第一节集合的概念和表示及关系练习题
第1课 集合的概念及运算(经典例题练习、附答案)

第1课 集合的概念及运算◇考纲解读理解集合、子集、补集、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.◇知识梳理1.集合的基本概念:(1)一般地,我们把研究对象统称为_________,把一些元素组成的总体叫做________.(2)集合中的元素具有的三个特性是:____________、____________、___________.(3)集合有三种表示方法: 、 、 .还可以用区间来表示集合.(4)集合中元素与集合的关系分为______与______两种,分别用_____和_______来表示.(5)表示实数集的符号是_____;表示正实数集的符号是______;表示有理数集的符号是____; 表示整数集的符号是_____;表示自然数集的符号是_____;表示正整数集的符号是_____.2.集合间的关系:(1)若集合A 中的任何一个元素都是集合B 的元素,则称集合A 是集合B 的__ _,记作_ _.(2)对于两个集合A,B,若___________且___________,则称集合A=B.(3)如果集合A B ⊆,但存在元素x B ∈且x A ∉,我们称集合A 是集合B 的__________,记作___________.(4)___________________叫空集,记作______,并规定:空集是任何集合的_______.3.集合的基本运算:(1)A B =_______________________.(2)A B =_______________________.(3)若已知全集U,集合A U ⊆,则U C A =________________.4.有限集的元素个数若有限集A 有n 个元素,则A 的子集有_____个,真子集有_____,非空子集有_____个, 非空真子集有_____ 个.◇基础训练1. (2008韶关一模)设{}{}(,)46,(,)38A x y y x B x y y x ==-+==-,则AB =( ) {}{}{}{}.(2,1).(2,2).(3,1).(4,2).A BCD ----2. (2007韶关二模)设全集{},,,,,,,7654321=U ,{}16A x x x N *=≤≤∈,,则U C A=( )A .φB .{}7C .{}654321,,,,, D .{}7654321,,,,,, 3.(2007广州一模)如图1所示,U 是全集,A B 、是U 的子集,则阴影部分所表示的集合是( ) A. A B B. )A C (B UC. A BD. )B C (A U4.(2008深圳一模)设全集{0,1,2,3,4}U =,集合{0,1,2}A =,集合{2,3}B =,则()U A B =( )A .∅B .{1,2,3,4}C .{0,1,2,3,4}D .{2,3,4}◇典型例题例1. (2007佛山一模) 设全集为 R ,A =}01|{<xx ,则=A C R ( ). A .}01|{>x x B .{x | x >0} C .{x | x 0≥} D . }01|{≥xx变式:集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,求实数a 的值.例2.已知{}{}22240,2(1)10A x x x B x x a x a =+==+++-=,其中a R ∈, 如果A ∩B=B ,求实数a 的取值范围。
集合的含义与表示练习题

集合的含义与表示练习题一、选择题1. 下列何者是集合的定义?A. 一些相同或相类似的元素的聚集。
B. 一些不同的元素的聚集。
C. 一些有序的元素的聚集。
D. 一些无序的元素的聚集。
2. 以下哪个符号表示“属于”关系?A. ∩B. ∪C. ∈D. ⊆3. 若集合A={1,2,3},则A的基数为:A. 3B. 6C. 1D. 04. 下列哪个运算符表示两个集合的交集?A. ∩B. ∪C. ∈D. ⊆5. 若集合A={a,b,c},集合B={b,c,d},则A∪B等于:A. {a,b,c,d}B. {a}C. {b,c,d}D. {b,c}二、填空题1. 若集合A={1,2,3},集合B={2,3,4},则A∩B={ }。
2. 集合A的幂集的基数为{ },其中集合A的基数为4。
3. 若集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={ }。
三、解答题1. 请定义集合的并集、交集和补集,并举例说明。
2. 若集合A={a,b,c,d,e},集合B={c,d,e,f,g},找出满足以下条件的集合:a) A∪B的基数为6;b) A∩B的基数为2。
四、应用题1. 某班级有50名学生,其中30人会打篮球,20人会踢足球。
已知篮球队员中有10人同时会踢足球,问有多少人既会打篮球又会踢足球?2. 在某个购物网站上,有1000个用户喜欢购买手机,700个用户喜欢购买电脑,已知用户中有300人同时喜欢购买手机和电脑,问有多少人既喜欢购买手机又喜欢购买电脑?以上是关于集合的含义与表示的练习题,希望能帮助你更好地理解和掌握集合的概念与运算。
答案如下:一、选择题1. A2. C3. A4. A5. A二、填空题1. {2,3}2. 163. {1,2,3,4,6,8}三、解答题1. 并集:集合A∪B是包含A和B中所有元素的集合。
例如,A={1,2,3},B={2,3,4},则A∪B={1,2,3,4}。
交集:集合A∩B是包含A和B中共有元素的集合。
高中数学集合的含义及其表示练习题

高中数学集合的含义及其表示练习题(含解析)数学必修1(苏教版)1.1 集合的含义及其表示一位渔民专门喜爱数学,但他如何也不明白集合的意义,因此他请教数学家:“尊敬的先生,请您告诉我,集合是什么?”集合是不定义的原始概念,数学家专门难回答那位渔民,有一天,他来到渔民的船上,看到渔民撒下鱼网,轻轻一拉,许多鱼虾在网上跳动,数学家专门兴奋,快乐地告诉渔民:“这确实是集合!”你能明白得数学家的话吗?基础巩固1.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.{1,2,3}是不大于3的自然数组成的集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D.数1,0,5,12,32,64,14组成的集合有7个元素答案:C2.若集合A={-1,1},B={0,2},则集合{z|z=x+y,xA,yB}中的元素个数为()A.5个B.4个C.3个D.2个答案:C3.下列四个关系中,正确的是()A.a{a,b} B.{a}{a,b}C.a{a} D.a{a,b}答案:A4.集合M={(x,y)|xy0,xR,yR}是()A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集解析:集合M为点集且横、纵坐标异号,故是第二、四象限内的点集.答案:D5.若A={(2,-2),(2,2)},则集合A中元素的个数是()A.1个B.2个C.3个D.4个答案:B6.集合M中的元素差不多上正整数,且若aM,则6-aM,则所有满足条件的集合M共有()A.6个B.7个C.8个D.9个解析:由题意可知,集合M中包含的元素能够是3,1和5,2和4中的一组,两组,三组,即M可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.答案:B7.下列集合中为空集的是()A.{xN|x2 B.{xR|x2-1=0}C.{xR|x2+x+1=0} D.{0}答案:C8.设集合A={2,1-a,a2-a+2},若4A,则a=()A.-3或-1或2 B-3或-1C.-3或2 D.-1或2解析:当1-a=4时,a=-3,A={2,4,14};当a2-a+2=4时,得a =-1或2,当a=-1时,A={2,2,4},不满足互异性,当a=2时,A={2,4,-1}.a=-3或2.答案:C9.集合P={x|x=2k,kZ},Q={x|x=2k+1,kZ},M={x|x=4k+1,kZ},若aP,bQ,则有()A.a+bPB.a+bQC.a+bMD.a+b不属于P、Q、M中任意一个解析:∵aP,bQ,a=2k1,k1Z,b=2k2+1,k2Z,a+b=2(k1+k2)+1,k1,k2Z,a+bQ.答案:B10.由下列对象组成的集体,其中为集合的是________(填序号).①不超过2的正整数;②高一数学课本中的所有难题;③中国的高山;④平方后等于自身的实数;⑤高一(2)班中考500分以上的学生.答案:①④⑤11.若a=n2+1,nN,A={x|x=k2-4k+5,kN},则a与A的关系是________.解析:∵a=n2+1=(n+2)2-4(n+2)+5,且当nN时,n+2N.答案:aA12.集合A={x|xR且|x-2|5}中最小整数为_______.解析:由|x-2|-5x-2-37,最小整数为-3.答案:-313.一个集合M中元素m满足mN+,且8-mN+,则集合M的元素个数最多为________.答案:7个14.下列各组中的M、P表示同一集合的是________(填序号).①M={3,-1},P={(3,-1)};②M={(3,1)},P={(1,3)};③M={y|y=x2-1,xR},P={a|a=x2-1,xR};④M={y|y=x2-1,xR},P={(x,y)|y=x2-1,xR}.答案:③能力提升15.已知集合A={x|xR|(a2-1)x2+(a+1)x+1=0}中有且仅有一个元素,求a的值.解析:(1)若a2-1=0,则a=1.当a=1时,x=-12,现在A=-12,符合题意;当a=-1时,A=,不符合题意.(2)若a2-10,则=0,即(a+1)2-4(a2-1)=0a=53,现在A=-34,符合题意.综上所述,a=1或53.16.若集合A=a,ba,1又可表示为{a2,a+b,0},求a2021+b202 1的值.解析:由题知a0,故ba=0,b=0,a2=1,a=1,又a1,故a=-1.a2021+b2021=(-1)2021+02021=1.17.设正整数的集合A满足:“若xA,则10-xA”.(1)试写出只有一个元素的集合A;(2)试写出只有两个元素的集合A;(3)如此的集合A至多有多少个元素?解析:(1)令x=10-xx=5.故A={5}.(2)若1A,则10-1=9A;反过来,若9A,则10-9=1A.因此1和9要么都在A中,要么都不在A中,它们总是成对地显现在A中.同理,2和8,3和7,4和6成对地显现在A中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.(3)A中至多有9个元素,A={1,9,2,8,3,7,4,6,5}.18.若数集M满足条件:若aM,则1+a1-aM(a0,a1),则集合M中至少有几个元素?解析:∵aM,1+a1-aM,1+1+a1-a1-1+a1-a=-1aM,与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)

1.1 集合的概念1.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合 A B ※ 的所有元素个数为( )A .2B .3C .4D .5答案:B 解析:求出集合 A B ※ 的所有元素,即得解.详解:当1,2x y ==时,1(12)1z =⨯-=-;当1,3x y ==时,1(13)2z =⨯-=-;当2,2x y ==时,2(22)0z =⨯-=;当2,3x y ==时,2(23)2z =⨯-=-.所以集合 A B ※ 的共有3个元素.故选:B点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平.2.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴, 2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.3.已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个答案:D 解析:根据集合子集的个数计算公式求解.详解:因为集合{}012M =,,共有3个元素,所以子集个数为328=个. 故选:D.4.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C5.设全集为U ,定义集合M 与N 的运算:{()*|M N x x M N =∈⋃且()}x M N ∉⋂,则()**N N M = A .MB .NC .U MN D .U N M答案:A 解析:先由题意得出*N M 表示区域,再由题中的定义,即可得出()**N N M 表示的区域,从而可得出结果.详解:如图所示,由定义可知*N M 为图中的阴影区域,()**N N M ∴为图中阴影Ⅰ和空白的区域,即()**N N M M =.故选A.点睛:本题主要考查集合的交集与并集的应用,熟记概念即可,属于常考题型.6.对于集合{}22,,M a a x y x y ==-∈∈Z Z ,给出如下三个结论:①如果{}21,P b b n n ==+∈Z ,那么P M ⊆;②如果42,c n n =+∈Z ,那么c M ∉;③如果1a M ∈,2a M ∈,那么12a a M ∈.其中正确结论的个数是A .0B .1C .2D .3答案:D解析:①根据2221(1)n n n +=+-,得出21n M +∈,即P M ⊆;②根据42c n =+,证明42n M ,即c M ∉;③根据1a M ∈,2a M ∈,证明12a a M ∈.详解:解:集合22{|M a a x y ==-,x ∈Z ,}y Z ∈,对于①,21b n =+,n Z ∈,则恒有2221(1)n n n +=+-,21n M ∴+∈,即{|21P b b n ==+,}n Z ∈,则P M ⊆,①正确;对于②,42c n =+,n Z ∈, 若42n M ,则存在x ,y Z ∈使得2242x y n, 42()()n x y x y ∴+=+-, 又x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,42n M ∴+∉,即c M ∉,②正确;对于③,1a M ∈,2a M ∈,可设22111a x y =-,22222a x y =-,i x 、i y Z ∈;则2222121122()()a a x y x y =--222212121221()()()()x x y y x y x y =+--2212121221()()x x y y x y x y M =+-+∈那么12a a M ∈,③正确.综上,正确的命题是①②③.故选D .点睛:本题考查了元素与集合关系的判断、以及运算求解能力和化归思想,是难题.7.已知集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>,则集合T 中元素的个数为A .9B .10C .11D .12答案:C解析:先阅读题意,再写出集合T 即可.详解:解:由集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>, 则11213123415,,,,,,,,,,23344555566T ⎧⎫=⎨⎬⎩⎭, 则集合T 中元素的个数为11,故选C.点睛:本题考查了元素与集合的关系,重点考查了阅读能力,属基础题.8.关于集合下列正确的是( )A .0∈∅B .0N ∉C .{}0∅∈D .0Q ∈答案:D解析:根据元素和集合的关系进行判断即可.详解:解:0∈∅,故A 错;0N ∈,故B 错,{}0∅⊆,故C 错,0Q ∈,故D 正确.故选:D点睛:本题主要考查元素和集合关系的判断,比较基础,正确理解N ,Z ,R ,集合的意义是解决本题的关键.9.下列关系中正确的个数是( )①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.10.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( )A .2B .3C .8D .9答案:B解析:由,,x M y M x y M ∈∈+∈即可求解满足题意的点(),x y 的坐标.详解:解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3.故选:B.11.设集合{}12|M x x =<<,{}|3N x x =<,则集合M 和集合N 的关系是( )A .N M ∈B .M N ∈C .M N ⊆D .N M ⊆答案:C解析:由子集的概念进行判断结合选项得出答案.详解:集合{}12|M x x =<<中的每一个元素都是集合{}|3N x x =<中的元素,∴集合M 是集合N 的子集 故选:C12.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41答案:D 解析:分x 、y 都为正偶数或正奇数和x 、y 中一个为正奇数,另一个为正偶数,两种情况,根据运算列举求解.详解:当x 、y 都为正偶数或正奇数时,36x y x y ∆=+=,集合M 中的元素有()()()()()()1,35,2,34,3,33,4,32,...,34,2,35,1,共35个;当x 、y 中一个为正奇数,另一个为正偶数时,36x y x y ∆=⋅=,,集合M 中的元素有()()()()()()1,36,3,12,4,9,9,4,36,1,12,3共6个,所以集合M 中元素的个数为35641+=,故选:D点睛:本题主要考查集合的概念和表示方法,属于基础题.13.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .3答案:A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案.详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0.故选A .点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题.14.已知集合1{|,Z}24k M x x k ==+∈,*1{|,N }42k N x x k ==+∈,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈或0x N ∉B .0x N ∈C .0x N ∉D .不能确定答案:A解析:用列举法表示集合,M N ,最后可以选出正确答案.详解:131357{|,Z},,,,,2444444k M x x k ⎧⎫==+∈=--⎨⎬⎩⎭, *1353{|,N },1,,,42442k N x x k ⎧⎫==+∈=⎨⎬⎩⎭,当01,4x M =-∈但0x N ∉, 当03,4x M =∈有0x N ∈.故选:A点睛:本题考查了列举法表示集合,考查了元素与集合的关系,属于基础题.15.已知,,a b c 均为非零实数,集合{|}a b ab A x x a b ab ==++,则集合A 的元素的个数为. A .2B .3C .4D .5答案:A解析:当0a >,0b >时,1113a b ab x a b ab =++=++=;当0a >,0b <时,1111ab ab x a b ab =++=--=-,当0a <,0b >时,1111a b ab x a b ab=++=-+-=-,;当0,0a b <<时,1111ab ab x a b ab =++=--+=-,故x 的所有值组成的集合为{}1,3-,故选A. 16.若集合A =x|kx 2+4x +4=0,x∈R}中只有一个元素,则实数k 的值为( )A .1B .0C .0或1D .以上答案都不对答案:C解析:当k =0时,A =-1};当k≠0时,Δ=16-16k =0,k =1.故k =0或k =1.选C.17.集合M =(x ,y)|xy<0,x∈R,y∈R}是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集答案:D详解:根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集18.定义集合A 、B 的一种运算:{}1212|,,A B x x x x x A x B *==⨯∈∈其中,若{1,2,3,5}A =, {1,2}B =,则A B *中的所有元素之和为为 A .30B .31C .32D .34答案:B详解: 试题分析:由{}1212|,,A B x x x x x A x B *==⨯∈∈其中可知{}1,2,3,5,4,6,10A B *=,所以所有元素之和为31考点:集合运算19.设由“我和我的祖国”中的所有汉字组成集合A ,则A 中的元素个数为( )A .4B .5C .6D .7答案:B解析:列举出集合A 中的元素,由此可得出结论.详解:由题意可知,集合A 中的元素分别为:我、和、的、祖、国,共5个元素. 故选:B.20.已知集合{}21,A a =,实数a 不能取的值的集合是( ) A .{}1,1-B .{}1-C .{}1,0,1-D .{}1答案:A 解析:根据元素的互异性可得出关于实数a 的不等式,由此可求得结果. 详解:由已知条件可得21≠a ,解得1a ≠±.故选:A.。
高中数学新教材A版1.1 集合及其表示方法经典练习题

1.1 集合及其表示方法1.集合的基本概念;2. 元素和集合的关系;3. 用列举法表示集合;4. 用描述法表示集合;5. 集合中元素的互异性;6.集合中元素的个数;7. 集合的新定义问题一、单选题1.(2020·浙江高一课时练习)下列四组对象中能构成集合的是( ). A .本校学习好的学生 B .在数轴上与原点非常近的点 C .很小的实数D .倒数等于本身的数2.(2020·朝阳吉林省实验高二期末(文))集合{|32}x x ∈-<N 用列举法表示是 A .{1,2,3,4} B .{1,2,3,4,5} C .{0,1,2,3,4,5}D .{0,1,2,3,4}3.(2020·浙江高二学业考试)已知集合{}13A x R x =∈<<,则下列关系正确的是( ) A .1A ∈B .2A ∉C .3A ∈D .4A ∉4.(2020·宁夏兴庆银川一中高二期末(文))已知集合{}|21,A x x x Z =-<≤∈,则集合A 中元素的个数为( ) A .0B .1C .2D .35.(2020·全国高三专题练习(文))设集合{0,1,2,3}A =,{},1B x x A x A =-∈-∉,则集合B 中元素的个数为( ) A .1 B .2 C .3D .46.(2020·浙江高一课时练习)已知集合{},A x x a π==∣,则a 与集合A 的关系是( ).A .a A ∈B .a A ∉C .a A =D .{}a A ∈7.(2020·浙江高一课时练习)下面四个命题正确的个数是( ). ①集合*N 中最小的数是1; ②若*N a -∈,则*N a ∈;③若**N ,N a b ∈∈,则+a b 的最小值是2; ④296+=x x 的解集是{}3,3. A .0B .1C .2D .38.(2020·全国高一)有下列四个命题: ①{0}是空集;②若a N ∈,则a N -∉;③集合2{|210}A x R x x =∈-+=有两个元素; ④集合6B x NN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集. 其中正确命题的个数是( ) A .0B .1C .2D .39.(2020·朝阳吉林省实验高二期末(文))已知非零实数a ,b ,c ,则代数式||||||a b cb ac ++表示的所有的值的集合是( ) A .{3}B .{3}-C .{3,3}-D .{3,3,1,1}--10.(2020·吴起高级中学高二月考(文))若{}22111a a ∈++,,,则a =( ) A .2 B .1或-1C .1D .-1二、多选题11.(2019·全国高一课时练习)下列表示正确的是( ) A .0∈NB .27∈Z C .3-∉Z D .π∉Q E.13∈Q12.(2019·全国高一课时练习)(多选)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{}2,3,5,7B .由1,2,3组成的集合可表示为{}1,2,3或{}3,1,2C .方程2210x x -+=的所有解组成的集合是{}11,D .0与{}0表示同一个集合13.(2019·全国高一课时练习)下列是集合{(,)|1,,}M x y x y x y =+≤∈∈N N 中元素的有( ) A .(0,0)B .(0,1)C .(1,0)D .(2,1)-E.(1,2)-14.(2020·全国高一课时练习)实数1是下面哪一个集合中的元素( ) A .整数集Z B .{||||x x x =C .{|11}x x ∈-<<ND .1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R E.1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 三、填空题15.(2020·浙江高一课时练习)已知集合6{|N ,}5A x x Z x*=∈∈-,用列举法表示为____________. 16.(2020·全国高一)已知集合(){}21,1A m m =+-,若1A ∈,则m =______.17.(2020·全国高一课时练习)用符号“∈”或“∉”填空:(1)2_____N ;(2Q ;(3)13______Z ;(4)3.14______R ;(5)3-______N ;(6Q . 18.(2020·全国高一课时练习)用符号“∈”或“∉”填空: (1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .19.(2019·海口市第四中学高一月考)用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________.20.(2019·全国高一课时练习)由实数x ,x -,x 所组成的集合中最多含______个元素,最少含______个元素.21.(2020·全国高一课时练习)(1)若23{1,3,1}m m m ∈--,则实数m =_____;(2)若2{|0}x x a ∉->,则实数a 的取值范围是______. 四、解答题22.(2020·全国高一)用列举法表示下列集合: (1){}2|9A x x ==; (2){|12}B x N x =∈≤≤;(3){}2|320C x x x =-+=.23.(2020·浙江高一课时练习)试说明下列集合各表示什么?1|A y y x ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.24.(2020·全国高一)用合适的方法表示下列集合,并说明是有限集还是无限集. (1)到A 、B 两点距离相等的点的集合 (2)满足不等式21x >的x 的集合 (3)全体偶数 (4)被5除余1的数 (5)20以内的质数(6){(,)|6,,}x y x y x N y N **+=∈∈ (7)方程()0,x x a a R -=∈的解集25.(2020·全国高一)已知22{1,251,1}A a a a a =-+++,2A -∈,求实数a 的值.26.(2020·上海高一课时练习)当实数a 、b 满足什么条件时,集合{}0A x ax b =+=是有限集、无限集、空集?27.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.1.1 集合及其表示方法1.集合的基本概念;2. 元素和集合的关系;3. 用列举法表示集合;4. 用描述法表示集合;5. 集合中元素的互异性;6.集合中元素的个数;7. 集合的新定义问题一、单选题1.(2020·浙江高一课时练习)下列四组对象中能构成集合的是( ). A .本校学习好的学生 B .在数轴上与原点非常近的点 C .很小的实数 D .倒数等于本身的数【答案】D 【解析】集合中的元素具有确定性,对于,,A B C ,学习好、非常近、很小都是模糊的概念,没有明确的标准,不符合确定性;对于D ,符合集合的定义,D 正确. 故选:D .2.(2020·朝阳吉林省实验高二期末(文))集合{|32}x x ∈-<N 用列举法表示是 A .{1,2,3,4} B .{1,2,3,4,5} C .{0,1,2,3,4,5} D .{0,1,2,3,4}【答案】D 【解析】分析:解出不等式得5x <,小于5的自然数有5个. 详解:由题意5x <,又x ∈N ,∴集合为{0,1,2,3,4}.3.(2020·浙江高二学业考试)已知集合{}13A x R x =∈<<,则下列关系正确的是( ) A .1A ∈ B .2A ∉C .3A ∈D .4A ∉【答案】D 【解析】因为集合{}13A x R x =∈<<,所以1A ∉,2A ∈,3A ∉,4A ∉ 故选:D4.(2020·宁夏兴庆银川一中高二期末(文))已知集合{}|21,A x x x Z =-<≤∈,则集合A 中元素的个数为( ) A .0 B .1C .2D .3【答案】D 【解析】{}{}|21,1,0,1A x x x Z =-<≤∈=-,所以集合A 中元素的个数为3.5.(2020·全国高三专题练习(文))设集合{0,1,2,3}A =,{},1B x x A x A =-∈-∉,则集合B 中元素的个数为( ) A .1 B .2 C .3 D .4【答案】A 【解析】因为x ∈B ,-x ∈A ,故x 只可能是0,-1,-2,-3,又1-x ∉A ,则 当0∈B 时,1-0=1∈A ,不符合题意; 当-1∈B 时,1-(-1)=2∈A ,不符合题意; 当-2∈B 时,1-(-2)=3∈A ,不符合题意; 当-3∈B 时,1-(-3)=4∉A ,符合题意. 所以{3}B =-,故集合B 中元素的个数为1. 故选:A6.(2020·浙江高一课时练习)已知集合{},A x x a π==∣,则a 与集合A 的关系是( ).A .a A ∈B .a A ∉C .a A =D .{}a A ∈【答案】B 【解析】1.732≈≈ 3.146≈π>,∴a A ∉.故选:B.7.(2020·浙江高一课时练习)下面四个命题正确的个数是( ). ①集合*N 中最小的数是1; ②若*N a -∈,则*N a ∈;③若**N ,N a b ∈∈,则+a b 的最小值是2; ④296+=x x 的解集是{}3,3. A .0B .1C .2D .3【解析】*N 是正整数集,最小的正整数是1,故①正确;当0a <时,*a N -∈,但*a N ∉,故②错误;若*a N ∈,则a 的最小值为1.又*b N ∈,则b 的最小值为1,当a 和b 都取最小值时,+a b 取最小值2,故③正确;由集合中元素的互异性知④错误. 故选:C8.(2020·全国高一)有下列四个命题: ①{0}是空集;②若a N ∈,则a N -∉;③集合2{|210}A x R x x =∈-+=有两个元素; ④集合6B x NN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】①{0}中有一个元素0,不是空集,不正确; ②中当0a =时不成立,不正确;③中2210x x -+=有两个相等的实数根,因此集合只有一个元素,不正确; ④中集合6{|}{1,2,3,6}B x N N x=∈∈=是有限集,正确, 故选:B9.(2020·朝阳吉林省实验高二期末(文))已知非零实数a ,b ,c ,则代数式||||||a b c b a c ++表示的所有的值的集合是( ) A .{3}B .{3}-C .{3,3}-D .{3,3,1,1}--【解析】当,,a b c 都为正数时,1||||||a b a b c c ===; 当,,a b c 都为负数时,1||||||a b c a b c ===-. 因此,若,,a b c 都为正数,则3||||||a b c a b c ++=; 若,,a b c 两正一负,则1||||||a b a b c c ++=; 若,,a b c 一正两负,则1||||||a b c a b c ++=-; 若,,a b c 都为负数,则3||||||a b c a b c ++=-. 所以代数式||||||a b c b a c ++表示的所有的值的集合是{3,1,1,3}--. 故选:D.10.(2020·吴起高级中学高二月考(文))若{}22111a a ∈++,,,则a =( ) A .2 B .1或-1 C .1 D .-1【答案】D 【解析】当212a +=时,1a =±,当1a =时,集合为{}1,2,2不满足互异性,舍去,当1a =-时,集合为{}1,2,0,满足;当12a +=时,1a =,不满足互异性,舍去. 故选:D . 二、多选题11.(2019·全国高一课时练习)下列表示正确的是( ) A .0∈N B .27∈Z C .3-∉ZD .π∉Q E.13∈Q【答案】ADE对于A,0是自然数,则0∈N ,故A 正确;对于B,27不是整数,则27∉Z ,故B 错误;对于C,3-是整数,则3-∈Z ,故C 错误;对于D,π是无理数,则π∉Q ,故D 正确; 对于E,13是有理数,则13∈Q ,故E 正确 故选:ADE12.(2019·全国高一课时练习)(多选)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{}2,3,5,7B .由1,2,3组成的集合可表示为{}1,2,3或{}3,1,2C .方程2210x x -+=的所有解组成的集合是{}11,D .0与{}0表示同一个集合 【答案】CD 【解析】10以内的质数组成的集合是{}2,3,5,7,故A 正确;由集合中元素的无序性知{}1,2,3和{}3,1,2表示同一集合,故B 正确;方程2210x x -+=的所有解组成的集合是{}1,故C 错误;由集合的表示方法知0不是集合,故D 错误.故选CD.13.(2019·全国高一课时练习)下列是集合{(,)|1,,}M x y x y x y =+≤∈∈N N 中元素的有( ) A .(0,0) B .(0,1)C .(1,0)D .(2,1)-E.(1,2)-【答案】ABC 【解析】∵{(,)|1,,}M x y x y x y =+≤∈∈N N ,∴00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或10x y =⎧⎨=⎩, ∴{(0,0),(0,1),(1,0)}M = 故选:ABC14.(2020·全国高一课时练习)实数1是下面哪一个集合中的元素( )A .整数集ZB .{||||x x x =C .{|11}x x ∈-<<ND .1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R E.1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 【答案】ABD 【解析】1是整数,因此实数1是整数集Z 中的元素,故A 选项正确;由||x x =得0x =或1x =,因此实数1是集合{|||}x x x =中的元素,故B 选项正确;1不满足11x -<<,因此实数1不是集合{|11}x x ∈-<<N 中的元素,故C 选项不正确;当1x =时,101x x -=+,因此实数1是集合1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R 中的元素,故D 选项正确;当1x =时,11x x +-无意义,因此实数1不是集合1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 中的元素,故E 选项不正确. 故选:ABD. 三、填空题15.(2020·浙江高一课时练习)已知集合6{|N ,}5A x x Z x*=∈∈-,用列举法表示为____________. 【答案】{}1,2,3,4- 【解析】 由6N ,5x Z x*∈∈-,得51,2,3,6,4,3,2,1x x -=∴=-, {1,2,3,4}A =-.故答案为:{}1,2,3,4-.16.(2020·全国高一)已知集合(){}21,1A m m =+-,若1A ∈,则m =______.【答案】2 【解析】依题意11m +=或()211m -=, 解得0m =或2m =;由集合中元素的互异性可知当0m =时,集合的两个元素相等,不合题意; 所以2m =.故答案为:2.17.(2020·全国高一课时练习)用符号“∈”或“∉”填空:(1)2_____N ;(2Q ;(3)13______Z ;(4)3.14______R ;(5)3-______N ;(6Q .【答案】∈ ∉ ∉ ∈ ∉ ∈【解析】【分析】N 为自然数集,Q 为有理数,Z 为整数集,R 为实数集,判断元素与集合之间的关系用相应的符号填写即可.【详解】(1)N 为自然数集,2是自然数,所以2N ∈;(2)Q Q ;(3)Z 为整数集,13是分数,所以13Z ∉;(4)R 表示实数集,所以3.14R ∈;(5) N 为自然数集,-3不是自然数,所以3N -∉;(6) Q 3=Q .18.(2020·全国高一课时练习)用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .【答案】∉ ∈ ∉ ∉【解析】(1)∅为不含有任何元素的集合,所以0∉∅;(2)2(2)45-=<,2{|52}x x -<∴∈; (3) 2238,(2,3){(,)|23}.x y x y +⨯=∴∉+=(4)因为2017不能被表示为41n -的形式,所以2017{|41,}x x n n ∉=-∈Z ;19.(2019·海口市第四中学高一月考)用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________.【答案】()()()(){}1,42,33,24,1,,, {}41z x z x k k ∈=+∈,【解析】分析:由5x y +=,且,*x y N ∈,则x 取值只能为1,2,3,4,求出对应的y 可得集合A 中的各元素,被4除余1的整数可表示为41k +(k Z ∈)形式.详解:由题意{(1,4),(2,3),(3,2),(4,1)}A =,所有被4除余1的整数组成的集合为{|41,}x Z x k k Z ∈=+∈. 故答案为:{(1,4),(2,3),(3,2),(4,1)};{|41,}x Z x k k Z ∈=+∈20.(2019·全国高一课时练习)由实数x ,x -,x 所组成的集合中最多含______个元素,最少含______个元素.【答案】2 1【解析】x x ==±,x =-,且当0x =时,0x x x =-====,当0x ≠时,集合中有元素:x ,x -,∴由实数x ,x -,x 2个元素,最少含有1个元素.21.(2020·全国高一课时练习)(1)若23{1,3,1}m m m ∈--,则实数m =_____;(2)若2{|0}x x a ∉->,则实数a 的取值范围是______.【答案】4或2± {|2}a a ≥【解析】(1)由13m -=,得4m =,此时312m =,2115m -=,符合题意.由33m =,得1m =,此时2110m m -=-=,故舍去.由213m -=,得2m =±,当2m =时,11m -=,36m =,符合题意;当2m =-时,13m -=-,36m =-,符合题意,综上所述,m = 4或2±.(2)因为2{|0}x x a ∉->,所以2不满足不等式0x a ->,即2满足不等式0x a -≤,所以20a -≤,即2a .所以实数a 的取值范围是{|2}a a .故答案为:4或2±;{|2}a a ≥四、解答题22.(2020·全国高一)用列举法表示下列集合:(1){}2|9A x x ==;(2){|12}B x N x =∈≤≤;(3){}2|320C x x x =-+=.【答案】(1){3,3}-(2){1,2}(3){1,2}【解析】(1)由29x =得3x =±,因此{}2|9{3,3}A x x ===-.(2)由x ∈N ,且12x ≤≤,得1,2x =,因此{|12}{1,2}B x N x =∈≤≤=.(3)由2320x x -+=得1,2x =.因此{}2|320{1,2}C x x x =-+==.23.(2020·浙江高一课时练习)试说明下列集合各表示什么? 1|A y y x ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭ (),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-. 【答案】答案见解析【解析】A 表示y 的取值集合,由1y x =知:0y ≠,{}0A y y ∴=≠;B 表示x 的取值集合,由220x x -≥知:0x ≤或2x ≥,{0B x x ∴=≤或}2x ≥; C 的代表元素为(),x y ,表示反比例函数1y x=上的点构成的点集;D 的代表元素为(),x y ,由13y x =-知:()33y x x =-≠, D ∴表示直线3y x =-上除了()3,0以外的点构成的点集;E 表示以方程“0x =”和“1y =”为元素的一个二元集.F 表示以方程“1x y +=”和“1x y -=-”为元素的一个二元集.24.(2020·全国高一)用合适的方法表示下列集合,并说明是有限集还是无限集.(1)到A 、B 两点距离相等的点的集合(2)满足不等式21x >的x 的集合(3)全体偶数(4)被5除余1的数(5)20以内的质数(6){(,)|6,,}x y x y x N y N **+=∈∈(7)方程()0,x x a a R -=∈的解集【答案】(1)集合{A =点}P PA PB =,无限集;(2)集合{}21B x x =>,无限集;(3)集合{}2,C x x k k Z ==∈,无限集;(4)集合{}51,D x x k k Z ==+∈,无限集;(5)集合{}2,3,5,7,11,13,17,19E =,有限集;(6)集合()()()()(){}1,5,2,4,3,3,4,2,5,1F =,有限集;(7)集合{}()0,G x x x a a R =-=∈,有限集.【解析】(1)因为到A 、B 两点距离相等的点P 满足PA PB =,所以集合{A =点}P PA PB =,无限集. (2)由题意可知,集合{}21B x x =>,无限集.(3)因为偶数x 能被2整除,所以集合{}2,C x x k k Z ==∈,无限集.(4)由题意可知,集合{}51,D x x k k Z ==+∈,无限集.(5)因为20以内的质数有2,3,5,7,11,13,17,19.所以集合{}2,3,5,7,11,13,17,19E =,有限集.(6)因为6,,x y x N y N **+=∈∈,所以方程的解为15x y =⎧⎨=⎩,24x y =⎧⎨=⎩,33x y =⎧⎨=⎩,42x y =⎧⎨=⎩,51x y =⎧⎨=⎩,所以集合()()()()(){}1,5,2,4,3,3,4,2,5,1F =,有限集. (7)由题意可知,集合{}()0,G x x x a a R =-=∈,有限集.25.(2020·全国高一)已知22{1,251,1}A a a a a =-+++, 2A -∈,求实数a 的值. 【答案】32-【解析】 因为2A -∈,所以有12,a -=-或22512a a ++=-,显然212a +≠-,当12a -=-时,1a =-,此时212512a a a -=++=-不符合集合元素的互异性,故舍去;当22512a a ++=-时,解得32a =-,1a =-由上可知不符合集合元素的互异性,舍去,故32a =-. 26.(2020·上海高一课时练习)当实数a 、b 满足什么条件时,集合{}0A x ax b =+=是有限集、无限集、空集?【答案】当0a ≠,b R ∈时,集合A 为有限集;当0a =,0b =时,集合A 为无限集;当0a =,0b ≠时,集合A 为空集【解析】当0,a b R ≠∈时,方程0ax b +=有唯一解b x a =-,此时集合{}b A a=-,集合A 为有限集; 当0a =,0b =时,0ax b +=有无穷多个解,集合A 为无限集;当0a =,0b ≠时,0ax b +=无解,集合A 为空集.27.已知集合A ={x |ax 2-3x +2=0}.(1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.【答案】(1)当a =0时,A ={23},当a =98时,A ={43}.(2)a ≤98. 【解析】 (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意; 当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根,则Δ=9-8a =0,解得a =98,此时A ={43},符合题意. 综上所述,当a =0时,A ={23},当a =98时,A ={43}. (2)由(1)可知,当a =0时,A ={23}符合题意; 当a ≠0时,要使方程ax 2-3x +2=0有实数根,则Δ=9-8a ≥0,解得a ≤98且a ≠0.9综上所述,若集合A中至少有一个元素,则a≤8.。
1.1.1 集合的概念与表示(北师大版2019必修第一册)分册训练解析版

1.1.1集合的概念与表示分层练习基础巩固一、单选题1.已知M 是由1,2,3三个元素构成的集合,则集合M 可表示为( ) A .{x |x =1} B .{x |x =2} C .{1,2} D .{1,2,3}【答案】D 【解析】 【分析】根据集合的知识确定正确选项. 【详解】由于集合M 是由1,2,3三个元素构成, 所以{}1,2,3M =. 故选:D2.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人 C .π的近似值D .倒数等于它本身的数【答案】D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.3.已知集合{}0,1A =,则集合{},B x y x A y A =-∈∈中元素的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】 【分析】根据,x A x B ∈∈,所以x y -可取1,0,1-,即可得解. 【详解】由集合{}0,1A =,{},B x y x A y A =-∈∈, 根据,x A y B ∈∈, 所以1,0,1x y -=-, 所以B 中元素的个数是3. 故选:C4.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1 B . {}1,0-C .{}0,1,2D .{}1,0,1-【答案】D 【解析】 【分析】通过解方程进行求解即可. 【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =, 所以{}1,0,1A =-, 故选:D5.给出下列四个关系:π∈R , 0∉Q ,0.7∈N , 0∈∅,其中正确的关系个数为( ) A .4 B .3C .2D .1【答案】D 【解析】 【分析】根据自然数集、有理数集、空集的含义判断数与集合的关系. 【详解】∵R 表示实数集,Q 表示有理数集,N 表示自然数集,∅表示空集, ∴π∈R ,0∈Q ,0.7∉N ,0∉∅, ∴正确的个数为1 . 故选:D .6.已知{1}A x x m =∈-<Z ∣,若集合A 中恰好有5个元素,则实数m 的取值范围为( )A .4<m ≤5B .4≤m<5C .3≤m<4D .3<m ≤4【答案】D 【解析】 【分析】由已知求出集合A ,进一步得到m 的范围. 【详解】由题意可知{}1,0,1,2,3A =-,可得3<m ≤4. 故选:D 二、多选题7.给出下列说法,其中正确的有( ) A .中国的所有直辖市可以构成一个集合;B .高一(1)班较胖的同学可以构成一个集合;C .正偶数的全体可以构成一个集合;D .大于2 011且小于2 016的所有整数不能构成集合. 【答案】AC 【解析】 【分析】根据集合的确定性依次判断每个选项得到答案. 【详解】中国的所有直辖市可以构成一个集合,A 正确;高一(1)班较胖的同学不具有确定性,不能构成集合,B 错误; 正偶数的全体可以构成一个集合,C 正确;大于2 011且小于2 016的所有整数能构成集合,D 错误. 故选:AC.8.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值可能是( )A .98B .1C .0D .23【答案】AC 【解析】 【分析】对a 进行分类讨论,结合A 有且只有一个元素求得a 的值. 【详解】当0a =时,{}2|3203A x x ⎧⎫=-+==⎨⎬⎩⎭,符合题意.当0a ≠时,9980,8a a ∆=-==,符合题意.故选:AC 三、填空题9.用符号∈或∉填空:3.1___N ,3.1___Z , 3.1____*N ,3.1____Q ,3.1___R . 【答案】 ∉ ∉ ∉ ∈ ∈ 【解析】 【分析】由元素与集合的关系求解即可 【详解】因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数, 所以有:3.1N ∉;3.1Z ∉;*3.1N ∉;3.1Q ∈;3.1R ∈. 故答案为:∉,∉,∉,∈,∈.10.设集合{}1A x xy xy =-,,,其中x ∈Z ,y Z ∈且0y ≠,若0A ∈,则A 中的元素之和为_____. 【答案】0 【解析】 【分析】根据元素与集合间的关系,列方程求解. 【详解】因为0A ∈,所以若0x =,则集合{}0,0,1A =-不成立.所以0x ≠. 若因为0y ≠,所以0xy ≠,所以必有0xy -1=,所以1xy =. 因为x ∈Z ,y Z ∈,所以1x y ==或1x y ==-. 若1x y ==,此时{}1,1,0A =不成立,舍去.若1x y ==-,则{}1,1,0A =-,成立.所以元素之和为1100-+=. 故答案为:0. 四、解答题11.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B . 【答案】B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.12.判断下列各组对象能否构成集合.若能构成集合,指出是有限集还是无限集;若不能构成集合,试说明理由. (1)北京各区县的名称; (2)尾数是5的自然数;(3)我们班身高大于1.7m 的同学. 【答案】(1)能;有限集; (2)能;无限集; (3)能;有限集. 【解析】 【分析】根据集合的基本概念即得. (1)因为北京各区县的名称是确定的,故北京各区县的名称能构成集合;因为北京各区县是有限的,故该集合为有限集; (2)因为尾数是5的自然数是确定的,故尾数是5的自然数能构成集合;因为尾数是5的自然数是无限的,故该集合为无限集; (3)因为我们班身高大于1.7m 的同学是确定的,故我们班身高大于1.7m 的同学能构成集合;因为我们班身高大于1.7m 的同学是有限的,故该集合为有限集.培优提升一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据集合的新定义确定集合中的元素. 【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =, 所以{0,1,2}A B ⊗=--, 故集合A B ⊗中的元素个数为3, 故选:C.2.若{}22,a a a ∈-,则a 的值为( )A .0B .2C .0或2D .2-【答案】A 【解析】 【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果. 【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =. 故选:A.3.已知x ,y ,z 为非零实数,代数式||||||||x y z xyz x y z xyz +++的值所组成的集合是M ,则下列判断正确的是( ) A .4∈M B .2M ∈ C .0M ∉ D .4M -∉【答案】A 【解析】【分析】分别对x ,y ,z 的符号进行讨论,计算出集合M 的所有元素,再进行判断. 【详解】根据题意,分4种情况讨论;①、x y 、、z 全部为负数时,则xyz 也为负数,则4||||||||x y z xyz x y z xyz +++=-; ②、x y 、、z 中有一个为负数时,则xyz 为负数,则0||||||||x y z xyz x y z xyz +++=; ③、x y 、、z 中有两个为负数时,则xyz 为正数,则0||||||||x y z xyz x y z xyz +++=; ④、x y 、、z 全部为正数时,则xyz 也正数,则4||||||||x y z xyz x y z xyz +++=; 则{4,0,4}M =-;分析选项可得A 符合. 故选:A. 二、填空题4.集合12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,的元素个数为_________. 【答案】12 【解析】 【分析】根据集合得表示可知:3x + 是12的因数,即可求解. 【详解】由12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,可知,3x + 是12的因数,故31,2,3,4,6,12x +=±±±±±± ,进而可得x 可取0,1,3,9,1,2,4,5,6,7,9,15--------,故答案为:125.若集合{}2210A xax x =-+=∣有且只有一个元素,则a 的取值集合为__________. 【答案】{}0,1##{}1,0 【解析】 【分析】讨论集合A 中的条件2210ax x -+=属于一次方程还是二次方程即可求解. 【详解】①若0a =,则210x -+=,解得12x =,满足集合A 中只有一个元素,所以0a =符合题意;②若0a =/,则2210ax x -+=为二次方程,集合A 有且只有一个元素等价于2=(2)410a --⨯⨯=∆,解得1a =.故答案为:{}0,1. 三、解答题6.已知{}2|20,R M x ax x x =-+=∈.根据下列条件,求实数a 的值构成的集合.(1)当M =∅;(2)当M 是单元素集(只含有一个元素的集合); (3)当M 是两个元素的集合. 【答案】(1)1,8⎛⎫+∞ ⎪⎝⎭(2)1,08⎧⎫⎨⎬⎩⎭(3)1,08a a a ⎧⎫<≠⎨⎬⎩⎭【解析】 【分析】(1)由判别式小于0可得(方程为一元二次方程); (2)由二次项系数为0或一元二次方程的判别式为0柯得; (3)由方程为一元二次方程,且判别式大于0可得. (1)M =∅,180a ∆=-<,18a >,所以a 的范围是1(,)8+∞;(2)0a =时,{2}M =,满足题意,180a ∆=-=,18a =,此时{4}M =,满足题意,(3)由题意方程有两个不等实根,0a ≠且0∆>,解得18a <且0a ≠,所以a 的范围是1{|8a a <,0}a ≠.拓展创新1.已知集合2{,}A m m =,若1A ∈,则实数m 的值是__________ 【答案】1-【解析】 【分析】由1A ∈,分1m =,21m =两种情况讨论,结合集合中元素的互异性分析,即得解 【详解】 由题意,1A ∈(1)若1m =,则{1,1}A =,和集合中元素的互异性矛盾,不成立; (2)若21m =,则1m =±,由(1)1m ≠ 若1m =-,则{1,1}A =-,1A ∈,成立 故实数m 的值是1- 故答案为:1- 2.已知*k N ∈,记集合{1101100112222,1,,,,01}k k k k k k k A x x a a a a a a a a ---==⨯+⨯++⨯+⨯==或,例如{{}110102,1,01}2,3A x x a a a a ==+===或,….现有一款名称为“解数学题获取软件激活码”网络游戏,它的激活码为集合A 2的各元素之和,则该游戏的激活码为________. 【答案】22 【解析】 【分析】由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1,由此求得集合{}24,5,6,7A =,故而可得答案. 【详解】解:由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1, 所以当100a a ==时,41+0+04x =⨯=; 当1010a a ==,时,41+21+06x =⨯⨯=; 当1001a a ==,时,41+20+115x =⨯⨯⨯=, 当1011a a ==,时,41+21+117x =⨯⨯⨯=,所以{}24,5,6,7A =,该游戏的激活码为4+5+6+722=, 故答案为:22.3.已知集合{}0,2A =,()()(){}21110B x ax x x ax =---+=,用符号A 表示非空集合A中元素的个数,定义,,A B A BA B B A A B ⎧-≥=⎨-<⎩※,若1A B =※,则实数a 的所有可能取值构成集合P ,则P =______.(请用列举法表示) 【答案】{}0,1,2- 【解析】 【分析】由集合的新定义结合题意求出a 的值,再用列举法表示即可 【详解】∵2A =,1A B =※, ∴1B =或3B =, 当1B =时,0a =或1a =.当3B =时,()()()21110ax x x ax ---+=有3个解,所以210x ax -+=只有一个解不为1和1a, 则240a ∆=-=,解得2a =±,当2a =时,2210x x -+=,则此时1x =,不符合题意; 当2a =-时,2210x x ++=,则此时1x =-,符合题意; 所以2a =-,11,,12B ⎧⎫=--⎨⎬⎩⎭,故{}0,1,2P =-. 故答案为:{}0,1,2-.4.用()C A 表示非空集合A 中元素的个数:定义()(),()()*()(),()()C A C B C A C B A B C B C A C B C A -≥⎧=⎨->⎩,若{1,2}A =,{}22()(2)0,B x x ax x ax x R =+++=∈,且*1A B =,设实数a 的所有可能取值构成集合S ,S =__________; 【答案】{0,22,2}- 【解析】 【分析】根据新定义得出集合B 中元素个数,再由方程根的个数分析求解. 【详解】由已知()2C A =,而*1A B =,则()1C B =或3,试卷第11页,共11页 11显然22()(2)0x ax x ax +++=的一个解是0x =, 若()1C B =,则0a =,满足题意;若()3C B =,则0a ≠,方程已有两个根0x =和x a =-,220x ax ++=有两个相等的实根且不为0和a -,280a ∆=-=,22a =±22a =220x ax ++=的解为342x x ==- 22a =-220x ax ++=的解为342x x ==.均满足题意. 综上{0,2,22}S =-. 故答案为:{0,2,2}-.12 试卷第12页,共1页。
集合的概念练习题

第一讲 集合的概念及其运算1、子集的个数例1、(1)若{ 1,2 }A ⊆{ 1,2,3,4 },求满足这个关系式的集合A 的个数(2)已知集合A ={0、2、4},},|{A b a b a x x B ∈⋅==、,则集合B 的子集的个数为 。
(3)从自然数1~20这20个数中,任取两个数相加,得到的和作为集合M 的元素,则M 的真子集共有 个。
☆规律方法总结:(1)子集的个数:一个有n 个元素的集合,其①子集有 个;②真子集有 个;③非空子集有 个;④非空真子集有 个; (2)已知集合M 中有m 个元素,集合N 中有n 个元素,则满足M N P ⊆的集合P 的个数为12--m n2、集合中元素的个数例2、(1)已知集合M,N 分别含有8个、13个元素,若N M 中有6个元素, ①求N M 中的元素个数. ②当N M 含多少个元素时,φ=N M .(2)50名学生参加跳远和铅球两样测试,跳远和铅球测验成绩分别及格40人和31人,两次测验成绩均不及格的有4人,则两项成绩都及格的人数是( )A 、35B 、25C 、28D 、15(3) 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 3、集合间的关系例3、判断下列两集合之间的关系⑴ },14|{},,12|{Z k k x x N Z k k x x M ∈±==∈+== (2)},2|{},,12|{22R b b b x x B R a a a x x A ∈-==∈++== (3) },24|{},,42|{Z k k x x N Z k k x x M ∈+==∈+==ππππ 4、方程、不等式与集合例4、(1) 已知方程0)(,0)(==x g x f 的解集分别为B A ,。
① 写出方程0)()(=⋅x g x f 的解集② 写出方程0)()(22=+x g x f 的解集③ 写出方程0)()(=x g x f 的解集 (2)已知不等式0)()0(>>x g x f ,的解集分别为B A 、, 0)()0(<<x g x f ,的解集分别为N M 、。
(完整版)集合的概念与表示方法习题

集合的概念与表示方法测试卷一、选择题(共15题,每题2分,共30分) 1.给出下列表述:①联合国常任理事国;②充分接近2的实数的全体;③方程 错误!未找到引用源。
的实数根;④全国著名的高等院校. 以上能构成集合的是( ) A.①③ B.①② C.①③④ D.①②③④2. 由 a ²,2-a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是() A 、1 B 、-2 C 、6 D 、23.下列各组对象中不能组成集合的是()A. 直角三角形的全体B. 所有的无理数C. 方程2x-1=0的整数解D. 我班个子较高的同学 4.下列叙述正确的是( ) A. 集合},3|{N x x x ∈<中只有两个元素 B. }1{}012|{2==+-x x xC. 整数集可表示为}{ZD. 有理数集表示为{x x |为有理数集}5.方程组⎩⎨⎧-=-=+11y x y x 的解集是( ) A. {0,1} B. (0,1)C. {(x,y)|x=0,或y=1}D. {(0,1)}6.下列集合表示法正确的是( )A.{1,2,2}B.{全体实数}C.{有理数}D.不等式 x ²-5>0的解集为{x ²-5>0} 7. 设A={a},则下列各式正确的是( ) A 、0∈A B 、a ∉AC 、a ∈AD 、a=A8. 由大于-3且小于11的偶数所组成的集合是( ) A 、{x|-3<x<11,x ∈Q} B 、{x|-3<x<11}C 、{x|-3<x<11,x=2k,k ∈N}D 、{x|-3<x<11,x=2k,k ∈Z} 9. 设集合M ={(1,2)},则下列关系成立是( )。
A 、1∈MB 、2∈MC 、(1,2)∈MD 、(2,1)∈M 10. 集合{x-1,x ²-1,2}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、511. 直角坐标平面内,集合M={(x ,y )丨xy ≥0,x ∈R ,y ∈R }的元素所对应的点是 A 、第一象限内的点 B.第三象限内的点C.第一或第三象限内的点D.非第二、第四象限内的点 12. 下列结论不正确的是( )A 、0∈NB 、错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数
第一节集合的概念及表示方法练习题
一、选择题
1.已知A={x|3-3x>0},则下列各式正确的是( )
A.3∈A B.1∈A C.0∈A D.-1∉A
2.下列四个集合中,不同于另外三个的是( )
A.{y|y=2} B.{x=2}
C.{2} D.{x|x2-4x+4=0}
3.用列举法表示集合{x|x2-2x+1=0}为( )
A.{1,1}
B.{1}
C.{x=1}
D.{x2-2x+1=0}
|-5≤x≤5},则必有 ( )
4.已知集合A={x∈N
+
A. -1∈A
B.0∈A
C. 3∈A
D.1∈A
5.集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为 ( )
A. 0
B. 1
C. 0或1
D. 小于等于1
6.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,那么a为 ( )
A. 2
B. 2或4
C. 4
D. 0
7.下列各组对象
①接近于0的数的全体;
②比较小的正整数全体;
③平面上到点O的距离等于1的点的全体;
④正三角形的全体;
⑤2的近似值的全体.
其中能构成集合的组数有( )
A.2组B.3组 C.4组D.5组
8.设集合M={大于0小于1的有理数},
N={小于1050的正整数},
P={定圆C的内接三角形},
Q={所有能被7整除的数},
其中无限集是( )
A.M、N、P B.M、P、Q
C.N、P、Q D.M、N、Q
9.下列命题中正确的是( )
A .{x |x 2+2=0}在实数范围内无意义
B .{(1,2)}与{(2,1)}表示同一个集合
C .{4,5}与{5,4}表示相同的集合
D .{4,5}与{5,4}表示不同的集合
10.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应 的点是( )
A .第一象限内的点
B .第三象限内的点
C .第一或第三象限内的点
D .非第二、第四象限内的点
11.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },
Y ={y |y =4k +1,K ∈Z },则( )
A .x +y ∈M
B .x +y ∈X
C .x +y ∈Y
D .x +y ∉M
12.下列各选项中的M 与P 表示同一个集合的是( )
A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0}
B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R }
C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R }
D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z }
二、填空题
13.下列关系中,正确的个数为________.
①12
∈R ; ② 2 ∉Q ; ③|-3|∉N *; ④|-3|∈Q . 14.已知M ={x|x ≤22},且a =32,则a 与M 的关系是 .
15.已知P ={x|2<x <a ,x ∈N },已知集合P 中恰有3个元素,则整数a = .
16.由实数x ,-x ,|x |所组成的集合,其元素最多有______个.
17.集合{3,x ,x 2-2x }中,x 应满足的条件是______.
18.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______.
19.用符号∈或∉填空:
①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②
2
1______R ,5______Q ,|-3|______N +,|-3|______Z . 20.若方程x 2+mx +n =0(m ,n ∈R )的解集为{-2,-1},则m =_____,n =_____.
21.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =___,b =___. 22.方程组⎪⎩
⎪⎨⎧=+=+=+321x z z y y x 的解集为______.
23.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举 法表示集合Q =______.
24.用描述法表示下列各集合:
①{2,4,6,8,10,12} . ②{2,3,4}______________________________________________.
③}7
5,64,53,42,31{____________________________________. 25.已知集合A ={-2,-1,0,1},集合B ={x |x =|y |,y ∈A }, 则B =______.
三、解答题
26.已知集合A ={1,x ,x 2-x},B ={1,2,x},若集合A 与集合B 相等,求x 的值.
27.下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.
(1)小于5的自然数;
(2)某班所有个子高的同学;
(3)不等式2x +1>7的整数解.
28.设A 表示集合{a 2+2a -3,2,3},B 表示集合{2,|a +3|},已知5∈A 且5∉B , 求a 的值.
29. (10分)已知集合A ={x|ax 2-2x +1=0}.
(1)若A 中恰好只有一个元素,求实数a 的值;
(2)若A 中至少有一个元素,求实数a 的取值范围.
30.集合A ={有长度为1的边及40°的内角的等腰三角形}中有多少个元素?试 画出这些元素来.
32.实数集A 满足条件:1∉A ,若a ∈A ,则A a
∈-11. (1)若2∈A ,求A ;
(2)集合A 能否为单元素集?若能,求出A ;若不能,说明理由;
(3)求证:A a
∈-11.
33.已知集合A ={x |ax 2-3x +2=0},其中a 为常数,且a ∈R
①若A 是空集,求a 的范围;
②若A 中只有一个元素,求a 的值;
③若A 中至多只有一个元素,求a 的范围.
21.用列举法把下列集合表示出来:
①A =};99|{N N ∈-∈x
x ②B =};|99{N N ∈∈-x x
③C ={y |y =-x 2+6,x ∈N ,y ∈N };
④D ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N };
⑤E =⋅∈∈=+=*},,5,|
{N N q p q p x q p x
22.已知集合A ={p |x 2+2(p -1)x +1=0,x ∈R },求集合B ={y |y =2x -1,x ∈A }.。