初中数学竞赛定理大全
初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理1. 同位角定理:同位角互相相等或互补。
2. 对顶角定理:对顶角相等。
3. 同旁内角定理:同旁内角互补。
4. 外角定理:与一个多边形任意一内角相对的外角相等。
5. 内角和定理:n边形的内角和为180度×(n-2)。
6. 相关角定理:相邻角互补,对顶角互相相等。
7. 垂直直角定理:垂线与直线相交,形成直角。
8. 垂线定理:直线上任意一点向另一直线作垂线,垂线所在直线与原直线垂直。
9. 三角形内角和定理:三角形内角和为180度。
10. 等腰三角形定理:等腰三角形的底角相等。
11. 等边三角形定理:等边三角形的三个内角均为60度。
12. 直角三角形性质:直角三角形斜边平方等于其他两条边平方和。
13. 等角定理:两角相等的两个三角形全等。
14. 外接圆定理:三角形三个顶点到外接圆圆心的距离相等。
15. 中线定理:连接三角形两边的中线相等。
16. 中位线定理:连接三角形两边中点的线段平分第三边。
17. 高线定理:连接三角形顶点与对边垂直的线段相交于三角形内心。
18. 海伦公式:用三角形三条边的长度求其面积:S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。
19. 正多边形内角定理:正n边形的内角和为(180度×(n-2))/n。
20. 球面三角形定理:球面三角形三个顶点到球心的距离相等。
三条边为大圆弧。
21. 圆周角定理:圆周角等于对应的弧所夹的圆心角。
22. 切线定理:切线相切于圆,与该切点相切的直线垂直于切线。
23. 弦长定理:在同一圆上,两条弦所夹的圆心角相等,则它们的弦长相等。
24. 弧长定理:同一圆上,两个相等的圆心角所对应的弧长相等。
数学竞赛25个定理

数学竞赛25个定理1. 费马小定理:若p是一个质数,a是任意正整数,则a^p - a能够被p整除。
2. 柯西-施瓦茨不等式:对于任意的向量a和b,有|a·b| ≤|a|·|b|。
(其中的·是向量的内积)3. 柯西定理:对于任意的可导函数f(z),有∫γf(z)dz = 0,其中γ是任意封闭曲线。
4. 狄利克雷函数定理:对于任意的正整数a和n,同余方程ax≡ n(mod m)有解当且仅当gcd(a,m)|n。
5. 等比数列求和公式:对于一个公比为r的等比数列1,r,r^2,r^3,…,r^(n-1),其前n项和为(s_n = (1-r^n)/(1-r))。
6. 泰勒公式:对于一个在区间内的可导函数f(x),在x = a处的泰勒展开式为:f(x) = f(a) + f'(a)·(x-a) + f''(a)·(x-a)^2/(2!) + …… + f^(n)(a)·(x-a)^n/n!。
7. 正弦和余弦的和差公式:sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b),cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b)。
8. 斯特林公式:n! ≈ (n/e)^n·√(2πn),其中e≈2.71828是自然对数的底数,π≈3.14159是圆周率。
9. 美林底定理:对于任意的正整数n,有gcd(Φ(n), n) = 1,其中Φ(n)表示小于等于n的正整数中与n互质的数的个数。
10. 欧拉公式:对于任意的正整数n,有e^(iπ) + 1 = 0。
11. 矩阵行列式的定义:对于一个n阶矩阵A,其行列式的定义为:det(A) = Σ(^n)_(i=1) a_1iC_1i,其中C_1i表示以第一行为底,第i列为“孔”的余子式。
12. 柯西-列维定理(变量展开式):对于一个n元对称多项式f(x1, x2, …, xn),其可表示为f(x1, x2, …, xn) = Σpπa_π(x1, x2, …, xn),其中pπ为n元置换,a_π(x1, x2, …, xn)表示将xπ(1),xπ(2),…,xπ(n)代入f(x1, x2, …, xn)后留下来的项。
初中数学竞赛中常用重要定理

初中数学竞赛中常用重要定理1、 梅涅劳斯定理:假如在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、 E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ••=12、 梅涅劳斯定理的逆定理:假如在△ABC 的三边BC 、CA 、AB 或其延长线上 有点D 、E 、F ,且满足FB AF EA CE DC BD ••=1,则D 、E 、F 三点共线。
3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、 M ,则1=••PACP NC BN MB AM4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。
5、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和。
推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+ 6、 三角形内、外角平分线定理:内角平分线定理:如图:假如∠1=∠2,则有AC AB DC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有ACAB DC BD =7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P9、 正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有:a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;10、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC , PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线。
初中数学竞赛25个定理

初中数学竞赛25个定理
初中数学竞赛25个定理1. 勾股定理:直角三角形斜边的平方等于两腰的平方和。
2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。
3. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。
4. 相似三角形的性质:对应角相等,对应边成比例。
5. 平行四边形法则:平行四边形两对邻边互相平分、互为反向共线向量。
6. 向量加减法则:向量之间可以进行加减运算,并且满足交换律、结合律和分配律。
7. 向量数量积公式:设向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),则
a·b=x₁x₂+y₁y₂+z₁z₂。
8. 圆周率π的计算方法及其性质
9. 等差数列通项公式an=a1+(n-1)d
10. 等比数列通项公式an=a1*q^(n-1)
11. 数列求和公式Sn=n(a1+an)/2
12. 柿子(二次根号不含整系数)判别法
13 .一元二次方程求解公式 x=(-b±√(b^2-4ac))/2a
14 .勾股数存在条件与构造方法
15 .正多面体表面积与体积计算公式
16 .圆锥侧面积与体积计算公式
17 .球表面积与体积计算公式
18 .立体图像展开后各部位长度关系推导方法
19 .概率基本定义及常见问题解决思路
20 .排列组合基础知识点总结
21 .函数定义域、值域以及单调性研究方法
22 .极坐标下曲线参数化表示方式
23 .复杂图案拼接技巧总结
24 .代数恒等变换规律总结
25 .空间几何证明题目思考策略。
初中数学竞赛定理大全

初中数学竞赛定理大全欧拉(Euler)线,九点圆,费尔马点,海伦(Heron)公式,塞瓦(Ceva)定理,密格尔(Miquel)点,葛尔刚(Gergonne)点,西摩松(Simson)线,黄金分割,帕普斯(Pappus)定理,笛沙格(Desargues)定理,摩莱(Morley)三角形,帕斯卡(Paskal)定理,托勒密(Ptolemy)定理,斯图尔特(Stewart)定理,梅内劳斯定理,阿波罗尼斯(Apollonius)圆,布拉美古塔(Brahmagupta)定理,广勾股定理,加法及乘法原理,正弦、余弦定理,解析几何中的基本公式欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
欧拉(Euler)线,九点圆,费尔马点,海伦(Heron)公式,塞瓦(Ceva)定理,密格尔(Miquel)点,葛尔刚(Gergonne)点,西摩松(Simson)线,黄金分割,帕普斯(Pappus)定理,笛沙格(Desargues)定理,摩莱(Morley)三角形,帕斯卡(Paskal)定理,托勒密(Ptolemy)定理,斯图尔特(Stewart)定理,梅内劳斯定理,阿波罗尼斯(Apollonius)圆,布拉美古塔(Brahmagupta)定理,广勾股定理,加法及乘法原理,正弦、余弦定理,解析几何中的基本公式费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的海伦(Heron)公式:欧拉(Euler)线,九点圆,费尔马点,海伦(Heron)公式,塞瓦(Ceva)定理,密格尔(Miquel)点,葛尔刚(Gergonne)点,西摩松(Simson)线,黄金分割,帕普斯(Pappus)定理,笛沙格(Desargues)定理,摩莱(Morley)三角形,帕斯卡(Paskal)定理,托勒密(Ptolemy)定理,斯图尔特(Stewart)定理,梅内劳斯定理,阿波罗尼斯(Apollonius)圆,布拉美古塔(Brahmagupta)定理,广勾股定理,加法及乘法原理,正弦、余弦定理,解析几何中的基本公式塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)(CE/EA)(AF/FB)=1;其逆亦真。
初中数学竞赛知识点归纳(定理)

1.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要2.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC初中竞赛需要,重要3.梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1初中竞赛需要,重要4.梅涅劳斯定理的逆定理:(略)初中竞赛需要,重要5.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
不用掌握6.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线不用掌握7.、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.初中竞赛需要,重要8.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M不用掌握9.塞瓦定理的逆定理:(略)初中竞赛需要,重要10.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮11.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
不用掌握12.西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)初中竞赛的常用定理13.西摩松定理的逆定理:(略)初中竞赛的常用定理14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角15.圆的外切四边形的两组对边的和相等16.弦切角定理弦切角等于它所夹的弧对的圆周角17.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等18.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等19.推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项20.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项21.推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等斯特瓦特定理有三角形ABC,D为角A平分线与BC边的交点,则有以下定理:AB(2)·DC +AC(2)·BD-AD(2)·BC=BC·BD·DC托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①。
初中数学竞赛中常用重要定理

3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
初中几何常用定理(竞赛)

1已知:AD为BC边上的中线结论:(2)垂线定理已知:AD为BC边上的高结论:(3)梅涅劳斯定理已知:一条直线与△ABC三边或其延长线交于R、Q、P(4)塞瓦定理已知:三角形内部一点O,延长AO、BO、CO交三边于X、Y、Z(5)角平分线定理已知:AD为∠BAC平分线(6)斯特瓦尔特定理已知:D为BC边上一点结论:7结论:(8)外森皮克不等式已知:三角形的面积为S结论:(9)西姆松定理已知:过△ABC外接圆上一点P作三边或其延长线的垂线结论:三个垂足M、N、Q共线(10)海伦公式已知:△ABC三边分别为a、b、c其中(11)燕尾定理已知:△ABC中,AD、BE、CF相交于OAA12已知:△ABC外接圆半径为R,三顶点A、B、C所对的边为a、b、c结论:(13)余弦定理已知:△ABC三顶点A、B、C所对的边为a、b、c结论:(14)张角定理已知:D是△ABC中BC上一点(15)托勒密定理已知:四边形ABCD为圆内接四边形结论:(任意凸四边形ABCD,必有,当且仅当ABCD四点共圆时取等)(16)九点圆定义:三角形三边的中点MHG,三条高的垂足DEF和各顶点与垂心连线的中点PNQ,九点共圆。
结论:①九点圆的半径是三角形外接圆半径的一半;②九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;③九点圆与三角形的内切圆,三个旁切圆均相切(费尔巴哈定理)DFB CCAAB17已知:M是弦AB中点,任意两条弦CD、EF过点M,DE、CF交AB于P、Q(18)欧拉线定义:三角形的外心O、重心G、九点圆圆心V和重心H,依次位于同一直线上,这条直线即欧拉线(19)弦切角定理已知:PA切圆于点A(20)圆幂定理已知:弦AB与弦CD交于点P结论:已知:PQ切圆于Q,割线PB、PD交圆于A、CDAB CPDPB21结论:已知:P是矩形内任意一点结论:(22)维维亚尼定理已知:P是等边△ABC内任意一点,P到三边的距离分别是,h1、h2、h3,等边△ABC的高为H(23)莫利定理已知:△ABC各内角的三等分线交点为D、E、F结论:△DEF为等边三角形(24)笛沙格定理已知:△ABC和△A1B1C1中,AA1、BB1、CC1交于一点P结论:AB与A1B1交点D,BC与B1C1交点E,AC与A1C1交点F,三点共线B DABBCB CB25定义:三角形内到三个顶点距离之和最短的点结论:①若三角形有一个内角≥120°,则此内角的顶点为费马点;②若三角形三各内角均小于120°,以三角形三边向外作等边△ABE、等边△BCF、等边△ACG,AF、BG、CE交于一点P,点P为费马点,此时(26)婆罗摩笈多定理已知:圆内接四边形的对角线互相垂直相交结论:从交点向某一边所引垂线的反向延长线必经过这条边对边的中点(G为AD中点)E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:夕卜心重心重心垂心200厘米43厘米任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点: 已知P 为锐角△ ABC 内一点,当/ APB=Z BPC=Z CPA= 120°时,PA + PB + PC 的值最小,这个点P 称为△ ABC 的费尔马点。
EE = 3.45 厘米CE = 33塵米 片丘=306曇半 EP = 4.93 CP = 3.AP - 2.33屋亲海伦(Heron )公式:海伦(H F /W ?)公式第1泌ABC 中F 边BQ. CA.的长分别为瓠b. s 若p=- (a-l-b+c),则 A A EG 的面积 S=./p (p-a)(p~b) (p~c)£0 = 6. g 屋米7 CA = & QO 瘗厳— (AB + BC^CA) = 73 層米p = 7.54^^BPC = 1202 ^2PA = 120^ XAPB= 120^B9.94密格尔(Miquel)点:塞瓦(Cevs)定理:在厶ABC中,过△ ABC的顶点作相交于一点P的直线,分别交边BC CA AB与点D、E、F,则(BD/DC) - (CE/EA)・ (AF/FB)= 1;其逆亦真若AE、AF、ED FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ ABF、△ AED △ BCE △ DCF,葛尔刚(Gergonne)点:△ ABC的内切圆分别切边AB、BC CA于点D、E、F, 则AE、BF CD三线共点,这个点称为葛尔刚点。
西摩松(Sims on)线:已知P ABC外接圆周上任意一点,PD丄BC, PEL ACP吐AB, D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线P (托动)黄金分割: 把一条线段(AB )分成两条线段,使其中较大的线段(AC 是原线段(AB ) 与较小线段(BC )的比例中项,这样的分割称为 黄金分割。
AC 2 = 14.0 厚采C• ------------ «8帕普斯(Pappus ) 定理:已知点A l 、A 2、A 3在直线11上,已知点B l 、B 2、B 3在直线12上, 且A iB 2与A 2 B I 交于点X ,A 1B 3与A 3 B I 交于点Y , A B 3于 AB 2交于点乙则X 、Y 、Z 三点共线。
CB-AB = 140 厘采*■A笛沙格(DesargueS)定理:已知在△ ABC与厶A'B'C'中,AA'、BB'、CC三线相交于点O,摩莱(Morley )三角形:在已知△ ABC三内角的三等分线中,分别与BC CA、AB相邻的每两线相交于点D、E、F,则厶DEF是正三角形,这个正三角形称为摩莱三角形。
DE= 1.24 厘来EF=匸24厘米FD = X24厘米B(托动)BC与BC、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、帕斯卡(Paskal)定理:已知圆内接六边形ABCDEF的边AB、DE延长线交于点G,边BC EF 延长线交于点H,边CD FA延长线交于点K,则H、G、K三点共线。
托勒密(Ptolemy)定理:在圆内接四边形中,AB - CD+ AD • BC= AC- BD(任意四边形都可!哇哈哈)斯图尔特(Stewart)定理:设P为厶ABC边BC上一点,且BP: PC= n: m ,则m • (AB2)+ n • (AC2)= m • (BP2 )+ n • (PC2) +( m + n) (AP2)梅内劳斯定理:在厶ABC中,若在BC CA、AB或其延长线上被同一条直线截于点X、丫、乙则(BX/XC)・ (CY/YA〉(AZ/ZB厂1阿波罗尼斯(Apollonius)圆一动点p与两定点A B的距离之比等于定比m:n,则点p的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆,这个圆被称为阿波布拉美古塔(Brahmagupta)疋理:在圆内接四边形ABCD中,AC丄BD,自对角线的交点p向一边作垂线,其延长线必平分对边。
广勾股定理:在任一三角形中,(1) 锐角对边的平方,等于两夹边之平方和,减去某夹边和另一夹边在此边上的影射乘积的两倍.(2) 钝角对边的平方,等于两夹边的平方和,加上某夹边与另一夹边在此边延长上的影射乘积的两倍.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2……+M(N)种不同的方法。
比如说:从北京到上海有3种方法可以直接到达上海,1:火车k i2:飞机k23:轮船k s,那么从北京-上海的方法N = k i+k2+k s乘法原理:做一件事,完成它需要分成n个步骤,做第一步有mi种不同的方法,做第二步有m2不同的方法,,做第n步有m・n不同的方法.那么完成这件事共有N=mj m2- m3…mn种不同的方法.正弦定理在一个三角形中,各边和它所对角的正弦的比相等。
即a/sinA=b/sinB=c/sinC=2R (2R在同一个三角形中是恒量,是此三角形外接圆的直径)这一定理对于任意三角形ABC都有a/sinA=b/sinB=c/sinC=2R ( R为三角形外接圆半径)余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a, b, c三角为A,B,C ,则满足性质:a2=b2+c2-2bc • Cos Ab2=a2+c2-2ac • Cos Bc2=a2+b2-2ab • Cos CCos C= (a 2+b2-c 2)/2abCos B= (a 2+c2-b 2)/2acCos A= (c A2+b A2-a A2)/2bc解析几何中的基本公式1、两点间距离:若A(X i,ydB(X2,y2),则AB xj2(y? yj22、平行线间距离:若丨… Ax By C, 0, l2 : Ax By C20A B注意点:x,y对应项系数应相等。
3、点到直线的距离:P (x , y ), l : Ax By C 0消y : ax 2 bx c 0,务必注意 0.若I 与曲线交于A (x 1,y 1), B(x 2,y 2)则:AB J (1 k 2)% X i )25、若人⑶凡“区小),P ( x ,y )。
P 在直线AB 上,且P 分有向线段AB 所成 的比为,y y i y 2 y6 若直线l i 的斜率为k i ,直线l 2的斜率为k 2,则l i 到l 2的角为,(0,)注意:(1) l i 到l 2的角,指从l i 按逆时针方向旋转到l 2所成的角,范围(0,) l i 到l 2的夹角:指l i 、l 2相交所成的锐角或直角。
(2) l i l 2时,夹角、到角=一。
2(3) 当l i 与12中有一条不存在斜率时,画图,求到角或夹角。
则P 到I 的距离为:d4、直线与圆锥曲线相交的弦长公式:y kx b F(x,y) 0x 1 x 2 1 y iy 2,特别地: x=1时,P 为AB 中点且yx 1 x 2 2 y y 22 变形后:xx2适用范围:k i ,k 2都存在且k i k 2-1 ,tank 2 k 1若l i 与l 2的夹角为,则tanAx By C7、 (1)倾斜角,(0,);(2) a,b 夹角,[0,];(3) 直线I 与平面的夹角 (4) l i 与12的夹角为, (5) 二面角,(0,]; (6)l i 到 I 2 的角, (0,8、直线的倾斜角与斜率k 的关系a) 每一条直线都有倾斜角,但不一定有斜率。
b) 若直线存在斜率k ,而倾斜角为 ,则k=tan 9、直线l i 与直线I 2的的平行与垂直,[0,];2[0,—],其中11//I 2时夹角 =0;2(1)若l i, I2均存在斜率且不重合:①l i//l 2 k i=k2② l i I2 k i k2=— 1(2)若l i : A i x B i y C i0, l2 : A2x B2y C20若A i、A2、B i、B2都不为零①I I//I2 A i B i C i・A2B2C2②l i I2 A i A z+BiB2=0;③l i与l2相交A L B iA2B2④l i与l2重合A i B iC i;A2B2C2注意:若A或B2中含有字母,应注意讨论字母=0与0的情况I0、直线方程的五种形式名称方程、、亠 1 注意点斜截式: y=kx+b应分①斜率不存在点斜式: y y k(x x )②斜率存在(I)斜率不存在:x x(2 )斜率存在时为y y k(x x )两点式:y y i x X i y2 y i X2 X i截距式: x 2 i a b其中l交x轴于(a,0),交y轴于(0,b)当直线l在坐标轴上,截距相等时应分:(I)截距=0 设y=kx2)截距=a 0 设1 y ia a即x+y=a 般式: Ax By C 0(其中A、B不同时为零)2 2II、直线Ax By C 0与圆(x a) (y b)『的位置关系有三种卄 |Aa Bb Cl 若 d ,dr相离J A 2 B 2d r 相切0 d r 相交13、圆锥曲线定义、标准方程及性质 (一)椭圆定义I :若F i , F 2是两定点,P 为动点,且\PF i [PF ? 2a F 1F 2 ( a 为常数)贝U P 点的轨迹是椭圆。
定义U:若F i 为定点,I 为定直线,动点P 到F i 的距离与到定直线I 的距离 之比为常数e (Ovevi ),则P 点的轨迹是椭圆。
长轴长=2a ,短轴长=2b焦距:2cPF i 2a I PF 』,a c |PF 」a c 等(注意涉及焦半径①用点P 坐标表示,②第一定义。
)B i F i| B i Fj IB 2F 2 归2斤 a ,A 2B 2 AB 』Ja 2 b 2 等等。
顶点与准线距离、焦点与准线距离分别与 a, b,c 有关。
注意:(i )图中线段的几何特征:AH AF 』a c ,I AF 2A 2 F i标准方程:2 x22【2 1ab(a b 0)定义域:{xa xa }值域:{x b y b }焦半径 2 PF 1 e(x —)c ?2PF ix 2ay0 B(yaA:c2x2a2y 2 a1 (a0,b 0)b 21 (a 0,b0)2y b 2(2) PF 1F 2中经常利用余弦定理.、三角形面积公式 将有关线段 PF2I 、2c ,有关角 F 1PF 2结合起来,建立 |PF i +PF 2、PFi|?PF 2等关系a cos bsin '(3)椭圆上的点有时常用到三角换元:y (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴 上时,其相应的性质。