《解二元一次方程组(1)》导学案
人教版数学七年级下册导学案:(二元一次方程组)实际问题与二元一次方程组(导学案)

实际问题与二元一次方程组第1课时实际问题与二元一次方程组(1)——探究1一、导学1.导入课题:前面我们结合实际问题,讨论了用方程组表示问题中的等量关系以及如何解方程组.本节课我们继续探究如何用二元一次方程组解决实际问题.2.学习目标:(1)会运用二元一次方程组解决一些实际生活中的应用问题,体会数学建模思想.(2)能根据题目中的已知量与未知量的联系正确设出未知数,列出方程组并求解.3.学习重、难点:重点:探究用二元一次方程组解决实际问题的过程.难点:寻找等量关系,并列出方程组,由方程组的解解释实际问题.4.自学指导:(1)自学内容:课本P99探究1.(2)自学时间:8分钟.(3)自学要求:同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.(4)探究提纲:①题目中哪些是已知量,哪些是未知量?有几个等量关系?②要检验饲养员李大叔的估计正确与否,就要求出每头大牛每天所需饲料和每头小牛每天所需饲料.③如果设每头大牛和每头小牛1天各约用饲料xkg和ykg,根据你发现的等量关系,可列方程组3015675 4220940.x yx y+=⎧⎨+=⎩④能列一元一次方程解这个问题吗?⑤请你解③中方程组,并交流一下你是如何解的.⑥饲养员李大叔的估计正确吗? 二、自学同学们可结合探究提纲相互研讨学习. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的学习进度和自学中存在的问题.①能否找出等量关系,列出方程和方程组.②能否正确解出方程组. (2)差异指导:对少数学有困难和学法不当的学生进行点拨引导. 2.生助生:小组内学生相互提出学习疑点,相互帮助. 四、强化1.列方程组解应用题的基本思路和要注意的问题;列方程组解应用题的一般步骤.2.练习:某校七年级学生在会议室开会,每排坐12人,则有11人无座位;每排坐14人,则最后一排只有1人独坐.这间会议室共有座位多少排?该校七年级有多少学生?解:设这间会议室共有座位x 排,该校七年级有y 名学生,根据题意,得12111413.x y x y +=⎧⎨-=⎩,解得12155.x y =⎧⎨=⎩,答:这间会议室共有座位12排,该校七年级有155名学生. 五、评价1.学生学习的自我评价:各小组代表介绍本组学习收获和存在的问题.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本节课的重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型.教学难点是利用相等关系将实际问题转化为数学问题.教学中,采取了让学生通过独立思考、自主探索、合作交流等方式,在思考、交流等数学活动中,养成严谨的思维方式和良好的学习习惯.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(20分)现用190张铁皮做盒子,每张铁皮8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A )2.(20分)解下列方程组:解:(1)①+②,得4y=11. (2)整理,得解得114y =.89173 2.x y x y +=⎧⎨-=-⎩,①② 把114y =代入①, ①+②×3,得11x=11. 得11354x -=. 解得x=1.解得3112x =.把x=1代入②,得1-3y=-2. ∴这个方程组的解为解得y=1.311211.4x y ⎧⎪=⎨⎪=⎪⎪⎩, ∴这个方程组的解为11.x y =⎧⎨=⎩,3.(20分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,且第一天比第二天少走2km ,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h.由题意,得4598 425x yx y+=⎧⎨+=⎩,,①②①+②,得8x=96,解得x=12,把x=12代入①,得48+5y=98. 解得y=10.∴这个方程组的解为1210. xy=⎧⎨=⎩,答:第一天行军的平均速度为12km/h,第二天行军的平均速度为10km/h.二、综合运用(20分)4.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?解:设大车一次可以运货x吨,小车一次可以运货y吨.由题意,得2315.5 5635.x yx y+=⎧⎨+=⎩,①②②-①×2,得x=4.把x=4代入①,得4×2+3y=15.5.解得y=2.5.∴3x+5y=3×4+5×2.5=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.三、拓展延伸(20分)5.某家商店的帐目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28盒牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.解:有误,理由:设一支牙刷的价格为x元,一盒牙膏的价格为y元.由题意,得39213965228518x yx y+=⎧⎨+=⎩,,即137132137129.5.x yx y+=⎧⎨+=⎩,方程组无解.∴这个记录有误.实际问题与二元一次方程组第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。
初中数学-消元解二元一次方程组(第1课时)导学案

初中数学-消元解二元一次方程组(第1课时)导学案学习目标1.会用代入法解二元一次方程组;2.体会解二元一次方程组的“消元思想”和“化未知数为已知”的化归思想.学习内容一、自主学习问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜、负场数分别是多少?问题2:在上述问题中,我们可以设出两个未知数,列出二元一次方程组,若设胜的场数是x,负的场数是y,则{x+y=20,2x+y=38.那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系呢?二、尝试探索交流问题2:归纳小结:三、典例探究【例1】用代入法解方程组{x=y+3,①3x-8y=14.②反思:思考下列问题:(1)选择哪个方程代入另一个方程?其目的是什么?(2)为什么能代入?目的达到了吗?(3)只求出y=-1,方程组解完了吗?把y=-1代入哪个方程求x的值较简便?(4)怎样知道你运算的结果是否正确呢?【例2】用代入法解方程组{x-y=3,①3x-8y=14.②思考:(1)从方程的结构来看,例2与例1有什么不同?(2)如何变形?(3)选择哪个方程变形较简便?用代入消元法解二元一次方程组的步骤:(1).(2).(3).(4).四、课堂练习1.用代入法解下列方程组:(1){y=x+1,x+y=6;(2){x+y=5,x=y+3;(3){y=2x-3,3x+2y=8;(4){2x-y=5,3x+4y=2.2.甲、乙两人相距300m,如果两人同时相向而行,那么3min相遇;如果两人同时同向而行,那么30min后甲追上乙.求甲、乙两人的速度.五、问题小结试举例说明代入消元法解二元一次方程组需要注意的问题.参考答案一、自主学习问题1:解:设这个队胜x场,根据题意得2x+(20-x)=38,解得x=18,则20-x=2.答:这个队胜18场,负2场.二、尝试探索交流问题2:可以发现,二元一次方程组中第1个方程 x+y=20说明y=20-x,将第2个方程2x+y=38中的y换为20-x,这个方程就化为一元一次方程2x+(20-x)=38.二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一个未知数.这种将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想.归纳小结:上面的解法,是把二元一次方程组中一个方程中的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.三、典例探究【例1】解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,所以这个方程组的解是{x=2,y=-1.反思:需检验,将{x=2,y=-1分别代入方程①②,看方程的左右两边是否相等,可以口算,也可以在草稿纸上验算.【例2】{x=2,y=-1.思考:(1)例1是用①直接代入②的,而例2的两个方程都不具备这样的条件.(2)把其中一个方程变形为例1中①的形式.(3)方程①中的x的系数为1,故可以将方程①变形得 x=3+y.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.四、课堂练习1.(1){x =52,y =72.(2){x =4,y =1. (3){x =2,y =1. (4){x =2,y =-1. 2.解:设甲的速度为x m/min ,乙的速度为y m/min ,则{3x +3y =300,30x =30y +300,解这个方程得{x =55,y =45.五、问题小结代入消元法解二元一次方程组需要注意的问题.(1)用代入法解二元一次方程组时,常选用系数比较简单的方程变形,这有利于正确、简捷地消元.(2)由一个方程变形得到的只含有一个未知数的代数式必须代入到另一个方程中去,否则会出现一个恒等式.(3)方程组解的表示方法,应该用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?y=?。
冀教版数学七年级下册_《二元一次方程组的应用(第1课时)》导学案

环节
内容
设计意图
复习检查
用一元一次方程解决实际问题一般有那些步骤?
提出问题
明确学标
揭示学习目标
领会意图
情境导入
情境
大马和小马驮着物品在途中有一段对话:
大马说:“把我驮的东西给你一包多好哇!这样咱俩驮的包数就一样多了.”
小马说:“我还想给你一包呢!”
大马说:“那可不行!如果你给我一包,我驮的包数就是你的2倍了.”
(4)根据等量关系列两个组成一个(用大括号);
(5)解;(6)检验;(7)作答。
概括成七,第一批装满了9节火
车车厢和25辆卡车,共运走了640吨;第二批装满了12节
火车车厢和10辆卡车,共运走了760吨,平均每节火车车
厢和每辆卡车分别装运化肥多少吨?
帮助学生细化问题,利用对话找出两个等量关系,列出对应的二元一次方程组
<2>小马说:“我还想给你1包呢”则给完后大马的包数为
包,小马包数为包包;大马说“那可不行!如果你给我1包,我驮的包数就是你的2倍了”据此列方程为。
<3>将解答过程整理一下:
解:
【总结步骤】
列二元一次方程组解决实际问题的一般步骤:
(1),关注已知量和未知量;
(2)根据已知量确定(两个);
(3)设两个;
规范解题格式
巩固所学
效果评价
1、足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了()
A.2场B.5场C.7场C.9场
2、王叔叔在15公顷的大棚里分别种植了茄子和西红柿,总
费用为265000元。其中茄子每公顷的费用是17000元,西
解二元一次方程组-导学案

【课堂小结】
第 2页 共2页
课堂小测
【针对性练习】
x 2 y, ① 1.用代入法解方程组 时,较简单的方法是( 2 x y 5②
A.由①得 y
1 x ,然后代入②,消去 y 2
)
B.将①代入②消去 x D.由②得 x
1 (5 y ) ,然后代入① 2
C.由②得 y 2 x 5 ,然后代入①消去 y 消去 x 2.用代入法解方程组
时代中学七年级数学导学案
编号:22 使用时间:2017-5-17 编制人:安广旭
王娜
审核:
审批:
班级:
小组:
姓名:
小组评价:
教师评价:
8.1 解二元一次方程组——代入消元法
【学习目标】 1.能说出二元一次方程,二元一次方程组的解的概念;会检验所给的一组未知数的值 是否是二元一次方程、二元一次方程组的解。 2.通过实例认识二元一次方程和二元一次方程组都是反映数量关系的重要数学模型, 能设两个未知数并列方程组表示实际问题中的两种相关的等量关系。 3.通过对课本知识的探究与应用, 提高学生的逻辑思维能力和分析、 解决问题的能力。 【使用说明与学法指导】
装
x y 7 y 9, (4) 5( x y) 7 3 y,
订
新知梳理: 知识点一: 用代入消元法求解二元一次方程组(一)
x 9 2 y 例 1.解方程组(1) 3x y 1
3m 1 2n (2) 5m 4n 31
(5)
【针对性练习】1.用代入法解下列方程组: (1)
2 x 3 y 1, 3x 2 y 8, 3u 2v 9, (2) 3u 5v 2,
二元一次方程组导学案

第五章 二元一次方程组§5.1 认识二元一次方程组(一)学习准备:1.含未知数的等式叫 ,如:312=+x2.若方程中只含有一个未知数,并且未知数的次数为1的整式方程,这样的方程叫 ,如:8743-=+x x3.满足方程左右两边未知数的值叫做方程的4.若2=x 是关于x 一元一次方程82=+ax 的解,则a =5.方程8=+y x 是一元一次方程吗? ;若不是,请你把它取名叫 方程。
(二)解读教材1、定义:像方程2=-y x 和)1(21-=+y x 等这类方程中,含有 个未知数,并且所含未知数的项的次数都是 的方程叫做 。
例:下列方程是二元一次方程的是 ①312=+yx ;②015=-xy ;③22=+y x④03=+-z y x ;⑤32=-y x ;⑥53=+x 2、二元一次方程的解:定义:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个 例:(1)请找出是二元一次方程8=+y x 的解的是:①⎩⎨⎧==80y x ;②⎩⎨⎧==52y x ;③⎩⎨⎧=-=91y x(2)已知⎩⎨⎧-==21y x 是二元一次方程52=-y ax 的解,求a 的值。
3.二元一次方程组及方程组的解:(1)定义:含有 个未知数的两个 方程所组成的一组方程,叫二元一次方程组。
例:下列是二元一次方程组的是( )①⎩⎨⎧=-=+36y x y x ;②⎩⎨⎧==32y x ;③⎪⎩⎪⎨⎧==12y x y ;④⎩⎨⎧==32y xy ;⑤⎩⎨⎧=-=+43z x y x 。
(2)定义:二元一次方程组中各个方程的 叫做这个二元一次方程组的解。
例:在下列数对中:(1)2,5,1,5,(2)(3)(4)2,0,1,2,x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨=-==-=⎩⎩⎩⎩是方程0=+y x 的解的是_______;是方程54=-y x •的解的是_______;既是方程0=+y x 的解,又是方程54=-y x 的解的是_______.(填序号) 练习: 1.方程3521=+++n m y x是二元一次方程,则m = ,n = 。
二元一次方程组第1课时导学案

12x y =-⎧⎨=⎩七年级下学期第八章二元一次方程组第1课时导学案杨先蕊学习目标:1、知识与技能::了解二元一次方程、二元一次方程组、二元一次方程的解及二元一次方程组的解的概念;B :会判断一组未知数的值是否是方程或方程组的解。
2、过程与方法:A:在经历分析实际问题中数量关系的过程中,进一步体会方程是刻画现实世界的数学模型。
B :体会实际问题中二元一次方程(组)是反映现实世界多个量之间相等关系的一种有效的数学模型,感受二元一次方程(组)的重要作用。
3、情感态度与价值观:A :培养良好的数学应用意识;B :通过对情境问题的观察、思考,激发好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
一、情境引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。
某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?二、自主探究(一)先阅读教材88-89页内容,再填空。
(1)二元一次方程的概念:含有___个未知数,并且含有_______的__的___都是___的整式方程。
(2)二元一次方程组的概念:方程组中有___个未知数,含有每个未知数的项的次数都是___,并且一共有___个方程。
(3)二元一次方程的解:使二元一次方程两边的值相等的________________。
(4)二元一次方程组的解:二元一次方程组的两个方程的____________。
(即这对数值必须满足方程组中的每一个方程。
) (二)独立思考,完成以下练习:1、下列各式中,是二元一次方程的是__________________________(填字母) A 、468a b -= B 、x-3y=4z C 、3x+1=0 D 、x+xy=1E 、y²+3y=5xF 、2x-3y+5=2(x+y)-1G 、1x +y=7 H 、 -y=1 2、若方程9x a-6y b+1=3是关于x 、y 的二元一次方程,则a=_______,b=________. 3、下列方程组中,不是二元一次方程组的是( )A 123x y =⎧⎨+=⎩,. B.10x y x y +=⎧⎨-=⎩,. C.10x y xy +=⎧⎨=⎩,. D.21y x x y =⎧⎨-=⎩,.4、下列各对数值中不是二元一次方程x +2y=2的解的是( )A ⎩⎨⎧==02y x B ⎩⎨⎧=-=22y x C ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x 5、以上四对值是二元一次方程组的解是( )6、已知 是方程3x-my=1的一个解,则m =__________。
二元一次方程组的解法导学案(代入法、加减消元法)

4
鸡西市第十九中学初二数学组
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
二元一次方程组的解法 课型 (二)---加减法 1 2012 年 月 日 人教版 1、了解解二元一次方程组的基本思路; 2、了解加减消元法并能用加减消元法解二元一次方程组 能用加减消元法解二元一次方程组。 掌握在什么情况下用加法消元,什么情况下用减法消元。
y 2 x 1, (3) 7 x 3 y 1;
3x 4 y, (4) x 2 y 5;
4 x 2 y 4, (5) 2 x y 2;
x 2 y 4, (6) 2 x y 28.
【当堂训练】
2
鸡西市第十九中学初二数学组
第二步
① ②
的系数是 1,用含 y 的式子表示 x ,比较简便。 ) ③
第一步
解这个方程,得 y = 把 y = 代入③,得
第三步
第四步
1
鸡西市第十九中学初二数学组
所以这个方程的解是
第五步
练习: 用代入消元法解下列二元一次方程组
{ (1)
2 x y 13 7 x 5 y 20
y {3 xx 5 3 27 (2) 6 y
-a2 的值.
3 x ay 16, x 7, 3. (创新题)如果关于 x,y 的二元一次方程组 的解是 , 2 x by 15 y 1.
求关于 x,y 的方程组的解:
3( x y ) a( x y ) 16, (1) 2( x y ) b( x y ) 15;
x 3 y 10, 1.用代入法解方程组 较简便的步骤是: 3x 5 y 2.
解二元一次方程组1导学案

解二元一次方程组1 主备人:王军 审核人: 姓名 班级学习目标:1.会用代入消元法解二元一次方程组.2.了解 “消元”思想,初步体会数学研究中“化未知为已知”的化归思想.学习重点:用代入消元法解二元一次方程组.学习难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.1、 预习导学:什么叫做一元一次方程?解一元一次方程有哪些步骤?2、 解方程:2(x-3)=83、把方程x -2y =4化为用含x 的代数式表示y 的形式为 ,化为用含y 的代数表示x 的形式为 .上面两种表示比较简单是 .4、将方程2x-7y =8化为用含x 的代数式表示y 的形式为 ,化为用含y 的代数式表示x 的形式为 .学习研讨:预习课本P 221页,完成下列填空:解二元一次方程组如何解呢?对上面方程组中,由①,得 x = ___________ ③由于方程组中相同的字母表示同一个未知数,所以方程②中的x 也等于_________,可以用__________代替方程②中的x.将③带入方程②,这样有_________________ ④解所得的一元一次方程④,得y =___.再把y =___ 代入③, 得 x =___.这样,我们得到一元二次方程组 的解为小结:上面解方程组的基本思路是消元即把二元变为一元.主要步骤:将其中一个方程中的某个未知数用另一个未知数的代数式表示出来,并代入另一个方程中,从而消去另一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法叫 ,简称 .【师生合作】例1. 解方程组x+y=3 ① x-1=2(y+1) ② x+y=3 x-1=2(y+1) x=___ y=___ . 3x-2y=14 ① x=y-3 ②注:1、在解题的过程中注意思路和格式;2、最后把求出的解代入原方程组,可以知道解得对不对.请检验例1的答案:例2.解方程组(别忘了标序号和检验!)当堂检测:1.把方程3x+y=6写成用含有y 的式子表示x 的形式是 ( )A. x=2+31y B. x=2-31y C. y=6+3x D. y=6-3x2.方程组⎩⎨⎧=--=82352y x x y 消去y 后所得的方程是 ( ) A. 3X-4X-10=8 B. 3X-4X+5=8 C. 3X-4X-5=8 D. 3X-4X+10=83. 用代入法解方程组⎩⎨⎧=-=+②y x ①y x 1472 由②得y= ③,把③代入①,得 ,解得x= ,再把求得的x 值代入②得,y= .原方程组的解为 .4.完成课本223页随堂练习1.﹙用代入消元法解下列方程组﹚⑴⎩⎨⎧=+=122y x x y ⑵ ⎪⎩⎪⎨⎧=+-=653425y x y x⑶⎩⎨⎧=-=+711y x y x ⑷ ⎩⎨⎧=+=-32923y x y x拓展延伸: 1.若(x + y - 12)2 +︱y - 2x ︱= 0,则x= ,y= .2.如果方程组⎩⎨⎧=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等. 求a 的值. 课后练习:1.解方程组⎩⎨⎧+==+31423y x y x 例2 解方程组⎩⎨⎧=+=+1341632y x y x2x+3y=15 x -4y=13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.2 解二元一次方程组第1课时
一、学习内容:教材 P99-100
二、学习目标:
1.会用代入法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想――“消元”.
3.通过研究解决问题的方法,培养合作交流意识与探究精神.
三、自学探究
1、复习提问:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在全部12场比赛中得到20分,那么这个队胜负场数分别是多少?
如果只设一个未知数:胜x场,负(12-x)场,列方程为:,解得x= .
在上节课中,我们可以设出两个未知数,列出二元一次方程组,设胜的场数是x,负的场数是y,
x+y=12
2x+y=20
那么怎样求解二元一次方程组呢?
2、思考:上面的二元一次方程组和一元一次方程有什么关系?
可以发现,二元一次方程组中第1个方程x+y=12写成y=12-x,将第2个方程2x+y=20的y换为12-x,这个方程就化为一元一次方程+-=.
x x
2(12)20
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想.
3、归纳:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未
知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
例2用代入法解方程组x+2y=1①
3x-2y=5②
解后反思:
(1)选择哪个方程代人另一方程?其目的是什么?
(2)为什么能代?
(3)只求出一个未知数的值,方程组解完了吗?
(4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?
(5)怎样知道你运算的结果是否正确呢?
(与解一元一次方程一样,需检验.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)
四、自我检测
教材P100 练一练
五、学习小结
用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.。