九年级下册数学知识点总结

合集下载

九年级数学知识点总结

九年级数学知识点总结

九年级数学知识点总结
一、整数运算
1. 整数的加法和减法
2. 整数的乘法和除法
3. 整数的混合运算
二、分数与小数
1. 分数的基本概念和运算
2. 分数与整数的转换
3. 小数的基本概念和运算
4. 分数与小数的相互转换
三、代数式与方程式
1. 代数式的定义和运算
2. 一元一次方程式的解法
3. 一元一次方程式的应用
4. 一元一次方程组的解法和应用
四、平面图形的性质与计算
1. 直角三角形、等腰三角形和等边三角形的性质
2. 直角三角形的勾股定理和三角函数
3. 平行线与等角线的基本概念
4. 三角形的相似性质和计算
5. 四边形的性质和计算
6. 圆的性质和计算
五、统计与概率
1. 数据的收集与整理
2. 统计图的绘制和数据的分析
3. 概率的基本概念和计算
六、函数与图像
1. 函数的概念和表示
2. 一次函数和二次函数的图像特征
3. 函数的平移、伸缩和翻转
4. 函数的复合和反函数
七、空间与几何体
1. 空间图形的表示和计算
2. 立体图形的表面积和体积计算
3. 三视图和展开图的绘制
总结:
九年级数学知识点的总结包括了整数运算、分数与小数、代数式与方程式、平面图形的性质与计算、统计与概率、函数与图像,以及空间与几何体等内容。

这些知识点是九年级学生在数学学习中的重要内容,通过掌握这些知识,学生能够提升数学思维能力,应用数学解决实际问题。

在学习过程中,需要理解概念、掌握运算方法,并能够将其应用于实际情境中。

通过不断练习和巩固,九年级学生可以在数学学习中取得较好的成绩。

九年级上下册数学知识点

九年级上下册数学知识点

九年级上下册数学知识点
一、上册数学知识点
1. 数与式
- 整数与有理数的运算
- 代数表达式的简化与变形
- 绝对值与不等式
2. 方程与不等式
- 一元一次方程与不等式
- 二元一次方程组的解法
- 含参方程及其应用
3. 函数的初步认识
- 函数的概念与表示方法
- 线性函数与二次函数的图像和性质
- 函数的基本运算
4. 几何图形初步
- 平行线与角的关系
- 三角形的基本性质
- 四边形的性质与分类
5. 几何图形的计算
- 面积与体积的计算
- 相似三角形的性质与应用
- 圆的基本性质与计算
二、下册数学知识点
1. 比例与相似
- 比例的概念与性质
- 相似三角形的判定与性质
- 比例线段的应用
2. 解直角三角形
- 锐角三角函数
- 解直角三角形的应用
- 三角函数的图像与性质
3. 统计与概率
- 统计的基本概念与方法
- 概率的初步认识
- 随机事件的概率计算
4. 数据的收集与处理
- 数据的表示方法
- 频数分布与直方图
- 抽样与估计
5. 平面直角坐标系
- 坐标系的基本概念
- 坐标系中的几何变换
- 函数图像的交点问题
6. 综合应用题
- 数学知识在实际问题中的应用 - 解决问题的策略与方法
- 开放性与探究性问题
请注意,以上内容仅为九年级数学上下册的主要知识点概览,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。

教师和学生应参考具体的教材和课程标准进行学习和复习。

九年级数学下册知识点

九年级数学下册知识点

九年级数学下册知识点九年级下册数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a 都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。

九年级数学下册 等腰、等边及直角三角形知识点总结

九年级数学下册 等腰、等边及直角三角形知识点总结

第16讲等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求21P COBAPCO BADABC abccD。

九年级下册数学全部知识点

九年级下册数学全部知识点

九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。

在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。

数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。

通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。

希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。

九年级下册数学知识点汇总(人教版)

九年级下册数学知识点汇总(人教版)

九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。

九年级数学下册各章知识点

九年级数学下册各章知识点

九年级数学下册各章知识点第一章:有理数1. 有理数的概念:有理数是整数和分数的统称,包括正数、零和负数。

2. 整数的加减法:同号两数相加、异号两数相减。

3. 分数的加减法:通分后相加减。

4. 有理数的乘除法:同号异号相乘、除法转化为乘法求解。

5. 有理数的乘方:正数与负数的幂的性质。

第二章:代数式与方程1. 代数式的概念:包含有常数和变量,并且包含加减乘除等运算符号的式子。

2. 代数式的运算:常数与变量的运算、代数式的合并与展开。

3. 简单方程的解法:等式的转化与解方程。

4. 一元一次方程:含有一个未知数的一次方程的解法与应用。

5. 实际问题中的应用:运用方程进行实际问题的解答。

第三章:函数与图像1. 函数的概念:函数是自变量与因变量之间的关系,每个自变量对应唯一一个因变量。

2. 函数的表示:函数关系可以通过表格、图像、公式等形式表示。

3. 线性函数:函数图像为直线的函数。

4. 平方函数:函数图像为抛物线的函数。

5. 函数的最值:函数图像的最大值和最小值。

第四章:全等与相似1. 图形的基本概念:点、线、面及其性质。

2. 直线、射线、线段的比较:长度比较和角度比较。

3. 全等三角形:全等三角形的判定条件与性质。

4. 相似三角形:相似三角形的判定条件与性质。

5. 相似三角形的应用:运用相似三角形进行实际问题的解答。

第五章:平面图形的性质1. 四边形的性质:平行四边形、矩形、正方形、菱形等四边形的特殊性质。

2. 三角形的性质:等腰三角形、等边三角形等三角形的特殊性质。

3. 圆的性质:圆心角、圆内外切等与圆相关的性质。

4. 圆的应用:运用圆的性质解答实际问题。

5. 长方体与棱柱:长方体、正方体、棱柱的性质及计算表面积和体积。

第六章:统计与概率1. 统计调查:设计统计调查方案、收集数据、整理数据等。

2. 统计图表:直方图、折线图、饼图等图表的绘制与分析。

3. 概率的概念:事件发生的可能性。

4. 事件与概率:事件的概率计算、相互独立事件的概率计算等。

人教版九年级下册数学课本知识点总结

人教版九年级下册数学课本知识点总结

人教版九年级下册数学课本知识点总结第二十六章反比例函数一、反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图像与x轴、y轴无交点.二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x≠,函数值0y≠,所以它的图像与x 轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

三、反比例函数及其图像的性质1.函数解析式:()2.自变量的取值范围:3.图像:(1)图像的形状:双曲线,越大,图像的弯曲度越小,曲线越平直。

越小,图像的弯曲度越大。

(2)图像的位置和性质:当时,图像的两支分别位于一、三象限;在每个象限内,y随x 的增大而减小;当时,图像的两支分别位于二、四象限;在每个象限内,y随x 的增大而增大。

(3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支。

图像关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上。

.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013最新版初三下册数学知识点总结第一章 直角三角形边的关系※一. 正切:定义:在Rt △ABC 中,如果锐角∠A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;※⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

※二.余切: 定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ;※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

0º 30 º45 º 60 º 90 º图 1(通常我们称正弦、余弦互为余函数。

同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=;)90tan(cot A A ∠-︒=※当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..※当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..※利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

※同角的三角函数间的关系:倒数关系:tg α·ctg α=1。

※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

◎在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有 (1)三边之间的关系:a 2+b 2=c 2;(2)两锐角的关系:∠A +∠B=90°; (3)边与角之间的关系:;cot ,tan ,cos ,sin a bA b aA c bA c aA ====;cot ,tan ,cos ,sin baB abB caB cbB ====(4)面积公式:c ch ab 2121S ==∆(h c 为C 边上的高); (5)直角三角形的内切圆半径2cb a r -+=(6)直角三角形的外接圆半径c R 21=◎解直角三角形的几种基本类型列表如下:sin α 0 21 22 23 1 cos α 1 23 22 21 0 tan α 0 33 1 3— cot α—3133 0图 3 图4◎解直角三角形的几种基本类型列表如下:※如图2,坡面与水平面的夹角叫做坡角.. (或叫做坡比..)。

用字母i 表示,即A lhi tan ==◎从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

◎指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角...。

如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

第二章 二次函数※二次函数的概念:形如c bx ax y ++=2(a 、b 、c 是常数,a ≠0)的函数,叫做x 的二次..函数..。

自变量的取值范围是全体实数。

)0(2≠=a ax y 是二次函数的特例,此时常数b=c=0.※在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围........。

※二次函数y =ax 2的图象是一条顶点在原点关于y 轴对称的曲线,这条曲线叫做抛物线...。

描述抛物线常从开口方向、对称性、y 随x 的变化情况、抛物线的最高(或最低)点、抛物线与x 轴的交点等方面来描述。

①函数的取值范围是全体实数;②抛物线的顶点在(0,0),对称轴是y 轴(或称直线x =0)。

图2h i=h:lBC③当a >0时,抛物线开口向上,并且向上方无限伸展。

当a <0时,抛物线开口向下,并且向下方无限伸展。

④函数的增减性:A 、当a >0时⎩⎨⎧≥≤.,0;,0增大而增大随时增大而减小随时x y x x y xB 、当a <0时⎩⎨⎧≥≤.,0;,0增大而减小随时增大而增大随时x y x x y x⑤当|a |越大,抛物线开口越小;当|a |越小,抛物线的开口越大。

⑥最大值或最小值:当a >0,且x =0时函数有最小值,最小值是0;当a <0,且x =0时函数有最大值,最大值是0。

※二次函数c ax y +=2的图象是一条顶点在y 轴上且与y 轴对称的抛物线※二次函数c bx ax y ++=2的图象是以abx 2-=为对称轴,顶点在 (ab2-,a b ac 442-)的抛物线。

(开口方向和大小由a 来决定)※|a|的越大,抛物线的开口程度越小,越靠近对称轴y 轴,y 随x 增长(或下降)速度越快;|a|的越小,抛物线的开口程度越大,越远离对称轴y 轴,y 随x 增长(或下降)速度越慢。

※二次函数c ax y +=2的图象中,a 的符号决定抛物线的开口方向,|a|决定抛物线的开口程度大小,c 决定抛物线的顶点位置,即抛物线位置的高低。

※二次函数c bx ax y ++=2的图象与y =ax 2的图象的关系:c bx ax y ++=2的图象可以由y =ax 2的图象平移得到,其步骤如下:① 将c bx ax y ++=2配方成k h x a y +-=2)(的形式;(其中h=ab2-,k=a b ac 442-);②把抛物线2ax y =向右(h>0)或向左(h<0)平移|h|个单位,得到y=a(x-h)2的图象;③再把抛物线2)(h x a y -=向上(k>0)或向下(k<0)平移| k|个单位,便得到k h x a y +-=2)(的图象。

※二次函数c bx ax y ++=2的性质:③增减性:若a>0,则当x<ab2-时,y 随x 的增大而减小.....; 当x>ab2-时,y 随x 的增大而增大。

...... 若a<0,则当x<ab2-时,y 随x 的增大而增大.....; 当x>ab2-时,y 随x 的增大而减小。

...... ④最值:若a>0,则当x=ab2-时,a b ac y 442-=最小;若a<0,则当x=ab2-时,a b ac y 442-=最大※画二次函数c bx ax y ++=2的图象:我们可以利用它与函数2ax y =的关系,平移抛物线而得到,但往往我们采用简化了的描点法----五点法来画二次函数来画二次函数的图象,其步骤如下:①先找出顶点(ab 2-,a b ac 442-),画出对称轴x=a b 2-; ②找出图象上关于直线x=ab2-对称的四个点(如与坐标的交点等); ③把上述五点连成光滑的曲线。

¤二次函数的最大值或最小值可以通过将解析式配成y=a(x-h)2+k 的形式求得,也可以借助图象观察。

¤解决最大(小)值问题的基本思路是:①理解问题;②分析问题中的变量和常量,以及它们之间的关系; ③用数学的方式表示它们之间的关系;④做数学求解;⑤检验结果的合理性、拓展性等。

※二次函数c bx ax y ++=2的图象(抛物线)与x 轴的交点的横坐标x 1,x 2是对应一元二次方程02=++c bx ax 的两个实数根※抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:ac b 42->0 <===> 抛物线与x 轴有2个交点; ac b 42-=0 <===> 抛物线与x 轴有1个交点;ac b 42-<0 <===> 抛物线与x 轴有0个交点(无交点);※当ac b 42->0时,设抛物线与x 轴的两个交点为A 、B ,则这两个点之间的距离:2122121224)()(||||1x x x x x x x x AB -+=-=+=化简后即为:)04(||4||22>--=ac b a ac b AB ------ 这就是抛物线与x 轴的两交点之间的距离公式。

第三章 圆一. 车轮为什么做成圆形 ※1. 圆的定义:描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的圆形叫做圆.;固定的端点O 叫做圆心..;线段OA 叫做半径..;以点O 为圆心的圆,记作⊙O ,读作“圆O ”。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

能够重合的两个圆叫做等圆,在同圆活等圆中,能够互相重合的弧叫做等弧。

集合性定义:圆是平面内到定点距离等于定长的点的集合。

其中定点叫做圆.心.,定长叫做圆的半径....,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。

对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。

※2. 点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上 <===> d=r;②点在圆内 <===> d<r;③点在圆外 <===> d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。

二. 圆的对称性:三※1. 与圆相关的概念:①弦和直径:弦:连接圆上任意两点的线段叫做弦.。

直径:经过圆心的弦叫做直径..。

②弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。

半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。

优弧:大于半圆的弧叫做优弧..。

劣弧:小于半圆的弧叫做劣弧..。

(为了区别优弧和劣弧,优弧用三个字母表示。

)③弓形:弦及所对的弧组成的图形叫做弓形..。

④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。

相关文档
最新文档