液压马达的选用

合集下载

任务二液压马达的性能参数和选用

任务二液压马达的性能参数和选用
马达与泵在原理上有可逆性,但结构上 有些差别。选择时应注意!
Your company slogan
液压马达选用的注意事项:
1.液压马达的启动性能; 2.液压马达转速(低速稳定性); 3.调速范围。
Your company slogan
五 液压马达的习题
1.两个液压马达主轴刚性连接在一 起组成双速换接回路,两马达串联时, 其转速为( );两马达并联时, 其转速为( ),而输出转矩 ( )。串联和并联两种情况下回 路的输出功率( ) 。
(八)液压马达的功率
1.单位:W 、 kW
2.表示:PM
PMO
3.计算公式:PM pM qM
PMO TM 2nMTM
Your company slogan
(九)总效率 1.定义:输出功率与输入功率的 比值。
2.表示: M
Your company slogan
例:某液压马达的进油压力为10MPa,排量 为200x 10L-3/r,总效率为0.75机械效率为 0.9,试计算:
2.单位: N m
3.表示:TM
TM(t 理论)
4.计算公式:TM
TM t Mm
pMVM
2
Mm
Your company slogan
(七)机械效率
1.定义:马达实际输入转矩与理 论转矩的比值。
2.表示: Mm
3.计算公式:Mm
TM TMt
2TM
pM VM
Your company slogan
三 液压马达的主要性能参数
(一)压力
1.定义:物体所承受的与表面垂直
的并指向表面的作用力。 2.单位:N
3.表示:F 4.计算公式:F=P·S
Your company slogan

液压马达如何选型

液压马达如何选型

液压马达如何合理选型
1、同一基型的液压马达,压力等级有3种,其额定压力分别为10、16、20MPa,尖峰压力分别为16、25、31.5MPa,如何合理选择一种比较适合主机工况型号呢?首先应考虑提高传动效率,对传动效率较小、转速低、扭矩大的工况,此时影响传动总效率的主要因素是容积效率,对传动功率相同的液压装置,降低系统工作压力能显著提高容积效率,因此这时应选用额定压力为10MPa型号,同时实际工作压力还应选得低些,当传动功率越小,转速越低时工作压力越低越有利。

相反对传动功率大,转速较高的工况,此时影响传动总效率的主要因素是机械效率,因此这时应选用额定压力为16或20MPa的型号。

其次对于有低速稳定性要求的工况,选型中应注意液压马达排量越大,低速稳定性越好,它还与工作压力有关,工作压力越低低速稳定性越好。

2、排量相同的几个不同基型的液压马达,如何选择一种合理的型号呢?这与使用工况和使用寿命要求有关,对于短期间隙运转,整个大修期间累计工作时间较短的机械,可以选用基型编号较小的型号,而对于每天累计运转时间长,使用寿命又要求较长的机械,应尽可能选用基型编号较大的型号,必要时应选用高压的型号,但在较低的压力条件下使用,此时能显著提高使用寿命,因为QJM型液压马达的使用寿命与使用压力成3.3次方反比,也就是使用压力降低一半,寿命可提高10倍。

液压传动与控制技术(泵和马达)

液压传动与控制技术(泵和马达)

液压传动与控制
一转内密封容积变化两个循环。所以密封容积每转内吸油、 压油两次,称为双作用泵。 双作用使流量增加一倍,流量也相应增加。 排量和流量:
q 2 ( R — r ) B
2 2
Q 2 ( R — r ) Bn V
2 2
无流量脉动:理论分析可知,流量脉动率在叶片数为4的整 数倍、且大于8时最小。故双作用叶片泵的叶片数通常取为12 。
液压传动与控制
3. 功率与效率 能量损失包括两部分: 容积损失——由于泵和马达本身的泄漏所引起的能量损失。 机械损失——由于泵和马达机械副之间的磨擦所引起的能量 损失。
液压传动与控制
1)液压泵 如无能量损失,泵的理论机械功率应 等于理论液压功率,即:
2 nT t pQ t pqn
Tt pq 2

液压传动与控制
§2- 1 概述
液压泵和液压马达是一种能量转换装置。 液压泵是液压系统的动力元件,其作用是把原动机输入的机 械能转换为液压能,向系统提供一定压力和流量的液流。 液压马达则是液压系统的执行元件,它把输入油液的压力能 转换为输出轴转动的机械能,用来推动负载作功 。 液压泵和液压马达从原理上讲是可逆的,当用电动机带动其 转动时为液压泵;当通入压力油时为液压马达。 液压泵和液压马达的结构基本相同,但功能不同,它们的实 际结构有差别。
Py pQ pqn V 5 10 20 10
5 —6
1450 / 60 0 . 95 2296 W
泵的输出功率
Pm = Py η = 2296 0 .9 = 2551 W
液压传动与控制
例:某液压马达排量为25mL/r,进口的压力8Mpa,回 油背压为1Mpa,泵的容积效率为0.92,总效率为0.9,当 输入流量为25L/min。求马达的输出转矩和转速? 解:输出转矩

液压与气动技术(第二版)—按章节课件02 第二节 液压马达

液压与气动技术(第二版)—按章节课件02 第二节 液压马达

3.柱塞式液压马达 柱塞式液压马达有轴向式和径向式两种,径向式由于结构尺 寸较大。 (1)径向柱塞式液压马达 图3-24所示为多作用内曲线径向柱塞式液压马达。当压力油 经固定的配流轴6的窗口进入缸体内柱塞的底部时,柱塞向外伸 出,紧紧顶住定子的内壁,由于定子的内壁为曲面,所以在柱塞 与定子接触处,定子对柱塞的反作用力为F。F力可分解为径向 力Fr 和切向力Ft 两个分力。其中Ft力对缸体产生一转矩,使缸体 旋转。缸体再通过端面连接的传动轴向外输出转矩和转速。
第三章 液压执行元件
第二节 液压马达
主要内容:
液压马达的类型和性能参数 液压马达的工作原理与结构 液压马达的选用 液压马达的常见故障及排除
液压马达是将液体的压力能转换成旋转运动机械能的转换元 件,它能起到与电动机相类似的作用,因而在液压设备中被广泛 应用。 一、液压马达的类型与性能参数
1. 液压马达的类型
所以,齿轮式液压马达一般用于低精度、低负载的工程机 械、农业机械以及对转矩均匀性要求不高的机械设备上。
2. 叶片式液压马达 如图3-22(a)所示为叶片式液压马达的实物图,图3-22(b) 所示为其工作原理图。当压力油进入压油腔后,在叶片1、3上 一面作用有压力油,另一面为低压回油。由于叶片3伸出的面 积大于叶片1伸出的面积,所以液体作用于叶片3上的作用力大 于作用于叶片1上的作用力,从而由于作用力不等而使叶片带 动转子作逆时针方向旋转。
液压马达的图形符号如图3-20所示。
2.液压马达的特点
(1)液压马达的排油口压力稍大于大气压力,进、出油口直径 相同。 (2)液压马达往往需要正、反转,所以在内部结构上应具有对 称性。 (3)在确定液压马达的轴承形式时,应保证在很宽的速度范围 内都能正常工作。 (4)液压马达在启动时必须保证较好的密封性。 (5)液压马达一般需要外泄油口。 (6)为改善液压马达的起动和工作性能,要求扭矩脉动小,内 部摩擦小。

Hydraulic-Motor

Hydraulic-Motor

Hydraulic-Motor液压马达的特点及分类:从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。

因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。

但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。

首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。

因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。

由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。

液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。

按液压马达的额定转速分为高速和低速两大类。

额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。

高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。

它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。

通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。

低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。

液压马达的工作原理1.叶片式液压马达由于压力油作用,受力不平衡使转子产生转矩。

叶片式液压马达的输出转矩与液压马达的排量和液压马达进出油口之间的压力差有关,其转速由输入液压马达的流量大小来决定。

液压马达选型计算

液压马达选型计算

• 解: • 1)负载转矩计算:
TLBiblioteka FD 21
m1
22500
0.31 2
1 0.95
3671 .053 N.m
• 式中:m1——传动的机械效率,取m1=0.95
• 2)理论液压马达转矩计算:
T TL 3671.053 3671.053N.M
i
1
• 式中:i ——减速比,由于是直连,所以 i =1
液压马达选型计算
主讲:宣言
本节主要内容
• 1.液压马达选型原则 • 2.液压马达选型实例
1.液压马达选型原则
• 液压马达选型计算需要满足以下条件:
• a.液压马达输出转矩T≥负载转矩TL • b.液压马达转速n≤负载转速nL
液压马达基本参数计算
2.液压马达选型实例
• 例题:某单轨吊牵引机构,要求牵引力F=22500N,牵引速度V=0.12m/s,摩擦轮直径 D=310mm,传动方式油马达直接驱动摩擦轮。机械效率,取0.95。求马达型号。
P 2π*T *n qv *p *v *mh 13.2*160*0.9*0.9 2.9(KW )
60000
600
600
综上所述:选用径向柱塞式液压马达,功率P=3kw,转矩 M≥3672N .m ,工作转速n≤7.4r/min
• 3)负载转速计算:
nL
v
D
0.12 0.31
0.124(r
/
s)
7.4(r
/
min)
• 4)理论油马达转速计算:
n nL *i 7.4*1 7.4(r / min)
• 5)理论油马达每转排油量计算:
vg
20 *π*T
P *mh

简述液压系统中液压泵与液压马达的选用

简述液压系统中液压泵与液压马达的选用

简述液压系统中液压泵与液压马达的选用摘要:液压泵是一种是一种能量转换装置,它把驱动电动机的机械能转换成输出送到系统中去的油液的压力能,以满足执行机构驱动外负载的需要。

目前使用的液压泵都是依靠液压密封工作腔的容积变化来实现吸油和压油,因此称为容积式液压泵。

液压马达是把液体的压力能转换为机械能的装置,原理上和液压泵是通用,但在其结构、工作范围等多个方面是不同的。

关键词:液压泵与液压马达的类型、选用原则液压泵与液压马达的类型选择1、液压泵:液压泵是一种能量转换装置,它把驱动电动机的机械能转换成输出送到系统中去的油液的压力能,以满足执行机构驱动外负载的需要。

1.1液压泵分类:按其在每转一转所能输出(所需输入)油液流量分成定量泵和变量泵。

对于变量泵,可以分为单向和双向。

单向变量泵在工作时,输油方向不可变,双向变量泵,通过手动、电动、液动、压力补偿等方式可以改变输出油液的方向。

按结构分为齿轮式、叶片式、和柱塞式三大类。

1.2液压泵的选择原则:1.2.1 根据主机工况、功率大小河系统对工作性能的要求,确定液压泵的类型再按照系统所要求的压力、流量大小确定其规格型号。

1.2.2根据使用场合选择液压泵。

一般在机床液压系统中,选用双作用叶片泵和限压式叶片泵;在筑路、港口和小型工程机械中,选用抗污染能力较强的齿轮泵,在负载大、功率大的场合,选用柱塞泵。

1.2.3根据液压泵的流量或排量选择液压泵在液压泵在不使用时可以完全卸荷,并且需要液压泵输出全部流量,选用定量泵。

在流量变化较大,则考虑变量泵。

1.3参照其他要求选择液压泵根据重量、价格、使用寿命及可靠性、液压泵的安装方式、泵的连接方式与承受载荷、连接形式来综合考虑。

2、液压泵的安装:a避免液压泵支撑架刚度不够,产生振动或变形,造成安全事故,无法保证同心度和角度。

b避免液压泵的安装基础不牢,产生同轴度的偏差,导致液压泵轴封损坏,直至到液压泵损坏。

c液压泵的进出口安装牢固,密封装置要可靠,避免吸入空气或漏油的情况。

液压马达分类与原理

液压马达分类与原理

液压马达分类与原理(一)液压马达分类(二)齿轮马达的工作原理图2-12为外啮合齿轮马达的工作原理图。

图中I为输出扭矩的齿轮,B为空转齿轮,当高压油输入马达高压腔时,处于高压腔的所有齿轮均受到压力油的作用(如中箭头所示,凡是齿轮两侧面受力平衡的部分均未画出),其中互相啮合的两个齿的齿面,只有一部分处于高压腔。

设啮合点c到两个齿轮齿根的距离分别为阿a 和b,由于a和b均小于齿高h,因此两个齿轮上就各作用一个使它们产生转矩的作用力pB(h—a)和pB(h—b)。

这里p代表输入油压力,B代表齿宽。

在这两个力的作用下,两个齿轮按图示方向旋转,由扭矩输出轴输出扭矩。

随着齿轮的旋转,油液被带到低压腔排出。

图2-12 啮合齿轮马达的工作原理图齿轮马达的结构与齿轮泵相似,但是内于马达的使用要求与泵不同,二者是有区别的。

例如;为适应正反转要求,马达内部结构以及进出油道都具有对称性,并且有单独的泄漏油管,将轴承部分泄漏的油液引到壳体外面去,而不能向泵那样由内部引入低压腔。

这是因为马达低压腔油液是由齿轮挤出来的,所以低压腔压力稍高于大气压。

若将泄漏油液由马达内部引到低压腔,则所有与泄漏油道相连部分均承受回油压力,而使轴端密封容易损坏。

(三)叶片马达的工作原理图2-13为叶片马达的工作原理图。

当压力为p的油液从进油口进入叶片1和叶片3之间时,叶片2因两面均受液压油的作用,所以不产生转矩。

叶片1和叶片3的一侧作用高压油,另一侧作用低压油.并且叶片3伸出的面积大于叶片1伸出的面积,因此使转子产生顺时针方向的转矩。

同样,当压力油进入叶片5和叶片7之间时,叶片7伸出面积大于叶片5伸出的面积,也产生顺时针方向的转矩,从而把油液的压力能转换成机械能,这就是叶片马达的工作原理。

为保证叶片在转子转动前就要紧密地与定子内表面接触,通常是在叶片根部加装弹簧,完弹簧的作用力使叶片压紧在定子内表面上。

叶片马达一般均设置单向阀为叶片根部配油。

为适应正反转的要求,叶片沿转子径向安置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压马达的选用
由于液压马达和泵在结构上类似,关于泵的选用原则同样适用于马达。

一般齿轮结构马达结构简单、价格便宜,常用于高转速、低转矩和平稳性要求不高的工作场合,如风扇、驱动研磨机等。

叶片马达转动惯性量小,动作灵敏,但容积效率率不高,机械特性软,适用于中速以上、转矩中等、要求启动、换向频繁的场合,如磨床工作台的驱动、机床操作系统等。

轴向柱塞马达容积效率高,调速范围大,且低速平稳性好,但耐冲击性能差,常用于要求较高的高压系统,如船舶、工程机械、起重机械等的回转、起重液压系统中。

采用低速大转矩径向柱塞马达时,则不需要减速箱,可直接驱动起重机绞盘、行走机械车轮等。

相关文档
最新文档