4、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )8 【答案】B5.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A.8+ B .11+ C .14+ D .15 【答案】B6.【2015高考山东,文9】已知等腰直角三角形的直角边的长为 ,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()(A )错误!未找到引用源。

2017高考试题汇编 立体几何 Word版含解析

立体几何第一节 空间几何体及其表面积和体积1.如图所示,在圆柱12O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .1.解析 设球O 的半径为r ,由题意212V r r =π⋅,3243V r =π,所以1232V V =.故填32.2.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .2.解析 设正方体的边长为a ,则226183a a =⇒=.外接球直径为正方体的体对角线,所以23==R ,344279πππ3382==⨯=V R . 3.如图所示,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,DBC △,ECA △,FAB △分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB △,使得D ,E ,F 重合,得到三棱锥.当ABC △的边长变化时,所得三棱锥体积(单位:3cm )的最大值为_______.3.解析 由题意,联结OD ,交BC 于点G ,如图所示,则OD BC ⊥,OG =,即OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,三棱锥的高h =2132ABC S x =⋅⋅=△,则13ABC V S h =⋅=△令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭,()3410050f x x x '=-,令()0f x '>,即4320x x -<,2x <,当()0f x '<,得522x <<,所以()f x在()0,2上单调递增,在52,2⎛⎫ ⎪⎝⎭上单调递减.故()()280f x f =≤,则V =,所以体积的最大值为3.4.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ). A .πB .3π4C .π2D .π44.解析 如图所示,由题可知球心在圆柱体的中心处,圆柱体上、下底面圆的半径r ==23ππ4V r h ==.故选B.第二节 空间几何体的直观图与三视图5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( ). A.π12+ B. π32+ C. 3π12+ D. 3π32+5.解析 由三视图可知,直观图是由半个圆锥与一个三棱锥构成,半圆锥体积为()2111=13232S π⨯π⨯⨯=,三棱锥体积为211=213=132S ⎛⎫⨯⨯⨯ ⎪⎝⎭,所以几何体体积1212S S S π=+=+.故选A .6.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ).A.10B.12C.14D.166. 解析 由三视图可画出立体图,如图所示,该多面体只有两个相同的梯形的面, ()24226S =+⨯÷=梯,6212S =⨯=全梯.故选B.7.如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ).A .90πB .63πC .42πD .36π7.解析 该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半,如图所示. 2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上.故选B.8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ).A.B.C.D.28. 解析 几何体四棱锥如图所示,最长棱为正方体的体对角线,即l ==故选B.9.由一个长方体和两个14圆柱体构成的几何体的三视图如图所示,则该几何体的体积为 .9. 解析 该几何体的体积为21112211242V π=π⨯⨯⨯+⨯⨯=+.第三节 空间点、直线、平面之间的位置关系10.如图所示,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm (容器厚度、玻璃棒粗细均忽略不计).(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分 的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分 的长度.AC A 11容器ⅠE G 1H 1容器Ⅱ10.解析 (1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处,如图所示为截面11A ACC 的平面图形.因为AC =40AM =,所以30MC ==,从而3sin 4MAC ∠=.记AM 与水面的交点为1P , 过点1P 作11PQ AC ⊥,1Q 为垂足,则11PQ ⊥平面A B C D ,故1112PQ =,从而11116sin PQ AP MAC==∠.答:玻璃棒l 没入水中部分的长度为16cm .问(1)AC 1A 1CMP 1Q 1(2)如图所示为截面11E EGG 的平面图形,O ,1O 是正棱台两底面的中心.由正棱台的定义,1OO ⊥平面EFGH , 所以平面11E EGG ⊥平面EFGH ,1O O EG ⊥. 同理,平面11E EGG ⊥平面1111E F G H ,111O O E G ⊥. 记玻璃棒的另一端落在1GG 上点N 处.过G 作11GK E G ⊥,K 为垂足,则132GK OO ==.因为 14EG =,1162E G =,所以16214242KG -==,从而1GG =40==.设1EGG α∠=,ENG β∠=,则114sin sin cos 25KGG KGG απ⎛⎫=+==⎪⎝⎭∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=, 于是()()sin sin sin =NEG αβαβ=π--=+∠sin cos cos sin αβαβ+4243735255255⎛⎫=⨯+-⨯= ⎪⎝⎭. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则22P Q ⊥平面EFGH , 故2212P Q =,从而22220sin PQ EP NEG==∠.答:玻璃棒l 没入水中部分的长度为20cm .问(2)G O E Q 2P 2NG 1KE 1O 1评注 此题本质上考查解三角形的知识,但在这样的大背景下构造的应用题让学生有畏惧之感,且该应用题的实际应用性也不强.也有学生第(1)问采用相似法解决,解法如下:AC =40AM =,所以30CM ==,1112PQ =,所以由11AP A Q CM △△∽,111PQ AP CM AM =,即1123040AP =,解得116AP =. 答:玻璃棒l 没入水中部分的长度为16cm .第四节 直线、平面平行的判定与性质11.如图所示,已知四棱锥P ABCD -,PAD △是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(1)证明://CE 平面PAB .11.解析 (1)如图所示,设PA DE 的中点为F ,联结EF ,FB . 因为E ,F 分别为PD ,PA 的中点,所以//EF AD ,且1=2EF AD . 又因为//BC AD ,12BC AD =,所以//EF BC ,且=EF BC ,所以四边形BCEF 为平行四边形,所以//CE BF ,又BF ⊂平面PAB ,所以//CE 平面PAB .H QPN F DBCEA12.如图所示,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥, 平面ABD ⊥平面BCD , 点,E F (E 与,A D 不重合)分别在棱,AD BD 上,且EF AD ⊥. 求证:(1)EF ∥平面ABC ; (2)AD AC ⊥.A BCDPEABDCEF12.解析 (1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,且点E 与点A 不重合,所以//EF AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC AD ⊥. 又AB AD ⊥,BCAB B =,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD AC ⊥.13.如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ;EM DCBAP13.解析 (1)令PA 的中点为F ,联结EF ,BF ,如图所示.因为点E ,F 为PD ,PA 的中点,所以EF 为PAD △的中位线,所以=1//2EF AD .又因为90BAD ABC ∠=∠=︒,所以BC AD ∥.又因为12AB BC AD ==,所以=1//2BC AD ,于是=//EF BC .从而四边形BCEF 为平行四边形,所以CE BF ∥.又因为BF PAB ⊂面,所以CE ∥平面PAB .M第五节 直线、平面垂直的判定与性质14.如图所示,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥, 平面ABD ⊥平面BCD , 点,E F (E 与,A D 不重合)分别在棱,AD BD 上,且EF AD ⊥. 求证:(1)EF ∥平面ABC ; (2)AD AC ⊥.ABDCEF14.解析 (1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,且点E 与点A 不重合,所以//EF AB . 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC AD ⊥. 又AB AD ⊥,BCAB B =,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD AC ⊥.15.如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=. (1)求证:平面PAB ⊥平面PAD ;DCBAP15. 解析 (1)证明:因为90BAP CDP ∠=∠=,所以PA AB ⊥,PD CD ⊥.又因为AB CD ∥,所以PD AB ⊥.又因为PD PA P =,PD ,PA ⊂平面PAD ,所以AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .16.如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)求证:平面ACD ⊥平面ABC ;16.解析 ⑴如图所示,取AC 的中点为O ,联结BO ,DO . 因为ABC △为等边三角形,所以BO AC ⊥,AB BC =.由AB BC BD BD ABD DBC =⎧⎪=⎨⎪∠=∠⎩,得ABD CBD ≅△△,所以AD CD =,即ACD △为等腰直角三角形, 从而ADC ∠为直角.又O 为底边AC 中点,所以DO AC ⊥. 令AB a =,则AB AC BC BD a ====,易得2a OD =,OB = 所以222OD OB BD +=,从而由勾股定理的逆定理可得2DOB π∠=,即OD OB ⊥. 由OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面,所以OD ⊥平面ABC . 又因为OD ⊂平面ADC ,由面面垂直的判定定理可得平面ADC ⊥平面ABC .BEC DAO第六节 空间向量与立体几何17.已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ).ABCD17.解析 设M ,N ,P 分别为AB ,1BB ,11B C 的中点,则1AB 和1BC 的夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,).可知112MN AB ==,112NP BC ==,取BC 的中点Q ,联结,,PQ MQ PM ,则可知PQM △为直角三角形.1=PQ ,12MQ AC =. 在ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,即=AC,则MQ =MQP △中,MP =. 在PMN △中,222cos 2MN NP PM PNM MN NP +-∠=⋅⋅222+-==. 又异面直线所成角为π02⎛⎤ ⎥⎝⎦,.故选C.18.如图所示,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (2)当3AB =,2AD =,求二面角E AG C --的大小.18.解析 (1)因为AP BE ⊥,AB BE ⊥,AB ,AP ⊂平面ABP ,ABAP A =,所以BE ⊥平面ABP .又BP ⊂平面ABP ,所以BE BP ⊥.又120EBC ∠=︒,所以30CBP ∠=︒. (2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得(0,0,3)A ,(2,0,0)E,G,(C -,则(2,0,3)AE =-,AG =,(2,0,3)CG =.设111(,,)x y z =m 是平面AEG 的一个法向量,由00AE AG ⎧⋅=⎪⎨⋅=⎪⎩m m,可得11112300x z x -=⎧⎪⎨+=⎪⎩,取12z =,可得平面AEG的一个法向量(3,2)m =. 设222(,,)x y z =n 是平面ACG 的一个法向量,由00AG CG ⎧⋅=⎪⎨⋅=⎪⎩n n,可得22220230x x z ⎧+=⎪⎨+=⎪⎩,取22z =-,可得平面ACG的一个法向量(3,2)=-n . 从而1cos ,2⋅==⋅m n m n m n ,易知二面角E AG C --为锐角.因此所求的角为60︒.19.如图所示,在平行六面体1111ABCD A B C D -中,1AA ⊥平面ABCD ,且2AB AD ==,1AA =120BAD ∠=︒.(1)求异面直线1A B 与1AC 所成角的余弦值; (2)求二面角1B A D A --的正弦值.A 1B 1C 1D 1ABCD19.解析 在平面ABCD 内,过点A 作AE AD ⊥,交BC 于点E . 因为1AA ⊥平面ABCD ,所以1AA AE ⊥,1AA AD ⊥.如图所示,以{}1,,AE AD AA 为正交基底,建立空间直角坐标系A xyz -.BB y因为2AB AD ==,1AA =120BAD ∠=︒. 则()0,0,0A,)1,0B -,()0,2,0D,)E,(1A,1C .(1)(13,1,A B =-,(13,1,AC =,则111111cos ,A BAC A B AC A B AC⋅=1,177-⋅==-.因此异面直线1A B 与1AC 所成角的余弦值为17. (2)平面1A DA 的一个法向量为()3,0,0AE =.设(),,x y z =m 为平面1BA D 的一个法向量,又(13,1,AB =-,()BD =,则100A B BD ⎧⋅=⎪⎨⋅=⎪⎩m m,即030y y -=+=⎪⎩. 不妨取3x =,则y =,2z =,所以()=m 为平面1BA D 的一个法向量. 从而cos ,AE AE AE ⋅=m mm34⋅==,设二面角1B A D A --的大小为θ,则3cos 4θ=. 因为[]0,θ∈π,所以sin θ==. 因此二面角1B A D A --的正弦值为4. 20.如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=. (1)求证:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=,求二面角A PB C --的余弦值.DCBAP20. 解析 (1)证明:因为90BAP CDP ∠=∠=,所以PA AB ⊥,PD CD ⊥.又因为AB CD ∥,所以PD AB ⊥.又因为PD PA P =,PD ,PA ⊂平面PAD ,所以AB ⊥ 平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)取AD 的中点O ,BC 的中点E ,联结PO ,OE ,因为AB CD ∥,所以四边形ABCD为平行四边形,所以OE AB ∥.由(1)知,AB ⊥平面PAD ,所以OE ⊥平面PAD .又PO ,AD ⊂平面PAD ,所以OE PO ⊥,OE AD ⊥.又因为PA PD =,所以PO AD ⊥,从而PO ,OE ,AD 两两垂直.以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,设2PA =,所以()00D ,,)20B ,,(00P ,()20C ,,所以(0PD =,,(22PB =,,,()00BC =-,.设()x y z =n ,,为平面PBC 的一个法向量,由00PB BC ⎧⋅=⎪⎨⋅=⎪⎩n n ,得20y +=-=⎪⎩.令1y =,则z =,0x =,可得平面PBC 的一个法向量(01=n ,. 因为90APD ∠=︒,所以PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD , 所以PD AB ⊥,又PA AB A =,所以PD ⊥平面PAB .即PD 是平面PAB 的一个法向量,(0PD =,,,从而cosPD PD PD ⋅===⋅n n n,由图知二面角A PB C --为钝角,所以它的余弦值为.21.如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值.EM DCBAP21.解析 (1)令PA 的中点为F ,联结EF ,BF ,如图所示.因为点E ,F 为PD ,PA 的中点,所以EF 为PAD △的中位线,所以=1//2EF AD .又因为90BAD ABC ∠=∠=︒,所以BC AD ∥.又因为12AB BC AD ==,所以=1//2BC AD ,于是=//EF BC .从而四边形BCEF 为平行四边形,所以CE BF ∥.又因为BF PAB ⊂面,所以CE ∥平面PAB .(2)以AD 的中点O 为坐标原点,建立如图所示的空间直角坐标系.设1AB BC ==,则()000O ,,,()010A -,,,()110B -,,,()100C ,,,()010D ,,,(00P .点M 在底面ABCD 上的投影为M ',所以MM BM ''⊥,联结BM '.因为45MBM '∠=,所以MBM '△为等腰直角三角形.因为POC △为直角三角形,OC =,所以60PCO ∠=. 设MM a '=,CM '=,1OM '=-.所以100M ⎛⎫'- ⎪ ⎪⎝⎭,,.BM a a '==⇒=11OM '==.所以100M ⎛⎫' ⎪ ⎪⎝⎭,,10M ⎛ ⎝⎭,11AM ⎛= ⎝⎭,(100)AB =,,. 设平面ABM 的法向量11(0)y z =,,m,则110AM y ⋅=+=m,所以(02)=,m , 易知平面ABD 的一个法向量为(001)=,,n ,从而cos ,⋅==⋅m n m n m n 故二面角M AB D --.M22.如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)求证:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角––D AE C 的余弦值.22.解析 ⑴如图所示,取AC 的中点为O ,联结BO ,DO . 因为ABC △为等边三角形,所以BO AC ⊥,AB BC =.由AB BC BD BD ABD DBC =⎧⎪=⎨⎪∠=∠⎩,得ABD CBD ≅△△,所以AD CD =,即ACD △为等腰直角三角形, 从而ADC ∠为直角.又O 为底边AC 中点,所以DO AC ⊥. 令AB a =,则AB AC BC BD a ====,易得2a OD =,OB = 所以222OD OB BD +=,从而由勾股定理的逆定理可得2DOB π∠=,即OD OB ⊥. 由OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面,所以OD ⊥平面ABC . 又因为OD ⊂平面ADC ,由面面垂直的判定定理可得平面ADC ⊥平面ABC .BEC DAO⑵由题意可知V V D ACE B ACE --=,即B ,D 到平面ACE 的距离相等,即点E 为BD 的中点.以O 为坐标原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭,易得24a a AE ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭. 设平面AED 的法向量为()1111=,,x y z n ,平面AEC 的法向量为()2222=,,x y z n , 则1100AE AD ⎧⋅=⎪⎨⋅=⎪⎩n n,取1=n ;220AE OA ⎧⋅=⎪⎨⋅=⎪⎩n n,取(20,1,=n .设二面角D AE C --为θ,易知θ为锐角,则1212cos θ⋅==⋅n n n n.23.如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面MAC,PA PD ==4AB =.(1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值.23.解析 (1)设,AC BD 的交点为E ,联结ME .因为PD ∥平面MAC ,平面MAC平面PBD ME =,所以PD ME ∥.因为ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.MP EDCBA(2)取AD 的中点O ,联结OP ,OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图所示,建立空间直角坐标系O xyz -,则P ,(2,0,0)D ,(2,4,0)B -,(4,4,0)BD =-,(2,0,PD =.设平面BDP 的法向量为(,,)x y z =n ,则00BD PD ⎧⋅=⎪⎨⋅=⎪⎩n n,即44020x y x -=⎧⎪⎨-=⎪⎩. 令1x =,则1y =,z ==n .平面PAD 的法向量为(0,1,0)=p ,所以1cos ,||||2⋅==<>n p n p n p .由题知二面角B PD A --为锐角,所以它的大小为3π.(3)由(1)知1,2,2M ⎛⎫- ⎪ ⎪⎝⎭,(2,4,0)C,(3,2,2MC =-.设直线MC 与平面BDP 所成角为α,则2sin cos ,9MC MC MCα⋅===<>n n n . 所以直线MC 与平面BDP 所成角的正弦值为9. 24.如图所示,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=.点D E N ,,分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长. NM ED CBAP24.解析 如图所示,以A 为坐标原点,{},,AB AC AP 为基底,建立如图所示的空间直角坐标系,依题意可得(000)A ,,,(200)B ,,,(040)C ,,,(004)P ,,,(002)D ,,,(022)E ,,,(001)M ,,,(120)N ,,.(1)证明:()0,2,0DE =,()2,0,2DB =-.设(,,)x y z =n 为平面BDE 的一个法向量, 则00DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)=n .又()1,2,1MN =-,可得0MN ⋅=n ,因为MN ⊄平面BDE ,所以//MN 平面BDE .(2)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n 为平面EMN 的一个法向量,则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩n n ,因为(0,2,1)EM =--,(1,2,1)MN =-,所以2020y z x y z --=⎧⎨+-=⎩. 不妨设1y =,可得2(4,1,2)=--n .因此有121212cos ,|||⋅==n n n n |n n,于是12sin ,n n . 所以二面角C EM N --. (3)依题意,设()04AH h h =剟,则H (0,0,h ),进而可得(1,2,)NH h =--,(2,2,2)BE =-.由已知得||cos ,||||NH BE NH BE NH BE h ⋅===2102180h h -+=, 解得85h =或12h =.所以线段AH 的长为85或12. 25.如图所示,已知四棱锥P ABCD -,PAD △是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(1)证明://CE 平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.25.解析 (1)如图所示,设PA DE 的中点为F ,联结EF ,FB . 因为E ,F 分别为PD ,PA 的中点,所以//EF AD ,且1=2EF AD . 又因为//BC AD ,12BC AD =,所以//EF BC ,且=EF BC ,所以四边形BCEF 为平行四边形,所以//CE BF ,又BF ⊂平面PAB ,所以//CE 平面PAB .A BCDPEH QPN MF DBCEA(2)分别取BC ,AD 的中点为M ,N .联结PN 交EF 于点Q ,联结MQ .因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 的中点,在平行四边形BCEF 中,//MQ CE .由PAD △为等腰直角三角形,得PN AD ⊥. 由DC AD ⊥,N 是AD 的中点,所以12ND AD BC ==,且BC DN ∥,所以四边形BCDN 是平行四边形,所以CD BN ∥,所以BN AD ⊥.又BN PN N =,所以AD ⊥平面PBN ,由//BC AD ,得BC ⊥平面PBN ,又BC ⊂平面PBC ,所以平面PBC ⊥平面PBN . 过点Q 作PB 的垂线,垂足为H ,联结MH .MH 是MQ 在平面PBC 上的射影,所以QMH ∠是直线CE 与平面PBC 所成的角.设1CD =.在PCD △中,由2PC =,1CD =,PD =CE =,又BC ⊥平面PBN ,PB ⊂平面PBN ,所以BC PB ⊥.在PBN △中,由1PN BN ==,PB ==QH PB ⊥,Q 为PN 的中点,得14QH =. 在Rt MQH △中,14QH =,MQ =,所以sin 8QMH ∠=, 所以直线CE 与平面PBC26.如图所示,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA ==,分别记二面角––D PR Q ,––D PQ R ,––D QR P 的平面角为α,β,γ,则( ). A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<26.解析 如图所示,设点D 在底面ABC 内的射影为O ,判断O 到PR ,PQ ,QR 的距离,O 到哪条线段的距离越小,对应的二面角就越大.显然有,αβ,γ均为锐角.1P 为三等分点,O 到1PQR △三边的距离相等.动态研究问题:1P P ®,所以O 到QR 的距离不变,O 到PQ 的距离减少,O 到PR 的距离变大.所以αγβ<<.127.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在的直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角; ②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所成角的最小值为45; ④直线AB 与a 所成角的最小值为60;其中正确的是________.(填写所有正确结论的编号).27.解析 由题意知,a ,b ,AC 三条直线两两相互垂直,作出图像如图所示.不妨设图中 所示的正方体的边长为1,故1AC =,AB =AB 以直线AC 为旋转轴旋转,则点A 保持不变,点B 的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴 正方向,CB 为y 轴正方向,CA 为z 轴正方向,建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,1=a .B 点起始坐标为(0,1,0) ,直线b 的方向单位向量(1,0,0)=b ,1=b .设B 点在运动过程中的坐标()cos ,sin ,0B θθ',其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=-,2AB '= 设AB '与直线a 所成夹角为π0,2α⎡⎤∈⎢⎥⎣⎦,则(cos ,sin ,1)(0,1,0)cos 2AB θθαθ⎡-⋅==∈⎢'⎣⎦a , 所以ππ,42α⎡⎤∈⎢⎥⎣⎦,故③正确,④错误.设AB '与直线b 所成夹角为π[0,]2β∈,(cos ,sin ,1)(1,0,0)cos AB AB AB θθβθ'⋅-⋅===''b bb . 当AB '与直线a 夹角为60︒时,即π3α=, sin3πθα===. 因为22cos sin 1θθ+=,所以cos θ=.从而1cos 2βθ==. 因为π0,2β⎡⎤∈⎢⎥⎣⎦,所以π=3β,此时AB '与b 的夹角为60︒.所以②正确,①错误.故填② ③.28.如图所示,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=.点D E N ,,分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长.NM ED CBAP28.解析 如图所示,以A 为坐标原点,{},,AB AC AP 为基底,建立如图所示的空间直角坐标系,依题意可得(000)A ,,,(200)B ,,,(040)C ,,,(004)P ,,,(002)D ,,,(022)E ,,,(001)M ,,,(120)N ,,.(1)证明:()0,2,0DE =,()2,0,2DB =-.设(,,)x y z =n 为平面BDE 的一个法向量, 则0DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)=n .又()1,2,1MN =-,可得0MN ⋅=n ,因为MN ⊄平面BDE ,所以//MN 平面BDE . (2)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n 为平面EMN 的一个法向量, 则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩n n ,因为(0,2,1)EM =--,(1,2,1)MN =-,所以2020y z x y z --=⎧⎨+-=⎩. 不妨设1y =,可得2(4,1,2)=--n .因此有121212cos ,|||⋅==n n n n |n n,于是12sin ,n n . 所以二面角C EM N --.(3)依题意,设()04AH h h =剟,则H (0,0,h ),进而可得(1,2,)NH h =--,(2,2,2)BE =-.由已知得||cos ,||||NH BE NH BE NH BE h ⋅===2102180h h -+=, 解得85h =或12h =.所以线段AH 的长为85或12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一空间几何体的三视图I .题源探究·黄金母题【例1】如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积与体积(尺寸如图,单位:cm ,π取3.14,结果精确到21cm ,可用计算器)【解析】由奖杯的三视图知奖杯的上部是直径为4cm 的球,中部是一个四棱柱,其中上、下底面是边长分别为8cm 、4cm 的矩形,四个侧面中的两个侧面是边长分别为20cm 、8cm 的矩形,另两个侧面是边长分别为20cm 、4cm 的矩形,下部是一个四棱台,其中上底面是边长分别10cm 、8cm 的矩形,下底面是边长分别20cm 、16cm 的矩形,直棱台的高为2cm ,所以它的表面各和体积分别为11933cm 、10673cm .II .考场精彩·真题回放【例2】【2016全国新课标Ⅲ卷】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为A .18+B .54+C .90D .81 【答案】B【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+B .【例3】﹙2016年全国1卷理﹚如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A .17πB .18πC .20πD .28π 【答案】A【解析】由三视图知:该几何体是78个球,设球 的半径为R ,则37428V R 833ππ=⨯=,解得 R 2= ,所以它的表面积是 R 2=22734221784πππ⨯⨯+⨯⨯=,故选A . 【例4】【2016全国新课标Ⅱ卷】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π 【答案】C【解析】由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为2324S ππ=⋅=,故该几何体的表面积为12328S S S S π=++=,故选C .【例5】【2016天津高考】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】由题意得截去的是长方体前右上方顶点,故选B .【例6】【2016山东高考】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A .12+π33 B .1+π33C .1+π36 D .1+π6【答案】C【解析】由已知,半球的直径为,正四棱锥的底面边长为1,高为1,所以其体积为31141113233π⨯⨯+⨯=+,故选C . 【例7】(2015年湖南高考理科)某工件的三视图如图所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A .89π B .169πC .31)πD .31)π【答案】A【解析】由题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为,y ,,长方体上底面截圆锥的截面半径为,则22224)2(a a y x ==+,如下图所示,圆锥的轴截面如图所示,则可知a h ha 22221-=⇒-=,而长方体的体积22222x y V xyh h a h +=≤==22(22)a a -322162()327a a a ++-≤⨯=,当且仅当y x =,3222=⇒-=a a a 时,等号成立,此时利用率为ππ98213127162=⨯⨯,故选A .精彩解读【试题来源】人教版A 版必修二第29页习题1.3B 组第1题【母题评析】本题根据球、柱、台组合的组合体的三视图求其体积与表面积,这是题型在高考中较为多见,因此在备考中必须引起重视.【思路方法】根据三视图求相应的几何体的体积与表面积通常分两个步骤完成:(1)根据三视图确定出几何体的直观图;(2)结合三视图中的数据求几何体的体积或表面积.【命题意图】本类题通常主要考查识图能力与空间想象能力.【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中档,往往与柱、锥、台、球的体积或表面积计算相联系.【难点中心】根据三视图求几何体的体积与表面积其难点主要是如何根据三视图还原出几何体的直观图.III.理论基础·解题原理考点一三视图的基本概念主视图——光线从几何体的前面向后面正投影所得到的投影图叫做几何体的正视图,反映了几何体的左右、上下的位置关系.俯视图——光线从几何体的左面向右面正投影所得到的投影图叫做几何体侧视图.反映了几何体的左右、前后的位置关系.左视图——光线从几何体的上面向下面正投影所得到的投影图叫做几何体的俯视图.反映了几何体的前后、上下的位置关系.考点二棱柱、棱锥、棱台的三视图棱柱、棱锥、棱台通常情况下,正视图分别表现为矩形、三角形、梯形,侧视图分别表现为矩形、三角形、梯形,俯视图表现为多边形考点二圆柱、圆锥、圆台、球的三视图1.圆柱:正视图和侧视图都是矩形,俯视图是一个圆.特征:两矩形线框对应一圆形线框.下图.2.圆锥:正视图和侧视图都是三角形,俯视图是圆和圆心.特征:两三角形线框对应一圆形线框.如下图.3、圆台:正视图和侧视图都是等腰梯形,俯视图是两个同心圆.特征:两梯形线框对应一圆形线框(两同心圆).如下图.4.球体:正视图、侧视图、俯视图均为圆 考点三 空间几何体的表面积1.棱柱、棱锥、棱台的表面积:计算表面积主要是通过把它们展成平面图形,利用求平面图形的面积法求解.特别地,棱长为a 的正方体的表面积26S a =正,长、宽、高分别为a 、b 、c 的长方体的表面积2()S ab bc ca =++长.2.圆柱、圆锥、圆台的表面积:计算表面积时分为侧面积与底面积两部分,其侧面积可以利用侧面展开图得到,其中圆柱的侧面展开图是一个矩形,其宽是圆柱母线的长,长为圆柱底面周长;圆锥的侧面展开图为扇形,其半径为圆锥母线长,弧长为圆锥底面周长;圆台的侧面展开图为扇环,其两弧长分别为圆台的两底周长,两“腰”为圆台的母线长. 3.球的表面积:24S R π=(R 为球的半径). 考点四 空间几何体的体积1.柱体(棱柱、圆柱)的体积由底面积S 和高确定,即V Sh =柱体.特别地,底面半径是,高是的圆柱的体积是2V r h π=圆柱.根据公式求棱柱的体积,“定高”是至关重要的. 2.锥体的体积:锥体(棱锥、圆锥)的体积等于它的底面积是S 和高的积,即13V Sh =锥体.特别地,底面半径是,高是的圆锥的体积是213V r h π=圆锥. 3.台体的体积:台体(棱台、圆台)的体积由上底面积S 、下底面积S '、高是确定,即13V S =台体(+S h ').特别地,上、下底半径分别是,R ,高是的圆台的体积是221)3V h r rR R π=++圆台(.4.球的体积:343V R π=(R 为球的半径). IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中档,往往与几何体的表面积与体积联系在一起. 【技能方法】1.简单组合体的三视图画法 (1)确定主视、侧视、俯视的方向.(2)分解简单组合体,清楚由哪几个基本几何体生成的,特别是它们的交线位置. (3)画出的三视图要检验是否符合“长对正,宽相等,高平齐”的基本特征. 2.由三视图还原实物图(1)根据主视图和侧视图确定实物前后与左右侧面的图形形状; (2)根据俯视图确定底面的形状;(3)根据三视图中交线的虚实确定实物体的凹凸. 【易错指导】(1)在三视图中不区分虚线与实线,在绘制三视图时,若相邻两几何体的两表面相交,表面的交线是它们的分界线,分界线和可见轮廓线都是用实线画出,被挡住的轮廓线用虚线画出;(2)对于根据组合体三视图还原时,可能分析不清组合体是采用什么形式组合的而不能正确还原;V .举一反三·触类旁通考向1 三视图的识别【例8】【2013年新课标Ⅱ卷】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )【答案】A【解析】在空间直角坐标系O xyz -中画出三棱锥,如图所示,由已知可知三棱锥O ABC -为题中所描叙的四面体,而其在zOx 平面上的投影为正方形EBDO ,故选A .【例9】【2016海南省华侨中学考前模拟】一个四面体的顶点在空间直角坐标系xyz O -中的坐标分别是()1,0,0,()0,1,0,()0,0,1,()1,1,1,画该四面体三视图中的正视图时,以x z O 平面为投影面,则得到正视图可为( )A B C D【答案】B【点评】此类题型多以给出形形色色的几何体,然后让我们去判断它的三视图,或选择或绘图.解答时必须根据几何体的结构特点,分别从正面、左面、上面三个方向看同一个物体,但注意用平行光去看.【跟踪练习】【2016届山东师大附中最后一模】“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a b ,B .a c ,C .c b ,D .b d , 【答案】A【解析】由直观图可知:其正视图与侧视图完全相同,恰为圆柱与轴垂直的截面,即这两个视图只能是圆,这时其俯视图就是正方形加对角线(实线),故选A . 考向2 根据三视图求几何体的表面积【例10】【2015年北京高考理】某三棱锥的三视图如图所示,则该三棱锥的表面积是( )俯视图侧(左)视图A.2+ B.4 C.2+ D .5 【答案】C【解析】根据三视图还原成三棱锥-P ABC ,其中PC ⊥平面ABC ,取AB 棱的中点D ,连接CD 、PD ,有,PD AB CD AB ⊥⊥,底面ABC 为等腰三角形,底边AB 上的高CD 为2,1AD BD ==,1PC =,PD =12222ABC S ∆=⨯⨯=,122PAB S ∆=⨯=AC BC ==PAC PBC S S ∆∆==1122=,所以三棱锥的表面积为2S =表,故选C .【例11】【2017湖南师大附中上学摸底】若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正视图和侧视图如图所示,则此几何体的表面积是( )A .24π B.24π+ C.24π+ D .32π 【答案】C【点评】由几何体的三视图求几何体的表面积,通常情况下须先将三视图转化为其几何体的直观图,然后根据相关的表面积公式从三视图中提取相关数据,再代公式进行计算.【跟踪练习】【2016广西自治区桂林柳州高考压轴卷】一个几何体的三视图如图所示(单位:cm ),则该几何体的表面积是( )A .232cmB .222cmC .2322cm D .112cm 【答案】A考向3 根据三视图求几何体的体积【例12】【2016年北京高考】某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .16 B .13 C .12D .1 【答案】A【解析】由三视图知,该几何体为一三棱锥P ABC -,如下图的示,其体积111111326V =⋅⋅⋅⋅=,故选A.【例13】【2016郑州一中考前冲刺】已知某几何体的三视图如图所示(单位:cm ),则此几何体的体积为( )A .3221cmB .3215cm C .316cm D .312cm 【答案】B【点评】由几何体的三视图求几何体的体积,通常情况下须先将三视图转化为其几何体的直观图,然后根据相关的体积公式从三视图中提取相关数据,再代公式进行计算.对于组合体三视图问题相对较困难,还原几何时注意分析组合的形式,即明确是左右组合型、前后组合型、上下组合型、内外挖空型、边角截取型等.【跟踪练习】【2016洛阳市考前练习二】一个几何体的三视图如下图所示,则这个几何体的体积为( )A)π+ B.(92)6π+ C2)π+ D)π+ 【答案】A考向4 求三视图的面积【例14】【2016黑龙江大庆实验中学考前训练一】把边长为的正方形ABCD 沿对角线BD 折起,形成的三棱锥A BCD -的正视图与俯视图如图所示,则其侧视图的面积为( )A .22B .21 C .42 D .41 【答案】D【解析】在三棱锥ABD C -中,C 在平面ABD 上的射影为BD 的中点,左视图的面积等于 4122212=⎪⎪⎭⎫ ⎝⎛=∆AOC S ,故选D . 【点评】此类题型通常是给出一个空间几何体的三视图中的两个视图及相关数据,求另一个视图的面积,解答的关键有三步:(1)根据几何体明确第三个视图的形状;(2)从给出的两个视图中提取相关数据;(3)根据第三个视图的形状选择相关的面积公式计算.【跟踪练习】【2016安徽六安一中下期三模】如图1,已知正方体1111ABCD A B C D -的棱长为,动点,,P M N 分别在线段11,,AB A D BC 上运动,当三棱锥1B PMN -的俯视图如图2时,三棱锥1B PMN -的左视图面积为( )A .22aB .2aC .212a D .214a 【答案】C。

相关文档
最新文档